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Abstract. In this paper we study the numerical solution of singularly perturbed
systems with a discontinuous right hand side. We will avoid to consider the associate
reduced differential system because often this study leads to wrong conclusions. To
handle either the stiffness, due to different scales, or the discontinuity of the vector
field we will consider numerical method which are semi-implicit and of low order of
accuracy.
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1 Introduction

In this paper we study singularly perturbed systems with a discontinuous right
hand side. Differential systems of this type appear in several fields (see for
instance [7], [8], [14]) and they have attracted a growing interest also from a
theoretical point of view (see for instance [13]). Let us consider the singularly
perturbed differential system in Rn given the the following form:{

x′ = f(x, y), x(0) = x0, t ∈ [t0, T ],
εy′ = g(x, y), y(0) = y0,

(1)

where usually 0 < ε � 1, while x : [0, T ] → Rn−m is the slow variable,
y : [0, T ] → Rm is the fast variable, the vector field f is discontinuous along a
surface Σ while g is sufficiently smooth. Let us suppose that the state space Rn

is split into two subspaces R1 and R2 by a surface Σ such that Rn = R1∪Σ∪R2.
The surface Σ is implicitly characterized by a scalar event function h : Rn → R,
that is

Σ = {(x, y) ∈ Rn| h(x, y) = 0} , (2)

so that the subspaces R1 and R2 are

R1 = {(x, y) ∈ Rn| h(x, y) < 0} , R2 = {(x, y) ∈ Rn| h(x, y) > 0} . (3)
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We will assume that h(x, y) is sufficiently smooth and that its gradient∇h(x, y) 6=
0 for all (x, y) ∈ Σ, so that the normal n(x, y) = ∇h(x,y)

‖∇h(x,y)‖ to Σ is well defined.

In many practical applications, the function h is actually linear (Σ is a plane).
Let us suppose that the vector field f is discontinuous along Σ, that is:

f(x, y) =

{
f1(x, y) when (x, y) ∈ R1

f2(x, y) when (x, y) ∈ R2
,

where f1 is sufficiently smooth on R1 ∪ Σ and f2 is sufficiently smooth on
R2 ∪Σ.

Let us assume that for ε = 0, the algebraic equation (1.b), that is g(x, y) = 0,
can be solved for y for all x and that this solution (denotated by y0(x)) satisfies
the stability condition:

Re Spec ∂yg(x, y0(x))) < −µ < 0 (4)

with a uniform decay rate µ (see [12]).
Furthermore, let us assume that for the reduced system

x′ =

{
f1(x, y0(x)), when h(x, y0(x))) < 0
f2(x, y0(x)), when h(x, y0(x)) > 0

(5)

the sufficient conditions for the attractivity of the sub-surface

Σ0 = {(x, y) ∈ Rn|y = y0(x) , h(x, y0(x)) = 0} , (6)

hold.

2 Filippov approach

By setting:

z =

[
x
y

]
, F1(z, ε) =

[
f1(z)
1
ε g(z)

]
, F2(z, ε) =

[
f2(z)
1
ε g(z)

]
, (7)

the singularly perturbed discontinuous system (1) may be rewritten in Filip-
pov’s form

z′ = F (z, ε) =

{
F1(z, ε), when h(z) < 0
F2(z, ε), when h(z) > 0

(8)

with initial condition z0 = [x(0), y(0)]T .
A solution in the sense of Filippov (see [6]) is an absolutely continuous

function z : [0, T ] → Rn such that z′(t) ∈ F (z(t), ε) for almost all t ∈ [0, T ],
where F (z(t), ε) is the closed convex hull

co {F1, F2} = {F ∈ Rn : F = (1− α)F1 + αF2, α ∈ [0, 1]} . (9)

Now, suppose z0 ∈ R1 (that is h(z0) < 0) and assume that the trajectory
of the differential system z′ = F1(z, ε) is directed towards Σ and reaches it in a



Chaotic Modeling and Simulation (CMSIM) : 3–15, 2012 5

finite time. At this point, one must decide what happens next. Loosely speak-
ing, there are two possibilities: (a) we leave Σ and enter into R2 (transversal
case); (b) we remain in Σ with a defined vector (sliding mode). Filippov de-
viced a very powerful theory which helps to decide what to do in this situation
and how to define the vector field during the sliding motion.

Let z ∈ Σ and let n(z) = ∇h(z)
‖∇h(z)‖ be the normal to Σ at z. Let nT (z)F1(z, ε)

and nT (z)F2(z, ε) be the projections of F1(z, ε) and F2(z, ε) onto the normal
direction and suppose that nT (z)F1(z, ε) > 0. We will exclude the case in
which we entry Σ in a tangent way, that is nT (z)F1(z, ε) = 0 at z ∈ Σ.

Transversal Intersection. In case in which, at z ∈ Σ, we have

[nT (z)F1(z, ε)] · [nT (z)F2(z, ε)] > 0 , (10)

then we will leave Σ and enter R2 with F = F2. Any solution of (8) with
initial condition not in Σ, reaching Σ at a time t1, and having a transversal
intersection there, exists and is unique.

Sliding Mode. Instead, if, at z ∈ Σ, we have

[nT (z)F1(z, ε)] · [nT (z)F2(z, ε)] < 0 , (11)

then we have a so-called attracting sliding mode through z.
When we have (11) satisfied at z ∈ Σ, a solution trajectory which reaches z

does not leave Σ, and will therefore have to move along Σ. During the sliding
motion the solution will continue along Σ with time derivative FS given by:

FS(z, ε) = (1− α(z))F1(z, ε) + α(z)F2(z, ε) . (12)

and α(z) such that FS(z, ε) lies in the tangent plane Tz of Σ at z, that is
nT (z)FS(z, ε) = 0, and this gives

α(z) =
nT (z)F1(z, ε)

nT (z)(F1(z, ε)− F2(z, ε))
. (13)

Observe that a solution having an attracting sliding mode exists and is unique,
in forward time.

As far as the reduced system (5) is concerned, we have to observe that
during the sliding mode the Filippov vector field will be

fS(x) = (1− α0(x))f1(x, y0(x)) + α0(x)f2(x, y0(x)) . (14)

where

α0(x) =
nTx (x)f1(x, y0(x))

nTx (z)(f1(x, y0(x))− f2(x, y0(x)))
. (15)

where nx(x) = ∇h(x,y0(x))
‖∇h(x,y0(x))‖ .

3 An Example

We observe that while Σ0 is an attractive surface for the solution of the reduced
system (5), on the other hand, the trajectories of the singularly perturbed
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system (1) could transverse the discontinuity surface Σ, or could slide on it for
a certain time interval, or could show a periodic or chattering behaviour.

As an example of different behaviours between the initial and reduced sys-
tem, we consider the following system:{

x′ = −sign[θx+ (1− θ)y],
εy′ = x− y ,

(16)

where θ is a real parameter (θ 6= 0) and where the discontinuity surface is the
line

Σ =
{

(x, y) ∈ R2| h(x, y) = θx+ (1− θ)y = 0
}
. (17)

A theoretical study of singularly perturbed systems of this kind has been de-
rived in [13]. When ε = 0, the reduced system becomes the well known dis-
continuous system x′ = −sign[x], x = y, which has the equilibrium point
(x, y) = (0, 0). Such a point is exponentially stable and attractive in finite
time. Actually (0,0) is a pseudo-equilibrium because it is an equilibrium of (16)
which is on the discontinuity surface Σ. Let us denote

F1(x, y, ε) =

[
1

1
ε (x− y)

]
, F2(x, y, ε) =

[
−1

1
ε (x− y)

]
, (18)

thus, the sliding region will be defined by the points of the line Σ such that
∇hT · F1 > 0 and ∇hT · F2 < 0, that is the points (x, y) ∈ Σ such that

θ +
1− θ
ε

(x− y) > 0 , −θ +
1− θ
ε

(x− y) < 0 .

Thus, for θ > 0 and θ 6= 1, assuming y = θ
θ−1x, it follows that the sliding

region is defined by
−εθ < x < εθ ,

this means that there is a small neighborhood of (0, 0), on the discontinuity
line Σ, on which the solution of (16) sliding reaches the pseudo-equilibrium.

If θ < 0, then (0, 0) is an unstable pseudo-equilibrium, in particular there is
a repelling sliding region near the origin and we have a symmetric exponentially
stable periodic orbit around the origin switching between the two different
vector fields F1 and F2 (see [13] for the details). Thus the dynamics of the
perturbed system (ε > 0) are close the dynamics of the unperturbed system
(ε = 0) only in a very weak sense (see [5]) and the reduced system cannot be
used to study the perturbed one.

4 Numerical methods

The previous example shows that the study of the reduced stystem (ε = 0)
could lead to wrong conclusions, in particular certain dynamics of the system
could be lost. However, the reduced differential system (5) could be used to
approach the discontinuty surface Σ, that is to find an initial point close to Σ
from which starting with the numerical solution of the unperturbed differential
system.
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On the other hand, the numerical solution of discontinuous singularly per-
turbed problems meets several difficulties. In fact, we need to consider nu-
merical schemes that handle either the discontinuity of the vector field or the
stiffness of the solution which arises because of the presence of the small pa-
rameter ε. To this end we will consider two semi-implicit schemes, one in the
class of Predictor-Corrector methods and the other in the class of Rosenbrock
methods.

We have adopted a computational approach in which each particular state
of the differential system is integrated with an appropriate numerical method,
and the event points, where structural changes in the system occur, are located
in an accurate way. In [1], this approach is called an event driven method (see
also the numerical methods in [2], [3]), and the numerical methods we consider
will be effective if there are not too many events.

We will be mainly concerned with developing a numerical procedure which
will accomplish the following different tasks:

(i) Integration outside Σ;
(ii) Accurate location of points on Σ reached by a trajectory;
(iii) Check of the transversality or sliding conditions at the points on Σ;
(iv) Integration on Σ (sliding mode);
(v) check of the exit conditions from Σ.

For discretizing the singularly perturbed discontinuous system in (8) we are
going to consider schemes (of low order 1) suitable to handle stiff problems.
Integration of (8) while the solution remains in R1 (or R2) is not different than
standard numerical integration of a singularly perturbed differential system (see
[10]). Therefore, the only interesting case to consider is when, while integrating
the system with F1 (or F2), we end up reaching the surface Σ.

