Chaotic Modeling and Simulation (CMSIM) 1: 91-99, 2012

Lindenmayer Systems and the Harmony of
Fractals

Pedro Pestana

CEAUL — Centro de Estatistica e Aplicagoes da Universidade de Lisboa
Portuguese Catholic University — School of the Arts, CITAR, Porto, and Lusiada
University, Lisboa, Portugal

(E-mail: pedro.duarte.pestana@gmail.com)

Abstract. An interactive musical application is developed for realtime improvisation
with a machine based on Lindenmayer-systems. This has been used on an installation
whose goal is to draw the attention of unexperienced users to the wealth of realtime
applications in computer music. Issues on human computer interaction and improvi-
sation grammars had to be dealt with, as well as probabilistic strategies for musical
variation. The choice of L-systems as a basis for machine composition is a conse-
quence of their ability to create results that easily have aesthetic appeal, both in the
realms of sound and image.

Keywords: human-computer interaction, L-systems, fractals in algorithmic music
composition, interactive composition, improvisation, computer music.

1 Introduction

Musical variation, and composition rules defined by Schonberg, exploit to a cer-
tain extent the self-similarity of fractals, and Lindenmayer (cf. Rozenberg[11])
created algorithms (in biological research) that can be exploited fully using
iteration in algorithmic music composition. But can fractals create harmony of
sound and cantabile music as well as they create beauty for the eyes in graphical
arts?

We present examples of an interactive algorithmic music composition sys-
tem exploiting Lindenmayer’s technique, generating some forms of minimalist
music based on user input, and further developments using the interaction of
probability models, fractals and chaos.

Lindenmayer systems, or L-systems, are parallel formal grammars intro-
duced in 1968 by the botanist Aristid Lindenmayer[3] as “a theoretical frame-
work for studying the development of simple multicellular organisms” (Prusinkiewicz
and Lindenmayer[10]). As such, in essence an L-system is a rule-based gen-
erative system that, drawing from a finite set of symbols, applies substitution
schemes starting with an initial subset, called in Prusinkiewicz[9] an axiom. In

Received: 20 July 2011 / Accepted: 30 December 2011
© 2012 CMSIM ISSN 2241-0503

92 P. Pestana

Chomsky grammars, substitutions are made in series, with each pass focusing
exclusively on a sole symbol, while L-systems are parallel, in the sense that all
symbols are replaced within each iteration.

Extending the initial application of L-systems, developments were made in
order to generate realistic computer images of plants and trees (Smith[15]),
fractal curves (Prusinkiewicz[8]), and musical scores (Prusinkiewicz[9]).

Given words with a fair amount of complexity, an L-system will exhibit a
noticeable degree of self-similarity over iterations, which makes its results mem-
orable and pleasing when interpreted as musical height or visual branching, in
the sense that there is an equilibrium of expected and unexpected develop-
ments. In other words, as Schroder[12], p. 109, boldly presents the key ideas
of Birkhoft’s theory of aesthetic value, the results are pleasing and interesting
since they are neither too regular and predictable like a boring brown noise
with a frequency dependence f~2, nor a pack of too many surprises like an
unpredictable white noise with a frequency dependence 0.

The remainder of this paper is organized as follows. In Section 2 we describe
implementations of L-systems for the automatic generation of music. In Section
3 the focus is on the analysis of musical parameters from user input, such as
pitch velocity and duration, and their mapping to L-systems. Section 4 deals
with possible extensions of this work to polyphonic input and output, and
Section 5 deals with the specific implementation of this project. Finally, in
Section 6, we briefly discuss further issues and possible developments.

2 Construction of an L-system

L-systems come in several categories: context-free (OL-systems) or context-
sensitive (I L-systems); deterministic or non-deterministic; propagative or non-
propagative, and so on. The interested reader is referred to Manousakis[4] and
to Rozenberg[11] for an extensive review of different types of L-systems. The
present work uses non-deterministic O L-systems, as described below.