Let z0 ∈ R1 and consider one step of the implicit Euler method:

z1(τ) = z0 + τF1(z1(τ) , ε) , (19)

where τ > 0 is the time step of integration. We suppose that τ is sufficiently
small in order to avoid situations in which, in the interval [0, τ ], more than one
event point occurs. We have to notice that in order to find z1(τ) from (19), we
have to solve a nonlinear system of n algebraic equation. Let us suppose that
τ is such that

h(z0)h(z1(τ)) < 0 (20)

that is z1(τ) is on the other side of Σ. We observe that in the interval [0, τ ]
the function H(η) = h(z1(η)) changes sign. Thus, we may apply a zero finding
routine (for instance the bisection or secant method) to determine τ̄ , such that
h(z1(τ̄)) = 0, that z1(τ̄) ∈ Σ. The secant methods gives:

ηk+1 = ηk −
(ηk − ηk−1)

H(ηk)−H(ηk−1)
H(ηk), k ≥ 1,

with η0 = 0, η1 = τ . However, at each iteration of a such routine a nonlinear
system of equations must be solved in order to compute the new vector z1(ηk)
required in H(ηk) and this could be very expensive.
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In order to derive a semi-explicit procedure suitable to treat stiff problems,
we consider a predictor-corrector method where the predictor is the Euler ex-
plicit method and the corrector is the Euler implicit method, that is{

z
(0)
1 (τ) = z0 + τF1(z0 , ε) ,

z1(τ) = z0 + τF1(z
(0)
1 (τ) , ε) ,

(21)

which is equivalent to the explicit formula:

z1(τ) = z0 + τF1(z0 + τF1(z0 , ε) , ε) . (22)

Now, if (20) holds, a simple scalar non linear equation must be solved to find
the step size τ̄ for which z1(τ̄) is on Σ.

A different method we could employ is the semi-explicit Rosenbrock method
of order 1:

z1 (τ) = z0 + τ t0, (23)

where the vector t0 is given by

[I − τJF1
(z0)] t0 = F1(z0, ε) , (24)

and where JF1
(z0) denotes the Jacobian matrix of F1 at z0.

Now, if (20) holds, in the zero finding routine, instead of (23), we may
consider the continuous extension of the Rosenbrock method

z1 (στ) = z0 + στ t0, σ ∈ (0, 1). (25)

where the vector t0 is again given by (24) but is independent on σ, according
to the theory of continuous extensions.

An advantage of (23) with respect (21) is that the former does not require
the evaluation of the vector field F1 above Σ, and this property could be
necessary in certain discontinuous models.

Once we have a point z̄ on Σ, we need to decide if we will need to cross Σ
or slide on Σ, that is we will check if

[nT (z̄)F1(z̄, ε)] · [nT (z̄)F2(z̄, ε)] > 0 , (26)

or

[nT (z̄)F1(z̄, ε)] · [nT (z̄)F2(z̄, ε)] < 0 , (27)

[recall we are supposing that [nT (z̄)F1(z̄, ε)] > 0].

If (26) is satisfied, then we change the vector field and continue to integrate
the system:

z′(t) = F2(z(t), ε), z(τ̄) = z̄ , (28)

by using the same numerical method used to reach Σ.
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5 Integration on Σ

Instead, if (27) is satisfied then we enter an attractive sliding mode, thus we
need to integrate the differential Filippov system:

z′(t) = FS(z(t), ε), z(τ̄) = z̄ , (29)

where with FS we indicate the standard Filippov vector field (12).
Since FS is a linear convex combination of F1 and F2, to integrate (29) we

will employ the same method used to reach Σ, that is (21) or (23) where the
vector field F1 is now replaced by FS .

Now, one step of the Rosenbrock method becomes z1(τ) = z0 + τt0, with

[I − τJFS
(z0)] t0 = FS(z0, ε) (30)

where JFS
(z0) denotes the Jacobian matrix of FS at z0 ∈ Σ. Because of the

form of FS , this Jacobian matrix JFS
could be very expensive to evaluate and

a free-Jacobian procedure has to be used in the solution of the linear system
(30) by means of iterative or Krylov type procedures (see [11]).

We observe that when we integrate on Σ, usually, the numerical solution
given by (21) or (23) leaves the surface Σ and a projection is necessary to
return on Σ. The projection on Σ may be done in the standard way (e.g., see
[4], [9]). If ẑ is a point close to Σ, then the projected vector z = P (ẑ) on Σ is
the solution of the following constrained minimization problem

min
z∈Σ

g(z) , g(z) =
1

2
(ẑ − z)T (ẑ − z) .

By using the Lagrange’s multiplier’s method, we have to find the root of

G(z, λ) =

(
∇g(z) + λ∇h(z)

h(z)

)
, λ ∈ R ,

and we can apply Newton’s method to find the root of G(z, λ) = 0.
On the other hand, if Σ is flat, that is h(z) = aT z+ b linear with respect to

z, then the numerical solution given by (21) lies on Σ while the one obtained
by (23) does not.

Theorem 1. Let us assume Σ given by h(z) = aT z + b, and suppose that
z0 ∈ Σ. Then z1 given by (21) lies on Σ while z1 given by (23) does not.

Proof. Let us consider the numerical solution

z1 = z0 + τFS(z0 + τFS(z0 , ε) , ε) . (31)

We notice that the predicted vector z0 + τFS(z0 , ε) remains on Σ since it has
been obtained by an explicit method which preserves linear invariants (see [9]).
Thus, it follows that

aT z1 + b = aT [z0 + τFS(z0 + τFS(z0, ε), ε)] + b = aT z0 + b = 0 ,
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since aTFS(z0 + τFS(z0, ε)) = 0 being aT the normal vector of Σ.
Now, we would like to see if aT z1 + b = 0 when z1 is the numerical solution

obtained by (23). Then it follows that

aT z1 + b = aT (z0 + τ [I − τJ(z0)]−1FS(z0, ε)) + b =

= aT z0 + b+ τaT [I − τJ(z0)]−1FS(z0, ε) ,

thus z1 is on Σ only if aT [I−τJ(z0)]−1FS(z0, ε). We observe that aTFS(z0, ε) =
0, and that for τ sufficiently small we have

[I − τJ ]−1 = I + τJ +
τ2

2
J2 +

τ3

6
J3 + . . .

thus z1 is on Σ if and only if JFS = FS , that in general is not true.

Thus, usually, to remain on Σ a projection on it is required. While we
integrate on Σ, we will monitor if we have to continue sliding on it, or if we
need to leave Σ. Once the point z1 on Σ has been computed, we need to check
if the sliding condition

[nT (z1)F1(z1, ε)] · [nT (z1)F2(z1, ε)] < 0 , (32)

is satisfied or if this product changes sign, that is

[nT (z1)F1(z1, ε)] · [nT (z1)F2(z1, ε)] > 0 , (33)

If (32) holds then we continue to integrate on Σ. On the other hand, if (33)
holds then we have to determine τ̄ (and hence z1(τ̄)) such that the previous
product vanishes. Thus, starting with z1(τ̄), we exit the surface Σ with vector
field F2(z1(τ̄), ε).

6 Numerical tests

In this section we report the numerical simulations of some singularly perturbed
discontinuous systems, obtained by using the numerical methods studied. We
will report the results obtained by Matlab codes using both the predictor-
corrector method in (21) and the Rosenbrock method in (23) with sufficiently
small time step τ .

Example 1. Here we consider the numerical solution of the system in (16),
with ε = 0.001, by means of the numerical methods proposed in the previous
section. Figure 1 concerns with the case θ > 0 (we have taken θ = 0.9 and
denoted by ’*’ the initial value). We can see that the numerical solution first
crosses the discontinuity surface Σ (denoted by the red color), then begins to
slide on Σ until to reach the pseudoequilibrium (0, 0).

Figure 2 concerns with the case θ < 0 (θ = −0.9). We can see that the
numerical solution tends to an exponentially stable periodic orbit around the
origin while the vector field switches between the two different vector fields F1
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Fig. 1. Example 1. Case θ = 0.90.
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Fig. 2. Example 1. Case θ < 0.

and F2. In Figure 3 we have reported the exponentially stable periodic solution
of the system.

Example 2. Let us consider the following discontinuous differential system:

(
x′1
x′2

)
=

{
µx1 − ωx2 − (x21 + x22)x1
ωx1 + µx2 − (x21 + x22)x2

, when h(x1, x2) ≥ 0 (34)

or (
x′1
x′2

)
=

{
1
0

, when h(x1, x2) < 0 (35)
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Fig. 3. Example 1. Case θ < 0: stable periodic solution.

[µ and ω positive constants] while the switching line is given by h(x1, x2) =
x1 + 1, therefore ∇Th(x) = [1 0]. Using our notation, we have:

f1 =

[
1
0

]
, f2 =

[
µx1 − ωx2 − (x21 + x22)x1
ωx1 + µx2 − (x21 + x22)x2

]
, (36)

and observe that ∇Th · f1 = 1 > 0. Hence, when µ > 1, the attractive sliding
region SR is the segment on the line x1 = −1 for which ∇Th · f2 < 0, that
is SR =

{
(−1, x2) ∈ R2| − µ− ωx2 + (1 + x22) < 0

}
. In Figure 4 we report the

exponentially stable periodic solution of (35) obtained for µ = 1.5 and ω = 1
by our numerical methods.

−1 −0.5 0 0.5 1 1.5
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−0.5

0

0.5

1

1.5

x1

x2

Fig. 4. Example 2. Stable periodic solution.
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Now, let us consider the singularly perturbed discontinuous system: x′1
x′2
εx′3

 =

x1 − ωx2 − (x21 + x22)x1
ωx1 + µx2 − (x21 + x22)x2
ε[µx1 − ωx2 − (x21 + x22)x1] + x1 − x3

, h(x1, x2, x3) ≥ 0 (37)

while x′1
x′2
εx′3

 =

1
0
ε[µx1 − ωx2 − (x21 + x22)x1] + x1 − x3

, h(x1, x2, x3) < 0 (38)

where the last component of the vector field is continuous while the previous
two components are discontinuous with respect the line:

Σ =
{

(x1, x2, x3) ∈ R3| h(x1, x2, x3) = θx1 + (1− θ)x3 = 0
}
. (39)

The reduced system (ε = 0) is the one in (34)-(35). A theoretical study of
the system (37)-(38) may be found in [13]. In Figure 5 we report the periodic
solution of the singularly perturbed system (37)-(38) for ε = 0.01, µ = 1.5,
ω = 1 and assuming a positive value of the parameter θ (θ = 0.5). A zoom
of the solution near the sliding segment of the reduced system may be seen in
Figure 6. Instead, in Figure 7 the periodic solution of (37)-(38) with θ = −0.5
is shown, while in Figure 8 we show the chattering behaviour of the solution
near the sliding segment of the reduced system.

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

Fig. 5. Example 2. Case θ = 0.5. Periodic solution.

7 Conclusions

In this paper we have studied the numerical solution of singularly perturbed
systems with a discontinuous right hand side avoiding to consider the associate
reduced differential system, because often this study leads to wrong conclusions.
To handle either the stiffness, due to different scales, or the discontinuity of
the vector field, we have considered numerical method which are semi-implicit
and of low order of accuracy. We tested our numerical methods on examples
known in literature.
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Fig. 6. Example 2. Case θ = 0.5. Zoom of the solution.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

Fig. 7. Example 2. Case θ = −0.5. Periodic solution.
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Fig. 8. Example 2. Case θ = −0.5. Zoom of the solution.
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Abstract: Chaos is a kind of nonlinear system response that has a dense set of unstable 

periodic orbits (UPOs) embedded in a chaotic attractor. The idea that chaotic behavior 

may be controlled by small perturbations applied in some system parameters allows this 

kind of behavior to be desirable in different applications. This paper considers different 

chaos control methods, including discrete and continuous, to stabilize some desired 

UPOs of a mechanical system. Essentially, a control rule is of concern and each 

controller needs to follow this rule. Noisy time series is treated establishing a robustness 

analysis of control methods. The main goal is to establish a comparative analysis of 

chaos control methods evaluating the capability of each one of them to stabilize a desired 

UPO analyzing its performance. 

Keywords: Chaos, control, noise, nonlinear dynamics, pendulum. 

 

1. Introduction 

Chaos is a kind of nonlinear system response that has a dense set of unstable 

periodic orbits (UPOs) embedded in a chaotic attractor. This set of UPO 

constitutes the essential structure of chaos. Besides, chaotic behavior has other 

important aspects as sensitive dependence to initial conditions and ergodicity. 

The idea that chaotic behavior may be controlled by small perturbations applied 

in some system parameters allows this kind of behavior to be desirable in 

different applications. 

In brief, chaos control methods may be classified as discrete and continuous 

methods. Semi-continuous method is a class of discrete method that lies 

between discrete and continuous method. The pioneer work of Ott et al. [1] 

introduced the basic idea of chaos control proposing the discrete OGY method. 

Afterwards, Hübinger et al. [2] proposed a variation of the OGY technique 

considering semi-continuous actuations in order to improve the original method 

capacity to stabilize unstable orbits. Pyragas [3] proposed a continuous method 

that stabilizes UPOs by a feedback perturbation proportional to the difference 

between the present and a delayed state of the system. 

This article deals with a comparative analysis of chaos control methods that are 

classified as follows: OGY methods – that includes discrete and semi-

continuous approaches [1,2]; multiparameter methods – that also includes 

discrete and semi-continuous approaches [4,5]; and time-delayed feedback 
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methods that are continuous approaches [3,6]. In order to consider a system with 

high instability, a nonlinear pendulum treated in other references is considered 

[5,7,8]. 

 

2. Chaos Control Methods 

Control of chaos can be treated as a two-stage process. The first stage is called 

learning stage where it is performed the identification of UPOs and system 

parameters necessary for control purposes. A good alternative for the UPO 

identification is the close return method [9]. This identification is not related to 

the knowledge of the system dynamics details. The estimation of system 

parameters is done in different ways for discrete, semi-continuous and 

continuous methods. After the learning stage, the second stage starts promoting 

the UPO stabilization. 

2.1. OGY Method 

The OGY method [1] is described by considering a discrete system of the form 

of a map ),(
1 nnn

pF ξξ =+ , where p ℜ∈  is an accessible parameter for control. 

This is equivalent to a parameter dependent map associated with a general 

surface, usually a Poincaré section. Let ),( 0
1 pF n

C
n
C

ξξ =+  denote the unstable 

fixed point on this section corresponding to an unstable periodic orbit in the 

chaotic attractor that one wants to stabilize. Basically, the control idea is to 

monitor the system dynamics until the neighborhood of this point is reached. 

When this happens, a proper small change in the parameter p causes the next 

state ξn+1 to fall into the stable direction of the fixed point. In order to find the 

proper variation in the control parameter, δp, it is considered a linearized 

version of the dynamical system in the neighborhood of the equilibrium point.  

2.1.1. Semi-continuous Method 

The semi-continuous method (SC) lies between the continuous and the discrete 

time control because one can introduce as many intermediate Poincaré sections, 

viewed as control stations, as it is necessary to achieve stabilization of a desired 

UPO [2]. Therefore, the SC method is based on measuring transition maps of 

the system. These maps relate the state of the system in one Poincaré section to 

the next. 

2.2. Multiparameter Method 

Proposed by De Paula & Savi [4,5], the multiparameter chaos control method 

(MP) was developed based on the OGY approach. Different from the original 

idea, this procedure considers Np different control parameters, pi (i=1,…,Np). 

Two important points considered in the formulation of MP method are: only one 

of the control parameters actuates in each control station; and system response 

to all control parameters actuations is given by a linear combination of its 

individual effect. Moreover, two approaches are considered, the coupled and the 

uncoupled approach.  

The difference between the multiparameter method (MP) [4] and the semi-

continuous multiparameter method (SC-MP) [5] is that the first considers only 
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one control station per forcing period while the other considers as many control 

stations as necessary to stabilize the system per forcing period. Therefore, the 

SC-MP is the general case that can represent the MP when only one control 

station per period is of concern. In the same way, the OGY can be seen as a 

particular case when only one control station and only one control parameter are 

considered. 

2.3. Time-delayed Feedback Methods 

Continuous methods for chaos control were first proposed by Pyragas [3] and 

are based on continuous-time perturbations to perform chaos control. Socolar et 

al. [6] proposed a control law named as the extended time-delayed feedback 

control (ETDF) considering the information of time-delayed states of the system 

represented by the following equations: 

[ ]

ττ
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where nnRK ×∈  is the feedback gain matrix, 10 <≤ R , )( ττ −= tSS  

and )( ττ mtxxm −= . 

An important difference between continuous and discrete methods is that in 

continuous methods it is not necessary to wait the system to visit the 

neighborhood of the desired orbit. Another particular characteristic related to the 

learning stage is that, besides the UPO identification common to all control 

methods, it is necessary to establish proper values of the control parameters for 

each desired orbit. In ETDF method this choice is done by analyzing Lyapunov 

exponents of the UPO, establishing negative values of the largest Lyapunov 

exponent. De Paula & Savi [7] discussed a proper procedure to evaluate the 

largest Lyapunov exponents necessary for the controller parameters. 

 

3. Comparative Analysis 

As an application of the general chaos control methods, a system with high 

instability characteristic is of concern: a nonlinear pendulum actuated by two 

different control parameters discussed in De Paula et al. [10]. The mathematical 

model for the pendulum dynamics describes the time evolution of the angular 

position, φ, assuming that ϖ is the forcing frequency, I is the total inertia of 
rotating parts, k is the spring stiffness, ζ represents the viscous damping 

coefficient and µ the dry friction coefficient, m is the lumped mass, a defines the 

position of the guide of the string with respect to the motor, b is the length of the 

excitation arm of the motor, D is the diameter of the metallic disc and d is the 

diameter of the driving pulley. The equation of motion is given by: 
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where )()sin(2)cos(2)( 2
2

2
22 batlbtablbatf −−∆−−∆++=∆ ϖϖ  and ∆l1 

and ∆l2 correspond to actuations. Numerical simulations of the pendulum 

dynamics are in close agreement with experimental data by assuming 

parameters used in De Paula et al. [10]: a=1.6×10−1m; b = 6.0×10−2m; d = 

4.8×10−2m; D = 9.5×10−2m; m = 1.47×10−2 kg; I=1.738×10
−4
kg.m2; k=2.47 

N/m; ζ=2.368×10−5kg.m2
.s
-1
; µ=1.272×10−4N.m; ω=5.61rad/s. 

Due to system instability, some OGY methods are not capable to perform the 

system stabilization. Thus, the comparative analysis deals with only four 

different controllers: SC, SC-MP and TDF methods. A control rule is defined 

for the stabilization of 4 different UPOs in the following sequence considering 

500 periods for each orbit: a period-5, a period-3, a period-8 and a period-1.  

Figure 1(a) shows the desired trajectory, and the system time evolution at 

control station (CS) #1 controlled by parameter ∆l1, while Figure 1(b) presents 

the same results by assuming parameter ∆l2. It should be noticed that in both 

procedures only three of the four UPOs are stabilized. Moreover, before the 

stabilization of UPO is achieved it can be observed a region related to chaotic 

behavior that corresponds to the wait time that system dynamics takes to reach 

the neighborhood of desired control point. 
 

 
Fig. 1. System controlled using SC with parameter at CS #1: (a) ∆l1; (b) ∆l2. 

 

The coupled and the uncoupled approaches of the SC-MP are now employed 

using both control parameters. Figure 2(a) shows the desired trajectory and 

system time when applying the coupled approach, while Figure 2(b) presents the 

same results for the uncoupled approach. 
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Fig. 2. System controlled using SC-MP at the CS #1: (a) Coupled approach;    

(b) Uncoupled approach. 

 

Finally, the ETDF method is employed to follow the control rule considering the 

use of parameter ∆l1. Figure 3 shows the desired trajectory and the system time 

evolution at control station #1. Note that the ETDF is not able to stabilize the 

first and the third orbits of the control rule. Besides, the second orbit is different 

from the stabilized orbit. 

 

 
Fig. 3. System controlled using ETDF at the control station #1. 

 

3.1. Chaos Control Performance Considering Noisy Signals 

Since noise contamination is unavoidable in experimental data acquisition, it is 

important to evaluate its effect on chaos control procedures. In general, noise 

can be expressed as follows: 
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where x represents state variables, y represents the observed response and 

),( txQ  and ),( txP  are nonlinear functions. µd and µo are, respectively, 

dynamical and observed noises. Notice that µd has influence on system 

dynamics in contrast with µo. In this work, it is considered only an observed 

noise, simulating noise in experimental data due to instrumentation apparatus 

and, therefore, noise does not have influence in system dynamics. 
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The noise level can be expressed by the standard deviation, σ, of the system 

probability Gaussian distribution, that is parameterized by the standard 

deviation of the clean signal, σsignal, as follows: 

100(%)
signal

×=
σ

σ
η

 
A different control rule is assumed in order to compare the control methods 

performance considering noisy signals. This control rule is defined in order to 

choose orbits that can be stabilized by all control methods for an ideal signal: a 

period-6, a period-2, a period-3 and, finally a period-1. 