Let A denote an alphabet of letters ¢, V the vocabulary, i.e. the set of
words w = £145 - - - £,, (strings of letters from this alphabet); (), the empty set,
is considered a word.

A production P : A — V is described by random variables associated
with each £ € A, i.e.

wy
¢t 5 Poy=x,= 7
pr = P[Xy = wy]

and j-letter L; : V — A selects the j-letter of any given word,

w=lly by S Li(w) =0,

We assume that if £; # £;, then X,, and X, are independent. If the actual
result of P(¢) is w, we write £ — w, and say that ¢ is the predecessor of w, or
alternatively that w is the successor of /.

Chaotic Modeling and Simulation (CMSIM) 1: 91-99, 2012 93

If w="{l1ly by, Plw) = P(L1(w))P(L2(w)) - P(Lr(w)). A production
of size k with root wg, P,k is

and Pwo(') = U Pwo,k(')'
keN

An OL-system is an ordered triplet G = {A, wg, Py, }, with wy € A the
starting point for the successive iterations, and P,, is a production of finite
size with root wg. In an OL-system the predecessor is a one-letter word whereas
the successor can be of arbitrary length (it can even be an empty word). In a
non-deterministic system, different successor words may occur according to a
probabilistic distribution. Hence the production may be described in terms of a
branching process, whose many possible trajectories are tied to the possibilities
that actually do occur.

A very easy construction of a musical grammar (McCormack[5]) could be
built by taking an alphabet A = {C,D,E,F,G, A, B} corresponding to the
notes of a C' major scale (or an even larger musical scale alphabet), an ax-
iom that would be given by user input and a set of productions that may be
arbitrary or may follow rules from common practice of harmony. Alternative
constructions have been given by Soddell and Soddell[16], who map branching
angles to changes in pitch, Prusinkiewicz[9] where a deterministic OL-system
is used to generate a graphical turtle interpretation of the production, and
then the resulting curve is traversed and the height of each line segment is
interpreted as pitch among others. Most of the studied constructions have
seamlessly resulted in pleasing musical results and in our approach we opted
for the former, more literal one.

As an example, consider the alphabet {C, D, Ey, F, G, Ay, B}, the root wg =
DE,CB (the celebrated Shostakovich signature, used in many of his mature
works), and the stochastic transition matrix — a sparse matrix, so that the
equilibrium of expected and unexpected generates aesthetic value — describing
the probabilities governing the productions P:

Ay, AEy AW/G B C CFD CFG DC E, F G GAy, GF
c| o 0 0 07 0 0 0 0 0 002 0 0.1
D| 0 0 08 0 O 0 0 0 0 002 0 0
Ey| O 0 0 0802 0 0 0 0 0 0 0 0
Fi1 0 0 0 0 02 0 0.7 0 0 0 0 01 0
G| 0 02 0 0 0.7 0.1 0 0 0 0 0 0 0
Ap| O 0 0 0 02 0 0 08 0 0 O 0 0
B|02 0 0 0 0 0 0 0 07010 0 0

94 P. Pestana

Assume that we get the sequence

wo = DEbCB 1
wy = Ay GBGE, 0.0896
wy = DCCFDELAyEyB 0.00896

ws = Ay GBBCFGA,GBDCBE, 0.078675968
wy = DCCELWE,BCFGCDCCE,GBEB | 0.004934557

with the probabilities indicated in the right column.
So, in this example, with probability 3.11678 x 10~7 we get

Ppg,cp4 = DCCE,E,BCFGCDCCE,GBE),B.

Observe that the rich theory of Markov chains, and concepts such as com-
municating events, cyclicity, stationarity, can therefore be imported to analyse
productions.