By considering a noisy signal with 1% of amplitude all analyzed methods can 

achieve the stabilization of some orbits. When increasing the noise level to 2% 

few methods have a satisfactory performance. Considering this noise level, 

Figure 4 shows the desired trajectory imposed by the control rule and the system 

time evolution at CS #1 when the SC is employed considering the isolated 

actuation performed by the parameters ∆l1 and ∆l2. Figure 5 presents the same 

pictures for the SC-MP, coupled and uncoupled approaches, while Figure 6 

presents results of the ETDF.  

 
Fig. 4. System controlled using SC at the CS #1 with η=2%: (a) ∆l1; (b) ∆l2. 

 
Fig. 5. System controlled using SC-MP at CS #1 with %2=η : (a) Coupled 

approach; (b) Uncoupled approach. 
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Fig. 6. System controlled using ETDF at the CS #1 with %2=η . 

 

Note that with 2% of noise level the single-parameter SC and the coupled 

approach SC-MP do not have a good performance. The uncoupled SC-MP 

presents better results when compared with the preceding methods and the 

ETDF successfully stabilize all UPOs of the control rule. 

 

3. Conclusions 

This paper presents a comparative analysis of chaos control methods 

performances, including OGY, multiparameter and time-delayed feedback 

methods. In general, systems with high instability need a greater number of 

actuations which makes the semi-continuous and continuous methods more 

effective for chaos control. By defining efficacy as the capability to stabilize 

desired orbits, the coupled and the uncoupled approaches of the SC-MP method 

are more effective to perform system stabilization. The continuous methods 

present low efficacy but avoid the wait time necessary in the case of discrete 

methods. Moreover, continuous methods present a difficulty for the stabilization 

of orbits with high instability and of high periodicity since different orbits can 

be stabilized instead of the desired one. Results from comparative analysis point 

that the SC methods present good performance for ideal time series, free of 

noise. When noisy time series is of concern, continuous methods present greater 

robustness being associated with better performances; however, the uncoupled 

approach of the SC-MP method also presents a good performance. 
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Abstract. We study the bifurcation scenario appearing in systems of two coupled
rings of cells with Z3 × Z5 exact symmetry, and Z3 interior symmetry. This study
was motivated by previous work by Antoneli, Dias and Pinto, on two rings of cells
coupled through a ‘buffer’ cell, with Z3 × Z5 and D3 × D5 exact and interior sym-
metry groups. There, quasi-periodic behavior was found through a sequence of Hopf
bifurcations. We questioned if an analogous mechanism could explain the appearance
of quasi-periodic motion in the examples considered here. Surprisingly, we observe
periodic and quasi-periodic states appearing also through Hopf bifurcations. We com-
pute the relevant states numerically.
Keywords: Hopf bifurcation, exact symmetry, interior symmetry, coupled cells sys-
tems.

1 Introduction

Stewart, Golubitsky and Pivato [24] and Golubitsky, Stewart and Török [17]
have developed a new theory for networks of coupled cells systems. They
focused in patterns of synchrony and associated bifurcations.

Networks of coupled cells may be represented schematically by a directed
graph, where the nodes correspond to the individual cells and the edges to the
couplings between them. The term ’cells’ means nonlinear dynamical systems
of ordinary differential equations.

There has been considerable development on the study of synchrony, phase-
relations, quasi-periodic motion, synchronized chaos, amongst others, in net-
works of coupled cells [5,6,12,20,18]. Graphs architecture appear to be an
important part in the explanation of these phenomena.

Networks of coupled cells may arise as models of animal and robot locomo-
tion, speciation, visual perception, electric power grids, internet communica-
tion [8,9,21,11,22,23,10,7], and many others.

There are special networks of coupled cells that possess some degree of
symmetry. We divide these networks in two groups: (i) networks with exact

Received: 18 June 2011 / Accepted: 30 December 2011
c© 2012 CMSIM ISSN 2241-0503
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symmetry group; and (ii) networks with interior symmetry group. A symmetry
of a network is a permutation on the nodes that preserves the network architec-
ture (including cell-types and arrow-types). An interior symmetry generalizes
the notion of symmetry. It has been introduced by Golubitsky et al [13]. It
is a permutation in a subset of the cells that partially preserves the network
architecture. In this case, ‘forgetting’ about some arrows leads to a subnetwork
whose symmetry group is the interior symmetry group of the entire network.

In this paper we study interesting dynamical features occurring in two cou-
pled systems of two unidirectional rings, with Z3 × Z5 exact symmetry and
Z3 interior symmetry, see Fig. 1. We were motivated by previous work in
the study of quasi-periodic motion in four examples of networks of two rings
coupled through a ‘buffer’ cell, with Z3 × Z5 and D3 ×D5 exact and interior
symmetry [2–4]. We questioned if the bifurcation scenario observed in those
cases was seen in the networks considered here. Surprisingly, here too, we find
quasi-periodic states appearing through a sequence of Hopf bifurcations, anal-
ogously to what was found in [2–4]. We also obtain a curious feature appearing
further away of the third Hopf bifurcation point, similarly to what was found
in [2–4] and [12].
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Fig. 1. Networks of two coupled unidirectional rings, one with three cells and the
other with five.The network on the left (a) has exact Z3 ×Z5-symmetry, the network
on the right (b) has interior Z3-symmetry.

1.1 Outline of the paper

In section 2, we give a brief summary of the coupled cells networks formalism.
In section 2.2, we simulate the coupled cells systems associated to the networks
of two coupled rings of cells in Fig. 1. We consider the cases of exact and
interior symmetry. In section 3, we state the main conclusions and unravel
future research directions.
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2 Coupled cells network

A coupled cells network consists of a (i) finite set of nodes (or cells) C; (ii) an
equivalence relation on cells in C, where the equivalence class of c is the type
of cell c; (iii) an input set of cells I(c), that consists of cells whose edges have
cell c as head; (iv) an equivalence relation on the edges (or arrows), where the
equivalence class of e is the type of edge e; (v) and satisfies the condition that
‘equivalent edges have equivalent tails and edges’.

We define, for each cell c an internal phase space Pc, the total phase space
of the network being P =

∏n
i=1 Pc. Coordinates on Pc are denoted by xc, and

thus coordinates on P are (x1, x2, . . . , xn). At time t, the system is at state
(x1(t), x2(t), . . . , xn(t)).

A vector field f on P that is compatible with the network architecture is
said to be admissible for that network, and satisfies two conditions: (1) the
domain and (2) the pull-back condition. Moreover, condition (1) states that
each component fi corresponding to cell ci is a function of the cells in I(ci).
Condition (2) says that if cells ci and cj have isomorphic input cells then their
corresponding components fi and fj are identical up to a suitable permutation
of the relevant variables [14].

2.1 Symmetry groups

A symmetry of a coupled cells system is the group of permutations of the
cells (and arrows) that preserves the network structure (including cell-types
and arrow-types) and its action on P is by permutation of cell coordinates.
Formally, we have a coupled system given by

ẋ = f(x) (1)

where f(x) is an admissible vector field for the a given network. If f is Γ
symmetric, then f(γx) = γf(x), γ ∈ Γ (equivariance condition). It follows
from the “pull-back condition” that this equivariance condition is satisfied for
all γ ∈ Γ , with respect to the action of the symmetry group Γ on the phase
space P , by commuting cells coordinates. A symmetry is thus a transformation
of the phase space that sends solutions to solutions.

The network in Figure 1(a) is an example of a network with exact Z3 ×Z5

symmetry.

An interior symmetry generalizes the concept of exact symmetry and it was
introduced by Golubitsky et al [13]. It is a group of permutations that acts in
a subset of cells (but not on the entire set of cells) and partially preserves the
network structure (cell-types and edges-types).

The network in Figure 1(b) is an example of a coupled cells system with Z3

‘interior symmetry’. Moreover, if we ignore the couplings from cells x1, x2, x3
to cells y1, y2, y3, y4, y5, then the resulting network is Z3-exactly symmetric.
Moreover, the network has interior Z3-symmetry on the set of cells {x1, x2, x3}.



28 C. Pinto

2.2 Numerical results

In this section we simulate the coupled cells systems associated with the two
networks depicted in Fig. 1. We use the following function for the internal
dynamics of each of the eight cells [2,12]:

f(x) = µx− 1

10
x2 − x3

where µ is a real parameter.
The coupled cells system of equations associated to the network (a) in Fig. 1

is given by:

ẋj = f(xj) + c1 (xj − xj+1), j = 1, . . . , 3
ẏj = f(yj) + c2 (yj − yj+1) + d (yj − x1) + d (yj − x2) + d (yj − x3),

j = 1, . . . , 5
(2)

where c1 = 0.75, c2 = 0.60, d = 0.2, and the indexing assumes x4 ≡ x1 and
y6 ≡ y1.

The coupled cells system of equations associated to the network (b) in Fig. 1
is given by:

ẋj = f(xj) + c1 (xj − xj+1), j = 1, . . . , 3
ẏj = f(yj) + c2 (yj − yj+1) + d1 (yj − x1) + d2 (yj − x2) + d3 (yj − x3),

j = 1, . . . , 5
(3)

where d1 = 0.1, d2 = 0.2, d3 = 0.3 and all other parameters and indexes are
as above.

Note that if d1 = d2 = d3 then the structure of the coupled cell system (3) is
consistent with the network of Figure 1(a) and thus has Z3×Z5 exact symmetry.

We vary parameter µ ∈ [−1.0, 2.0], going from positive values to negative
values. We obtain a branching pattern similar to the schematic bifurcation
diagram presented in Fig. 2.

HB1

HB2

RO

HB3

Fig. 2. Schematic (partial) bifurcation diagram for the coupled cell systems in Fig. 1,
near the equilibrium point. Solid lines represent stable solutions, dashed lines corre-
spond to unstable solutions [2].

In Table 1, we give a summary of the values of the Hopf bifurcation points
and the corresponding solutions in the two rings for the networks in Fig. 1.
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branch µ 3-ring 5-ring network Figure

trivial 2.0 equilibrium equilibrium equilibrium

2.0 equilibrium equilibrium equilibrium

1st (HB1) 1.66 equilibrium rotating wave periodic Fig 3

1.66 equilibrium rotating wave periodic Fig 3

2nd (HB2) 1.04 rotating wave rotating wave quasi-periodic Fig. 4

1.04 rotating wave rotating wave quasi-periodic Fig. 5

3rd (HB3) 1.015 rotating wave rotating wave quasi-periodic Fig. 6

1.015 rotating wave rotating wave quasi-periodic Fig. 7

3rd (RO) −0.5 relax. osc. relax. osc. quasi-periodic Fig. 8

−0.5 relax. osc. relax. osc. quasi-periodic Fig. 9

Table 1. Summary of the dynamical behavior of coupled cell systems associated to
the networks in Fig. 1. In the first column we indicate some branches of solutions with
the respective bifurcation points. The second, third and fourth columns show the type
of asymptotic stable solutions in the rings and the full systems in the corresponding
branch. See text for more details.

The first branch of Hopf bifurcation, 1st (HB1), comes from a trivial branch
of equilibria. The solutions corresponding to the primary branch can be ex-
plained using the Equivariant Hopf Theorem [16] for coupled cells systems in
the symmetric case, and the Interior Symmetry Breaking Hopf Theorem [1] for
coupled cells systems with interior symmetry.

Fig. 3 shows the time series after (HB1) in the coupled cells systems (2)-(3).
On the panel on the left we plot the time series for the network with Z3 × Z5

exact symmetry and on the right panel we plot the time series for the network
with Z3 interior symmetry. In both cases, we observe a rotating wave on the 5-
ring (periodic solution in which the cells in the 5-ring have the same wave form
but they are 1/5 out of phase) and the cells in the 3-ring stay in equilibrium.

By varying further the parameter µ, there is a secondary Hopf bifurcation
point (HB2) where the time series of the cells in the 3-ring appear to show a
rotating wave (periodic solution in which the cells in the 3-ring have the same
wave form but they are 1/3 out of phase). Figures 4-5 (left) show the time series
after the secondary Hopf bifurcation (HB2) in the coupled cell systems (2)-(3).
The Hopf bifurcation “occurs” in the 3-ring, leading to a rotating wave on the
3-ring. Cells in both rings appear to be at a rotating wave state. The full
solution is quasi-periodic (solution fills in the visible region), see Figures 4-5
(right).

Figures 6-7 show the time series after the tertiary Hopf bifurcation (HB3)
in the coupled cells systems (2)-(3). Cells in the 3- and 5- rings appear to be
at a rotating wave state. The full solution is quasi-periodic.

Figures 8-9 show the time series further away from the tertiary Hopf bifur-
cation (HB3) in the coupled cell systems (2)-(3). In Figures 8-9, we plot, on
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Fig. 3. Simulation of the coupled systems (2) and (3). Time series from the eight
cells after the first Hopf bifurcation point (HB1). (Left) Exact symmetry Z3 × Z5.
Cells in the 3-ring are at equilibrium and cells in the 5-ring display a rotating wave.
(Right) Interior symmetry Z3. Cells in the 3-ring are at equilibrium and cells in the
5-ring display a rotating wave.
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Fig. 4. Simulation of the coupled system (2) with Z3×Z5 exact symmetry, after the
second Hopf bifurcation point (HB2). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.
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Fig. 5. Simulation of the coupled system (3) with Z3 interior symmetry, after the
second Hopf bifurcation point (HB2). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.
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Fig. 6. Simulation of the coupled system (2) with Z3×Z5 exact symmetry, after the
third Hopf bifurcation point (HB3). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.
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Fig. 7. Simulation of the coupled system (3) with Z3 interior symmetry, after the
third Hopf bifurcation point (HB3). (Left) Time series from the eight cells. (Right)
Cell x1 vs cell y5.

the left panel, the time series for the eight cells and on the right panel cell x1 vs
cell y5, for the cases with exact symmetry and interior symmetry, respectively.
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Fig. 9. Simulation of the coupled system (3) with Z3 interior symmetry, further away
of the third Hopf bifurcation point (HB3). (Left) Time series from the eight cells.
(Right) Cell x1 vs cell y5.

The full solution is quasi-periodic that is, the time series on the 3-ring
looks like a (approximate) rotating wave and the time series on the 5-ring a
(approximate) rotating wave.

3 Conclusion

In this paper we study the dynamical behavior of two networks consisting of
two coupled rings of cells that admit Z3 × Z5 exact and Z3 interior symmetry
groups.

We find equilibria, rotating waves, quasi-periodic motion, and relaxation
oscillations. The bifurcation diagram that explains the occurrence of these
phenomena is similar to the one found in Antoneli et al [2–4]. There, authors
study two rings coupled through a ‘buffer’ cell with Z3×Z5 and D3×D5 exact
and interior symmetry groups. Analogously of what was found in [2–4], here
too, the exotic behavior found further away of the third Hopf bifurcation point,
reveals itself when a relaxation oscillation occurs. Relaxation oscillations are
solutions that appear through canard explosions [19,25].
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Transition to Quantum Chaos in Weakly
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Abstract. We analyze numerically ensembles of tight-binding Hamiltonians describ-
ing highly-symmetric graphene nanoflakes with weak diagonal disorder induced by
random electrostatic potential landscapes. When increasing the disorder strength,
statistical distribution of energy levels evolves from Poissonian to Wigner, indicating
the transition to quantum chaos. Power laws with the universal exponent map the
disorder strength in nanoflakes of different sizes, boundaries, and microscopic disorder
types onto a single parameter in additive random-matrix model.
Keywords: graphene, nanoflakes, quantum chaos, random matrices.

1 Introduction

Soon after the discovery of graphene—an atomically-thin monolayer of carbon
atoms arranged in a honeycomb lattice [11]—it was shown experimentally that
electrons in this material behaves as spin–1/2 massless Dirac particles [12], in
agreement with much earlier theoretical prediction by Semenoff [15]. For this
reason, the nanostructures in graphene have attracted much attention, lead-
ing physicists to reexamine classic effects of quantum transport [10] in search
of novel features that arise from the unusual conical band structure, chirality,
or the presence of additional quantum number (valley index) [3,5]. In par-
ticular, a Coulomb-blockade experiment on quantum dots consist of graphene
nanoflakes and normal metallic leads [13] shown signatures of quantum chaos
(the energy-level repulsion) for the flake size smaller then 100 nm, but without
clear identification of the system symmetry class. Some more light was shed
on this issue with theoretical work [16], showing that measurable quantities
may indicate different symmetry class in the case of open than closed quantum
dot. Later, the energy-level statistics of closed and irregular graphene flakes
obtained from numerical diagonalization of tight-binding Hamiltonians [9,7]
was found to coincide with those given by the Gaussian orthogonal ensemble
(GOE) of random matrices [6].

In this paper, we follow the numerical approach established by Refs. [16,9,7]
but focus on regular (hexagonal) graphene flakes with a weak diagonal disorder
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Fig. 1. Schematic representation of the systems studied numerically. (a), (b) Hexa-
gonal graphene nanoflakes with armchair and zigzag edges with their radii RA, RZ .
(c) Conical dispersion relation E(kx, ky) near the Dirac point. (d) Typical potential
profiles along the flake. Shaded areas on panels (c), (d) mark the energy range used
when discussing the spectral statistics (see the main text for details).

attributed to the substrate-induced random electrostatic potential landscape
(see Fig. 1). The results show, that the energy-level statistics of such systems
coincide with those given by additive random matrices of the form H0 + λV
[17], where H0 is the diagonal random matrix (and thus has Poisson statistics)
and V is GOE matrix. We also found, that the parameter λ is related to the
extensive quantity NtotK0 (where Ntot is the total number of carbon atoms
and K0 is an intensive measure of the disorder strength) via the scaling law
λ ∝ (NtotK0)α, with α ' 0.6 regardless boundary conditions and microscopic
details of the disorder model.

The paper is organised as follows. In Sec. 2, we recall the basic findings on
possible symmetry classes of chaotic nanosystems containing Dirac fermions,
and present microscopic models of disorder in graphene nanoflakes. In Sec. 3,
the random matrix model describing the transitions to quantum chaos is applied
to rationalize level-spacing distributions obtained from numerical diagonaliza-
tion of tight-binding Hamiltonians. The conclusions are given in Sec. 4.

2 Dirac fermions in disordered graphene

In this Section, we present two different microscopic models of disorder in
graphene nanoflakes, representing the random electrostatic potential landscape
abruptly or smoothly varying on the length-scale of the lattice spacing a =
0.246 nm. But first, let us briefly recall (after Ref. [16]) the discussion of possible
symmetry classes of such nanosystems.
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2.1 Symmetries of the Hamiltonian

The effective Hamiltonian for low-energy excitations of electrons in graphene
in the absence of magnetic field has a form of the Dirac Hamiltonian

Heff = vF pxσx ⊗ τz + vF pyσy ⊗ τ0 + [M(x, y)σz + U(x, y)σ0]⊗ τ0, (1)

where vF ≈ 106 m/s is the energy-independent Fermi velocity, σi and τi (i =
1, 2, 3) are the Pauli matrices acting on sublattice and valley degrees of freedom
(respectively), and σ0 (τ0) denotes the unit matrix. M(x, y) and U(x, y) are
the mass term and the external electrostatic potential. Symmetries of the
Hamiltonian (1) are defined by the following antiunitary operations: standard
time reversal T , and two “special time reversals”

T = (σ0 ⊗ τx)C, Tsl = −i(σy ⊗ τ0)C, Tv = −i(σ0 ⊗ τy)C, (2)

where C denotes complex conjugation. The mass term breaks the symplectic
symmetry associated with Tsl, leading to the two distinct possible scenarios:

(i) In the case of weak intervalley scattering, Tv commutes with Heff , so
the system consists of two independent subsystems (one for each valley). Each
subsystem lacks time-reversal symmetry, as T commutes only with full Heff .
Because the Kramer’s degeneracy (T 2

v = −I), the Hamiltonian consists of two
degenerate blocks, each of which belonging to the Gaussian Unitary Ensemble
(GUE). The analogous scenario was considered by Berry and Mondragon [4]
for neutrino billiards, lacking the valley degrees of freedom.

(ii) In the case of strong intervalley scattering caused by irregular and
abrupt system edges, or by the potential abruptly varying on the scale of
atomic separation, the two sublattices are also nonequivalent, so both spe-
cial time-reversal symmetries Tsl and Tv became irrelevant. T commutes with
Heff leading to the orthogonal symmetry class.

The existing numerical studies for closed systems of irregular shapes [16,9,7]
show that the typical intervalley scattering time is always shorter than the time
required to resolve a level spacing (Heisenberg’s time) leading to the scenario
(ii). Some features of the scenario (i) were found in open systems [16], for which
the intervalley scattering time needs to be compared with much shorter escape
time. Such systems are, however, beyond the scope of this paper, as we focus
on regular and weakly-disordered systems, for which the intervalley scattering
itself may be suppressed.