3 Analyzing user input

In the proposed interaction model, a user inputs a musical phrase which serves
as the root (axiom), and given a significant pause the system reacts branching
into the successive iterations given by the production set. At any point the user
could feel inspired by the results and step in with a new musical phrase as a
new root, stopping the automatic production, from which the computer draws
new material according to the same set of productions or a revised version of
it. The focus of this work is on the user-satisfaction with the musical results,
and as such it was decided that the interface should not be a tried and tested
one such as the music keyboard. This is also helpful in that it allows us to use
a very robust MIDI communication, leading to a clear interpretation of pitch,
velocity and duration.

The possibility of having the computer analyzing the intention of the musi-
cal input and generating different productions would be the first step towards
a musical and engaging result. A first approach should consist on scale de-
tection, and Chai and Vercoe’s strategy based on hidden Markov models (see
Chai and Vercoe[l]) was used in order to extrapolate the global outline of the
production set, cf. also Noland and Sandler[6]. The set itself was constructed
in strict adherences to classic common practice as described by authors such
as Piston[7], as it was deemed that the musical results should be satistying to
a wide non-expert “random” audience.

An additional concern has been how to map user-inputted velocity and
duration into the productions of the model. Three approaches have been con-
sidered and tested for note duration:

e Having an additional algorithm for tempo detection and building a parallel
fixed set of productions for note duration.

e Keeping the duration that was given by user-input across successive gen-
erations of productions.

e Cycling through the set of user-inputted durations.

Chaotic Modeling and Simulation (CMSIM) 1: 91-99, 2012 95

The first approach has been abandoned. Without further constraints forcing
the user to adhere to a tempo it would have been unmusical to let the computer-
generated productions have a strictly quantized feel as a result of the original
input being free from adequate rules. The second approach has also been
discarded, since after a few generations a pattern of unnatural repetitiveness
would begin to emerge, creating unmusical productions. The third approach
has been, surprisingly, musically rewarding, as it potentiated the natural feel
that resulted from the self-similarity of successive iterations. Consequently, it
has been our choice to govern this parameter. The last member of the set needs
to be automatically generated, as there is no way to infer the duration of the
user’s last note. For this we simply repeat the previous duration value.

It was also not clear from the start which solution would be better for
velocity mapping and again different paths were evaluated:

e Quantizing the velocity to a set value given by the average value of the user
input.

e Giving a fixed velocity to each of the words in the vocabulary, again aver-
aging the user-inputted value for that word.

e Keeping the velocity that was given by user-input across successive gener-
ations of productions

e Cycling through the set of user-inputted velocities.

In fact, any of those solutions proved to be too mechanical, and we had to
create a new rule that would allow for musical variety. We choose to create a
set of user-inputted velocities, and to discard at random one value from the set
in each iteration. The result is immediately more natural, since now there is a
much longer period before any pattern of duration-velocity pairs can repeat.

4 Extending the system towards polyphony

The above discussion on analysis is straightforward for monophonic input and
output, but the possibility of using multiple voices poses a string of new issues
that are not so easily solvable. On the input side, making the distinction be-
tween harmonic movement and melodic movement is fraught with ambiguity
and the allocation of each melodic movement to a unique voice is also a tremen-
dous challenge. On the output side, decisions had to be made as to adherence
to melodic rules and voice independence. Each problem has to be addressed in
turn.

The distinction between harmonic and melodic movement cannot depend
on simultaneity, when human input is considered. Users never perform with
infinitesimal precision and we must therefore create time windows within which
two events can be considered simultaneous. A sensible time window would be
in the range of 30-50 ms, according to the Haas principle or precedence effect,
that states that the human listener integrates all sound events that occur within
that time frame. This is a very bold statement from a musical perspective as
musical interpretation and style might at times dictate that events that are
technically simultaneous should be performed with enough separation between

96 P. Pestana

them to clearly exceed the above-mentioned interval. One well-known and
consistent example is the Flamenco’s rasgueado, where the harmonic intervals
are always performed as a very quick succession. We must therefore agree on
an extended interval based not on a Haas-inspired pursuit of simultaneity, but
on the opposite idea of what would not be a melodic interval. With this in
mind we can safely say that is untypical for a performer to go faster than a
eighth-note on a 120 bpm tempo which would point us to a 63 ms window. This
is of course ambiguous and might be prone to error on fast ornamentations.