2.2 Disorder in the tight-binding model of graphene

The lattice Hamiltonian for disordered graphene reads

H =
∑
ij

γij |i〉〈j|+
∑
i

[Ugate(ri) + Uimp(ri)] |i〉〈i|. (3)

The hopping-matrix element γij = −γ if the orbitals |i〉 and |j〉 are nearest
neighbors on the honeycomb lattice (with γ = 2

3

√
3~vF /a ≈ 3 eV), otherwise

γij = 0. The electrostatic potential contains a contribution Ugate from gate
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electrodes (slowly varying with the site position ri) and a random contribution
Uimp from impurities. For small nanoflakes one can choose Ugate ' U0 = 0,
whereas a realization of disorder potential is generated by randomly choosing
Nimp lattice sites Rn (n = 1, . . . , Nimp) out of Ntot, and by randomly choosing
the amplitudes Un ∈ (−δ, δ). The potential is then smoothed over a distance ξ
by convolution with a Gaussian, namely

Uimp(r) =

Nimp∑
n=1

Un exp

(
−|r−Rn|2

2ξ2

)
. (4)

The special case of ξ � a, Nimp = Ntot corresponds to the Anderson model on a
honeycomb lattice, considered in work [2] on spectral statistics of nanotube-like
structures. Earlier, the model constituted by Eqs. (3,4) with ξ � a was shown
to reproduce basic transport properties of disordered mesoscopic graphene sam-
ples [14,8]. It has not been considered, however, in the discussion of spectral
statistics of nanoflakes so far.

We further define the Fourier transform of two-point correlation function

Kq =
A

(Ntot~vF )
2

Ntot∑
i=1

Ntot∑
j=1

〈Uimp(ri)Uimp(ri)〉 exp [iq · (ri − rj)] , (5)

where the system area A = 1
4

√
3Ntota

2, and the averaging takes place over
possible realizations of the disorder (4) (so 〈Uimp〉 = 0). For the length scales
large compared to ξ, the dimensionless correlator

K0 =

√
3

9

Nimp

Ntot

(
δ

γ

)2

κ2, κ =

{
1, if ξ � a,
8
3

√
3π(ξ/a)2, if ξ � a,

(6)

becomes a representative measure of the disorder strength. For q 6= 0, we
obtain Kq = K0 if ξ � a, or Kq = K0 exp(−q2ξ2) if ξ � a. The numerical
value of the ratio Kq/K0 at q =

(
± 2π

3a , 0
)

approximates the intervalley scat-

tering rate, and is as small as 2 × 10−6 for ξ =
√

3 a (used in the numerical
simulations presented in remaining parts of the paper).

3 Random matrices and spectral statistics

3.1 Additive matrix model for transition Poisson-GOE

Before presenting the numerical results for spectral statistics of graphene nano-
flakes, let us briefly review corresponding additive random-matrix models and
resulting nearest-neighbor spacings distributions [17].

When large integrable system undergoes transition to quantum chaos, its
spectral properties can be modelled by the following random Hamiltonian

H =
H0 + λV√

1 + λ2
, (7)
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where H0 is diagonal random matrix, which elements follow a Gaussian dis-
tribution with zero mean and the variance 〈(H0

ij)
2〉 = δij , the parameter

λ ∈ [ 0,∞ ], and V is a member of one of the Gaussian ensembles. In particular,
for transition Poisson-GOE, elements of V are real numbers chosen to follow
a Gaussian distribution with zero mean and the variance 〈V 2

ij〉 = (1 + δij)/N ,
where N is the matrix size.

For N = 2, the eigenvalue-spacings distribution for the Hamiltonian (7) can
be found analytically and reads, for transition Poisson-GOE,

P (λ;S) =

[
u(λ)2S

λ

]
exp

[
−u(λ)2S2

4λ2

] ∫ ∞
0

dηe(−η2−2λη)I0

[
ηu(λ)S

λ

]
. (8)

I0(x) is the modified Bessel function of the first kind; u(λ) =
√
πU(− 1

2 , 0, λ
2)

with U(a, b, x) the confluent hypergeometric function [1]. In particular, for
λ = 0 the Poissonian distribution P (S) = exp(−S) is restored. For the opposite
limit (λ→∞) we have P (S) = (π/2)S exp(−πS2/4), reproducing the Wigner
surmise for GOE matrices. For 0 < λ < ∞, Eq. (8) describe level-spacings
distributions interpolating between Poisson and GOE statistics, with P (λ;S) ∝
S/λ if S . λ� 1, or P (λ;S) ∝ S if S � 1 . λ.

For large N , the statistics P (S) (so-called nearest-neighbor spacings distri-
bution) is defined as a distribution of a variable S = (En+1 − En)〈ρ〉, where
〈ρ〉 is the average density of states, and En < En+1 are neighboring energy
levels. Subsequently, we have

∫∞
0
P (S) =

∫∞
0
SP (S) = 1 (so-called unfolded

spectrum). Although Eq. (8) is exact for N = 2 only, it was shown numerically
[17] that P (λfit;S) with λfit '

√
Nλ provides an excellent approximation of

P (S) for large random matrices of the form given by Eq. (7).

3.2 Energy-level distributions for disordered graphene flakes

In this Subsection, the central question of the present work is addressed,
namely: Whether the statistic interpolating between Poisson and GOE, P (λ;S)
(8) is capable of describing nearest-neighbor spacings distributions P (S) for
weakly-disordered graphene flakes? In other words, may the additive-random
matrix model defined via Eq. (7) be applicable for such relativistic nanosys-
tems? To answer this question, we focus on two systems of a high symmetry:
hexagonal flakes with entirely armchair or zigzag edges, each of which is show-
ing Poisson statistic in the absence of disorder (providing the level degeneracy
is properly taken into account). As already mentioned in Sec. 2, two distinct
models of disorder are applied to each system: Anderson model, defined by
setting ξ = 0 and Nimp = Ntot in Eqs. (3,4), or smooth disorder, with ξ =

√
3a

and Nimp � Ntot.
To obtain the statistics P (S), we diagonalized numerically tight-binding

Hamiltonians (3) for the flake containing Ntot . 104 atoms and 200 − 400
independent disorder realizations for either type of edges, disorder models, and
each disorder strength quantified by the correlator K0 (6). Some additional
effort is required when unfolding the spectra: Unlike for two-dimensional gas
of Schrödinger electrons, for which average density of states 〈ρ〉 is assumed to
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Fig. 2. Nearest-neighbor spacing distribution P (S) for hexagonal flakes of Fig. 1.
(a)–(c) Armchair edges, Anderson model of disorder (ξ = 0, Nimp = Ntot = 8322).
(d)–(f) Zigzag edges, smooth impurity potential (ξ =

√
3a, Nimp � Ntot = 10584).

Disorder strength K0 (6) is varied between the panels by changing the potential ampli-
tude δ [panels (a)–(c)] or by fixing δ/γ = 0.1 and varying the impurity concentration
Nimp/Ntot [panels (d)–(f)]. Histograms show the numerical data obtained by aver-
aging over 200–400 disorder realizations. Solid lines show the statistics interpolating
between Poisson and GOE (8) with best-fitted parameter λ = λfit specified for each
panel. The limiting cases of Poisson (λ = 0) and GOE (λ =∞) statistics are shown
with dashed and dotted lines (respectively).

be energy-independent, for bulk graphene we have [4] 〈ρ(E)〉 ' A|E|/[π(~vF )2]
(per spin). For small systems studied here, boundary effects lead to additional
states appearing near E ' ±γ (armchair edges) or E ' 0 (zigzag edges).
Also, the impurity potential (4) introduces some bound states for |E| < δ. All
these additional states, however, are localized on areas small in comparison to
A, and thus not contribute to the spectrum obtained in a Coulomb-blockade
experiment such as reported in Ref. [13]. For this reason, we limit the energy
range [cf. Emin and Emax in Fig. 1(c),(d)] such that

〈ρ(E)〉 ' ρ0 +
1

π

Aeff

(~vF )2
|E|, for 0.1 6 |E|/γ 6 0.5. (9)

The constant term ρ0 and the effective area Aeff . A are determined via least-
square fitting of Eq. (9) to the actual 〈ρ(E)〉 obtained by numerical averaging
over independent disorder realizations.

Our numerical results are presented in Figs. 2 and 3. First, we compare
the statistics P (S) on two selected examples of nanosystems considered: the
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Fig. 3. Least-squares fitted parameters λfit for transition Poisson-GOE (8) as func-
tions of disorder strength for hexagons with armchair edges (a) [or zigzag edges (b)],
different sizes, and the two distinct disorder types. Ntot = 8322 (a) [or 10584 (b)]:
ξ = 0 (�), ξ =

√
3a (©); Ntot = 34062 (a) [or 42366 (b)]: ξ =

√
3a (5);

Ntot = 6144 [panel (b) only]: ξ = 0 (�), ξ =
√

3a (N). Lines denote best fitted
power-law relations for the two disorder types (see Table 1 for details).

Table 1. Least-square fitted power-laws λfit(ζ) = λ1ζ
α, with ζ ≡ NtotK0 (lines in

Fig. 3). Numbers in parenthesis are standard deviations for the last digit.

Disorder model Armchair edges Zigzag edges

ξ= 0, Nimp = Ntot λ1 = 0.059(2) α= 0.55(1) λ1 = 0.046(3) α= 0.59(1)

ξ=
√

3a, Nimp� Ntot 0.035(2) 0.56(1) 0.023(4) 0.56(3)

hexagon with armchair edges and Anderson-type disorder (Fig. 2(a)–(c)) and
the hexagon with zigzag edges and smooth disorder (Fig. 2(d)–(f)). Although
some systematic deviations of P (S) from the best-fitted interpolating statistics
P (λfit;S) (8) are visible for S > 1 due to a finite system size (notice that a
better agreement is observed for Ntot = 10584 than for 8322), P (λfit;S) repro-
duces the actual nearest-neighbor spacings distribution with a good accuracy
for both systems and wide range of K0. We further notice, that similar values
of λfit are reached for the second system at K0 typically 5−8 times larger than
for the first system.

The dependence of λfit on the total disorder strength NtotK0 for all datasets
available is illustrated in Fig. 3 (datapoints) in the logarithmic scale. The
particular choice of the independent variable ζ ≡ NtotK0 allows us to find the
approximating relations λfit ' λfit(ζ), which still differ between the systems
with different edges or disorder types, but remain unchanged when varying Ntot

and K0 independently with the remaining parameters fixed. Also, for smooth
disorder, we vary Nimp having δ fixed at δ/γ = 0.1 or 0.5 (corresponding to
the absence or presence of charge puddles in the physical system).

Least-square fitted power-laws λfit(ζ) are listed in Table 1 and plot in Fig.
3(a),(b) (lines). The power-laws fail for λfit & 1, as P (λfit;S) becomes indistin-
guishable from GOE statistics in this range. They are, however, closely-followed
by the datapoints for smaller λfit-s. We further verify the obtained λfit(ζ)-s for
the case of smooth impurity potential, by taking the systems approximately
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four times larger in area (namely, Ntot = 34062 for armchair edges or 42366 for
zigzag edges), but generating only one disorder realization for each K0. Such an
approach reproduces the experimental procedure of Ref. [13], where the spec-
trum of a single system was obtained. Additionally, the corresponding flake
diameters 2RA = 87

√
3 a ' 37 nm and 2RZ = 168 a ' 41 nm are of the same

order of magnitude as diameters reported in Ref. [13]. The new datapoints
(open triangles in Fig. 3) still follow the corresponding power-laws, providing
that λfit . 1.

Probably, the most remarkable feature of these results is that all graphene
nanoflakes considered show transition Poisson-GOE when increasing the dis-
order strength, with no signatures of GUE statistics. This is expected for the
flakes with armchair edges which couple the valleys [3], or with zigzag edges
and Anderson-type disorder [14], for which the intervalley scattering restores
time-reversal symmetry. The absence of GUE statistics seems surprising in
the case of zigzag edges accompanied by the smooth impurity potential. In
such case, some intervalley scattering originates from six 120◦ corners, a role
of which may become decisive for spectral statistics of closed nanosystems.

4 Conclusions

We find that the additive random-matrix model, describing a transition to
quantum chaos in Hamiltonian systems, is also relevant when discussing spec-
tral statistics of highly-symmetric graphene nanoflakes with a weak diagonal
disorder. The functional relation between the model parameter λ and the dis-
order strength NtotK0 has a form of a power law, with the universal exponent
α ' 0.6, which is insensitive to the boundary type or to the microscopic model
of the impurity potential.

In the chaotic range, regular graphene flakes show energy-level statistics
characteristic for the Gaussian Orthogonal Ensemble (GOE) of random ma-
trices, indicating the strong scattering of Dirac fermions between the valleys.
This coincides with earlier findings for irregular nanoflakes [16,9,7].
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17.K. Życzkowski. Parametric Dynamics of Quantum Systems and Transitions Be-
tween Ensembles o Random Matrices. Acta Physica Polonica B, 24:967, 1993.





 

 
Chaotic Modeling and Simulation (CMSIM) 1: 45-51, 2012 

 

 

_________________ 

Received: 26 May 2011 / Accepted 20 December 2011   

© 2012 CMSIM                                                                                ISSN 2241-0503 

Chaotic behaviour induced by modulated 

illumination in the Lengyel-Epstein model under 

Turing considerations 
 

Daniel Cuiñas-Vázquez, J. Carballido-Landeira, V. Pérez-Villar and A. P. 

Muñuzuri
1 

 
1  University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain  

   (E-mail: jorge.carballido@usc.es ) 
 

Abstract: The photosensitive CDIMA reaction was investigated using the Lengyel 

Epstein model modified to include the effect of external illumination. Different spatial 

patterns are exhibited under constant values of light, ranging from Turing Spots to 

Stripes for the minimum and maximum values of illumination, respectively. Moreover, 

by neglecting the diffusion, the system displays oscillations with a characteristic period 

that also depends on the illumination value. When illumination is set to periodically 

oscillate three different behaviors are observed. Namely, a regime exhibiting the period 

of the external forcing; another where there is a resonance between several periods of 

oscillations and a broad regime where the system demonstrates a chaotic-like behavior. 
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1    Introduction 

The reaction between chlorine dioxide, iodine and malonic acid (CDIMA 

reaction) is one of the most thoroughly studied oscillatory chemical systems [1, 

2] both experimentally and numerically. This reaction constitutes a good 

prototype for studying complex dynamics, such as the symmetry-breaking, 

reaction diffusion Turing patterns [3]. Moreover, experiments performed by 

Epstein Group reported that CDIMA reaction presents a high sensitivity to 

visible light [4]. The photosensitivity opens the possibility to control the 

different patterns by using either temporal illumination (constant or periodical), 

spatial or spatiotemporal forcing [5, 6]. Specifically, the light forcing is able to 

induce a transition between patterns [7], suppress the structures [8] or introduce 

new localized patterns [9].  
 

2    The Model and Simulations 

We employed the Lengyel-Epstein model [10, 11] because it approaches to the 

true kinetics of the experiments and allows analytical calculations in good 

agreement, both quantitative and qualitative, with the experiments. This model 

consists of two coupled reaction-diffusion equations, once modified to take into 

account the illumination, as: 
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Here u and v are the dimensionless concentration for iodide (activator) and 

ClO2
-
 ions (inhibitor), respectively; a, c and σ are dimensionless parameters of 

the chemical system; d is proportional to the ratio of the diffusion coefficients of 

the main species (d = Dinhibitor/Dactivator). The parameter Φ plays the role of the 

illumination intensity. In this work the light sinusoidally varies with time 

according to:  
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The relevance of the above light forcing lies in the always positive value of Φ 

which can be tuned through a characteristic period of forcing (ω = 2π/T).  

Whether we only considered the temporal evolution and without any spatial 

consideration, i.e. a OD-system, the model equations (1)-(2) are solved 

numerically by the Runge-Kutta method with a time step 0.001 time units (t. u.). 

In presence of diffusion the simulations were performed by a Dufort-Frankel 

model in addition to Dirichlet and Newman conditions: 
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In our simulations, for initial conditions we chose small perturbation (5%) of 

random values close to steady state: 
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The steady state go through a Hopf instability if  
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evolving into a homogeneous limit cycle characterized by a typical frequency.  

 

The homogeneous steady state of the system may also undergo Turing 

instability when: 
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 ( )( )265 φα −= ad ,      (10) 
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The point where these two different instabilities coincide is the so-called 

codimension-two Turing-Hopf point (CTHP). By plotting in a parameter space 

the two parameters used to determine the different instabilities (C and Φ), we 

obtained that our range of study is located in a Subcritical Turing domain (see 

Figure 1). The relevance of such regime reside in the oscillations displayed 

when we study the system without spatial diffusion and the Turing patterns 

observed taking into account the diffusion.  

 

 
Fig. 1. C vs Φ phase portrait in a model of the CDIMA reaction-diffusion 

system with constant illumination. Fixed parameters in our simulations: a= 36, 

c=1, σ=20 and d=1.027. The dashed line corresponds to the range of parameters 

studied once that we introduce the modulated light forcing. Different stationary 

Turing patterns where obtained in our numerical simulations, □ Stripes, x 

mixture of stripes and spots and ○ spots by at constant values of the 

illumination.  

 

It is important to note the different Turing patterns exhibited by Lengyel-Epstein 

model for the different values of the light as we shown in Figure 1. Thus, as we 

increase the illumination parameter control (Φ), the system evolves from a pure 

Stripe configuration to a pure hexagonal Spots regime going trough a mixture of 

both of them (see insets in Figure 1). We want to recall that each of these 

patterns was obtained for a constant value of illumination. The purpose of this 
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work is the analysis of the dynamics obtained when we modulated the light in a 

sinusoidal way in between the Stripe and Spots configuration. 

By using a linear stability analysis of the model (1) - (2), we obtain the related 

dispersion curves as a function of the wavenumber (see Figure 2). We observed 

that although both instabilities (Turing and Hopf) coexist in our range of 

parameters, the predominant mode differs according to the value of Φ. For 

lower values of the illumination, the dispersion relationship presents a 

predominant Turing mode slightly influenced by Hopf. However, the maximum 

value of illumination, Φmax, demonstrates a clear resonance between the Turing 

and Hopf instability, where the last one became predominant. Increasing the 

parameter of control Φ in the relation dispersion makes the Turing regime to 

expand and shifts the most probable to higher values.  

 

 
Fig. 2. Schematic dispersion relations displaying the interaction between the 

Turing and Hopf instabilities. The dispersion curves were analyzed for two 

different values of the illumination: Dash line (Φmax,), solid line (Φmin,) . 

 

We focused our study analysis in the two-variable model (1) – (2) in the absence 

of diffusion, i.e. we analyzed the temporal evolution of the 0D system.  

Thereby, the Lengyel-Epstein with a constant illumination presents an 

oscillatory solution with a characteristic period (figure 3a). By changing the 

illumination parameter in between the minimum (Φmin,) and maximum (Φmax,) 

values, the period of oscillation increases in the same way that Φ does (Figure 

3b).  

 

 
a)  

 
b)  

Fig. 3. Lengyel-Epstein model in presence of constant illumination.   a) 

Oscillations profile for two forcing values  (blue line corresponds to Φmin,=1. 

Red line corresponds to Φmax=4.5). b) Dependence of the oscillation period with 

the illumination parameter 



Chaotic Modeling and Simulation (CMSIM) 1: 45-51, 2012 49 

 

The modulation periodic of the external light, introduces a new parameter, the 

period of the forcing, and depending on its value the dynamics of the system 

show different responses. The amplitude of the oscillatory behavior, for both the 

activator and inhibitor dimensionless species, was considered as the key 

parameter in order to analyze the results. Moreover, we want to note that all the 

simulations were carried out for a narrow range of the period of the forcing (1> 

T > 1.06). This fact enhances the susceptibility of the Lengyel-Epstein model to 

the illumination parameter. By plotting the amplitude of the activator for all the 

different values of the forcing, we differentiated three different regimes as we 

show in figure 4 

 

 
Fig. 4. Bifurcation diagram showing the values of activator’s amplitude as the 

response of the period of illumination.  

 

Region I. In the range of period of forcing 1.05<T<106, the system 

demonstrates an oscillatory dynamic. The peculiarity of such sinusoidal 

behavior lies in the fact that the LE model exhibits a period of oscillation equal 

to the period of the forcing. All the oscillations of the system are performed with 

the same amplitude (In the example displayed in figure 5, the amplitude given 

by the limit cycle of figure 5.a). Fast Fourier transform was used to verify the 

presence of an unique period of oscillation (Figure 5b). 

 

Region II. By forcing the system with a period of illumination within this 

regime, the limit cycle described by the system is splitted into three amplitudes 

of oscillation, as can be seen in the example of figure 5c. Moreover, the LE 

model does not present oscillations with the frequency of the forcing, but rather, 

it exhibits periods close to this value (see Figure 5d). 

 

Region III. For a broad range of forcing periods, the system oscillates showing 

a chaotic behavior in the oscillation amplitudes, as we show in the path traced in 
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the phase space (see Figure 5e). The analysis of the period of oscillations 

followed by FFT also corroborates such results (Figure 5f). 