Correctly distributing events between voices in a setting where different
voices might have different musical durations and pauses is a subject that
has not yet been successfully solved. Indeed, it is not clear whether the rules
described in the previous section would work with multiple axioms as a starting
point. Due to those yet unsolved questions, for the time being, the input side
of polyphony has been dropped and the user would only be allowed to play
monophonically.

It was however interesting from a musical standpoint that the output could
be done polyphonically with the aid of an automatic accompaniment. A sim-
plification of the model proposed by Schwarz et al.[13], based on HMM, has
been used in order to extend the system, using a low and sparsely-generated
voice.

5 Implementation

The system was implemented in Max/MSP, making use of the in-build Jitter
object jit.linden. A first patcher parses the input and does the scale analysis,
and feeds the finished list to the patcher responsible for the productions (shown
in Fig. 1). The productions are fed to a third patcher that converts them
to MIDI and sends them as UDP packages to SuperCollider, where a simple
implementation of a quasi-sinusoidal synth that resembles a vibraphone is used
as a sound module.

An example we fed the system with Shostakovich’s aforementioned signa-
ture DSCH (used musically as D, Ey, C, B) played as a pair of quavers followed
by a pair of semi-quavers of equal velocity. The input patcher interprets the
motif as played in C' harmonic minor and constructs the set of productions
already presented as a sparse stochastic transition matrix in Section 2, pre-
sented below in a more readable condensed form for those not wanting to dive
in stochastic processes theory:

GF

P B P0G psc%

P :D¥% G Pyn:D®EAG

Py BB Py B 220

P=S py:ForG Pu:F2%c Py F2%Ga,

P:G% ¢ Pu:c2RAE Ps:G%c0FD

Psi: 428 DO Pey: A, 2%

Pn:B%E, Pn:B2%A, Py:B2%F
The result can be heard at http://www.stereosonic.org/lindenmayer.

Chaotic Modeling and Simulation (CMSIM) 1: 91-99, 2012 97

key_ —
I

sel 35 r stopall receive notelist

r count receive durlist

2zl lookup receive listend

Ziter 1. Zllen

0 receive newlist -
+16
s count
- 2zl group
2zl lookup zl len 1
- T T itoa
16
tosymbol
send myNote receive listend
prepend set
jit. matrix myLinden 1 char 400 @thru 2
AADC

5= ‘.. p productions r stopall
clear
sel T

|'I'_ler,fromsymbol 10002

send listend

||l.spﬂ u_l.matrlx myLlndeE
21 filter 0

send newlist

Fig. 1. Max/MSP main patcher

6 Concluding remarks

Many alternative ways do exist of music composition tied to fractals, cf. John-
son[2] and Skiadas[14], for instance. OL-systems as used in our examples gen-
erate appealing musical productions as far as letters map onto words of small
size.

Otherwise, the system must be interrupted by the user, since a rather small
number of iterations generates a musical output that is too clumsy. The or-
ganisation of natural languages, and namely of the mating songs of birds and
insects, seems to incorporate a strategy of long range dependence axed on a
sequence of modulated shortcut Markov-type memories.

Hence, for more elaborated vocabularies and mappings, it would be sensible
to use only the r last letters from the (k-1)-th iteration to map onto the k-th
iteration, instead of using all the letters as described for O L-systems.

98 P. Pestana

This is easily implemented using an endletters application &, : V — A
selecting the r-endletters of any given word,

w="Llily- by 55 E(w) = b limrrz - Coo1 ks

so that the memory of the initial £ — r letters is erased and the musical com-
position will flow more naturally.

One of the giants in the early development of Probability, Abraham de
Moivre, wrote in his The Doctrine of Chances

“Further, The same Arguments which explode the no-
tion of Luck may, on the other side, be useful in some Cases to
establish a due comparison between Chance and Design: We
may imagine Chance and Design to be as if it were in Competi-
tion with each other, for the production of some sorts of Events,
and may calculate what Probability there is, that those Events
should be rather owing to one than to the other.”

Pure randomness produces “grass” (a term used in some fields of engineer-
ing, since the effect of pure noise in a cathodic terminal is similar to a black
and white photo of a field of grass). It is necessary to melt randomness with a
set of rules to weave a background of order so that the interplay of predictable
and surprising events produces a pleasant result. So, among many other things,
art is one of the many fields of human activity aiming at taming randomness,
to create patterns blending together determinism and randomness.

The examples in http: //www.stereosonic.org/lindenmayer reinforce the idea
that in music composition L-systems may contribute to this aim, namely cre-
ating sketches with minimalist patterns that may serve as source of inspiration
for more complex designs.

References

1. W. Chai and B. Vercoe. Detection of key change in classical piano music. Pro-
ceedings of the 6th International Conference on Music Information Retrieval,
London, 2006.

2. R. S. Johnson. Composing with Fractals. In J. Fauvel, R. Flood and R. Wilson,
eds., Music and Mathematics, Oxford University Press, Oxford, 2006

3. A. Lindenmayer. Mathematical models for cellular interaction in development,
Journal of Theoretical Biology, vol. 18, pp. 280-315, 1968.

4. S. Manousakis. Musical L-Systems. M.Sc. Thesis in Sonology, The Royal Conser-
vatory, The Hague, 2006.

5. J. McCormack. Grammar-Based Music Composition. In Stocker et al., eds. Com-
plex Systems 96: Fom Local Interactions To Global Phenomena, I0OS Press, 1996

6. K. Noland and M. Sandler. Key Estimation Using a Hidden Markov Model. In
International Society for Music Information Retrieval, pp. 121-126, Victoria,
Canada, 2006.

7. W. Piston. Harmony. W.W. Norton & Company, New York, 1941.

Chaotic Modeling and Simulation (CMSIM) 1: 91-99, 2012 99

8. P. Prusinkiewicz. Graphical applications of L-systems. Proceedings of Graphics
Interface’86, pp. 247-253, 1986a.

9. P. Prusinkiewicz. Score Generation with L-Systems. Proc. Intl. Computer Music
Conf ’86, pp. 455-457, 1986b.

10. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants,
Springer, 1990.

11. G. Rozenberg. Lindenmayer Systems: Impacts on Theoretical Computer Science,
Computer Graphics, and Developmental Biology, Springer Verlag, 1992.

12. M. Schroeder. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise.
Dover, New York, 2009.

13. D. Schwarz, N. Orio and N. Schnell. Robust Polyphonic MIDI Score Following
with Hidden Markov Models, ICMC, 2004.

14. C.H. Skiadas. Exploring and simulating chaotic advection: A difference equations
approach. In C. H. Skiadas, ed., Recent Advances in Stochastic Modeling and
Data Analysis, pp. 287—294, World Scientific, Singapore, 2007.

15. A.R. Smith. Plants, fractals, and formal languages. Computer Graphics, vol. 18,
pp. 1-10, 1984.

16. F. Soddell and J. Soddell. Microbes and Music. In PRICAT 2000 Topics in Artificial
Inteligence, pp. 767-777, Springer Verlag, 2000.

FCT This reseach has been supported by National Funds through FCT —
Fundagao para a Ciéncia e a Tecnologia, project PEst-OE/MAT/UI0006/2011.
The author is grateful to Professors Alvaro Barbosa (UCP) and Joshua D. Reiss
(QMUL) for generous guidance, stimulating discussions and encouragement.