 

 

 
a)  b)  

 
c) d)  

 
e)  f) 

Figure 5. System responses for different frequencies of forcing. Left panels: 

Phase space exhibiting the associated limit cycles. Right panels: Fast Fourier 

Transform of the response signal showing the most significant peaks.  

Frequency of forcing: 1.05 (cases a, b), 1.009 (cases c, d) and 1.035 1/t.u. (cases 

e, f) 

 
3    Conclusions 

The Lengyel-Epstein model was modified to include the photosensitivity as an 

external forcing. Our work deals with a time-periodic (always positive and non-

zero) illumination restricted between a maximum and minimum that displays a 

sort of subcritical Turing instability. Moreover, the wealth of the system allow 

us to observe oscillations (which depend linearly on the forcing), when we 

analyze the system without spatial considerations, and also Turing patterns 
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(going from Stripes to Spots as we increase the illumination parameter), whether 

the diffusion takes place.  

Although our analysis concerns to a narrow range of forcing periods, we obtain 

three regimes with different dynamics. For higher periods, the system oscillates 

with the period induced by the forcing. However, for higher values of the 

illumination period, the system splits into different periods. Under intermediate 

periods of oscillations, the Lengyel-Epstein presents a broad range of 

parameters with a chaotic-like behavior. 

These results enhance the high sensitivity of LE model under applied forcing 

and also open the possibility to perform a more carefully simulations under a 

broad range of illumination frequencies, where these kind of resonant dynamics 

are expected. Furthermore, these results suggest that applied waveform forcing 

can induce exciting spatiotemporal complex patterns once we take into account 

the spatial diffusion. 
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Abstract: The influence of magnetic fields on chemical processes has long been the 

subject of interest to researchers. For this time numerous investigations show that 

commonly the effect of a magnetic field on chemical reactions is insignificant with 

impact less than 10 percent. However, there are some papers that point to the observation 

of external magnetic field effect on chemical and biochemical systems actually having a 

significant impact on the reactions. The reason of the effect should be based on searching 

physically clear processes which mechanisms are well investigated. 

The paper theoretically deals with two models explaining how an applied weak magnetic 

field might influence the steady state of a non-equilibrium chemical system. It is 

speculated that an applied weak magnetic field might induce a slight change of some rate 

constants of radical reactions involved in the chemical system. This, in turn, leads to a 

bifurcation of steady states and implies an abrupt change in temperature and 

concentration. 

Keywords: radicals, recombination, magnetic effects, stationary states, critical 

phenomena, photochemical system, chain reactions with degenerate branching.  

 
1    Introduction 

The influence of magnetic fields on chemical processes has long been the 

subject of interest to researchers. For this time physically clear notions have 

been formed of the fact that though the energy of magnetic interactions is small, 

under certain conditions relatively weak magnetic fields can noticeably affect 

the rates of chemical reactions with the participation of paramagnetic particles 

[1-6]. It has been established that the magnetic effect manifests itself in the 

competition of different channels of conversion in elementary reaction stages, 

and is determined by the dependence of chemical process effectiveness on the 

spin state of the pair of the reacting particles, as well as by magnetosensitivity of 

transitions between spin states (radical pair mechanism) [7-9].  

Considerable recent attention has been focused on investigation of weak 

magnetic fields on chemical and biochemical systems and numerous 
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investigations have shown that commonly the effect is insignificant. For 

example, Brocklehurst and McLauchlan [10] in the model with one magnetic 

field by numerical methods have obtained approximately 10% change in the 

reaction rate as compared to geomagnetic field assuming radical pair lifetime 

equal to 2·10
-7

 s. Probably, just the value of the order of 1-10% should be 

considered as quite suitable for the estimation of possible magnetic effects in 

weak magnetic fields (of the order of geomagnetic field) in chemical and 

biochemical systems. 

However, there are a number of papers that point to the observation of external 

magnetic field effect on chemical and biochemical systems actually having a 

significant impact on the reactions. The best known examples of the influence of 

weak magnetic fields on biological systems are the two established facts: annual 

migration of birds that orient themselves by magnetic field of the Earth, and the 

increased number of cancer cases in the regions near retranslating GSM towers. 

On the other hand, it is well-known that in non-equilibrium processes even 

small perturbations can cause essential consequences in non-linear systems 

where feedbacks play an important role. The reason is the state stability 

disturbance, and therefore abrupt change of the process regime [11]. One can 

believe that in some chemical or biochemical systems rather strong influence of 

weak magnetic fields is also determined by the disturbance of stationary state 

stability, and transition of the system to another behavior regime [12-16]. 

Thus the starting point for searching the system where the strong effect of the 

weak magnetic field is possible is the consideration of chemical systems in the 

stationary state near the stability conditions violation. First, the reactions with 

the participation of radical pairs should be considered. It is supposed that under 

certain conditions external magnetic fields that change the rate constants of 

processes involving radicals can disturb the stability of stationary states and 

transfer the system to another stable state considerably differing from the initial 

one. 

The first model system describes dissociation reaction of cyclic ketones under 

the action of external radiation (laser) which results in biradicals and their 

subsequent recombination. Non-linear affects in the system are determined by 

positive reverse relation occurring due to biradical recombination rate 

dependency of the system temperature and selective absorptance efficiency of 

the system (absorb only cyclic ketones). The second model system describes 

hydrocarbon oxidation in liquid phase in presence of inhibitor. The system 

temperature is considered to be constant and non-linear effects in the system are 

determined by non-linear kinetic equations describing the system.  

Let us remark, that the considered systems are realistic, but rather academic. 

The real systems are much more complicated and we don’t have the goal to 

describe all effects of weak magnetic fields on chemical and biochemical 

systems. Although, the supposed approach shows, that in spite of the energy of 

magnetic interactions is extremely low compared to the energy of chemical 

bond, the external weak magnetic field in some certain conditions is able to alter 

system properties dramatically. 
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2    The Models and Computations 

2.1    Photochemical system 

The first system under study describes dissociation reaction of cyclic ketones 

under the action of external radiation (laser) which results in biradicals and their 

subsequent recombination. The system can exchange energy with reservoir. So, 

stationary states of the system are determined both by concentration of 

reactants, and by stationary temperature.  

Thus, under the action of external radiation the molecule-precursor A  produces 

biradical B  that can subsequently recombine to give the initial molecule 

 ABA →→ :
νh

. (1) 

The kinetic equation defining the concentration change of biradicals B  is as 

follows 

 
B

A

absB nTK
NV

I

dt

dn
)(−=

νh
, (2) 

where 
Bn  is biradicals concentration, )(TK  is monomolecular recombination 

rate constant of biradicals B  depending on the temperature T  of the reacting 

system, absI  is the energy absorbed by the reacting system per unit time, ν  is 

laser generation frequency, h  is the Planck constant, V  is the volume of 

solution excited by laser radiation, 
A

N  is the Avogadro constant. 

The first term in the right-hand side of equation (2) describes the production of 

biradicals due to photolysis. absI  appearing in it is defined using the Buger-

Lambert-Beer law on the assumption that at the given laser generation 

frequency only molecules A  (biradicals) absorb 

 ))exp(1(
0

lnII
Aabs
ε−−= . (3) 

where 
0I  – incident radiation power, An  – substance A  concentration, ε  – 

substance A  extinction coefficient, l  – dishes length with solution. 

We accept the following temperature dependence of recombination rate 

constant [17, 18] 
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


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






−−=

0

0

11
exp)(

TTR

E
KTK A , (4) 

where T  – the reacting system temperature, 
0

T  – the reservoir temperature that 

is kept constant, 
0

K  – the rate constant determined at the temperature 
0

T , 
A

E  – 

recombination barrier, R  – universal gas constant. 

As already mentioned, the internal energy of the system changes due to 

radiation absorption and loss of heat to the reservoir kept at constant 

temperature 0T . The mean variation rate of external energy of the system may 

be written as 
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 )(
0

TTI
dt

dE
abs

−−= α , (5) 

where α  – heat emission coefficient between the reacting system and reservoir, 

T – the mean temperature of the system. 

Note that as laser beam passes through the substance, radiation is absorbed, and 

the beam intensity decreases. Therefore, generally speaking, the system is 

inhomogeneous, and one should take into account spatial dependence of internal 

energy and concentrations. However, for simplicity we take that the intensity of 

heat and mass exchange inside the reacting system is rather high, and the 

inhomogeneity is insignificant. 

So the evolution of the system in question will be described by differential 

equations (2) and (5), however, we are interested solely in stationary states of 

the system defined by the condition 

 0====
dt

dT

dt

dn

dt

dn

dt

dE
BA . (6) 

It is assumed that external magnetic field can change the recombination rate 

constant )(TK  of biradicals B  [19-22], and at certain parameters of the system 

violate the condition of stability of the stationary state thus transferring the 

system to another stationary state characterized by another values of T , 
A

n   

and 
B

n . 

Now we pass to the question concerning the necessary conditions under which 

multiple stationary states will be observed in the system. It is convenient to 

consider the situation when the absorptance of substance A  is low (i.e., 

1<<ln
A
ε ). This essentially simplifies mathematical analysis of the system.  

The condition of low absorptance of substance A  will be fulfilled at all 

possible concentrations of substance A , if the initial concentration satisfies the 

condition 

 10 <<ln
A
ε . (7) 

Based on equations (2), (5) and conditions (6), (7), write the set of equations 

defining the appearance of stationary states in the system 

 
( )









+=

=−−

=−

BAA

A

ABA

nnn

TTlnI

NVnTKlnI

0

00

0

0

0)(

αε

νε h
, (8) 

where 
0

A
n  – the initial concentration of substance A . It is assumed that at the 

initial instant of time the concentration of biradicals B  is equal to zero. 

For further analysis it is convenient to introduce the following dimensionless 

quantities 

 

0
TR

E
x A=  (9) 

and 
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0

0

0

T

NVKn
z AA

α
νh

= . (10) 

Thus the parameter x  defines the value of the activation barrier in biradical 

recombination reaction with respect to the temperature of reservoir. The 

parameter z  describes the ratio between the rate of the energy delivery to the 

system and that of the energy expenditure due to the heat loss to reservoir. 

The detailed analysis shows that for multiple stationary states to be found in the 

system, the reacting system parameters z  and x  must satisfy the relations 

 
2

4
0

e
xz ≤<  (11) 

and 

 ( )( )
( )ezW

ezW
x

−
−+−

−<
2

1 , (12) 

where W  – the Lambert function. 

As x  is positive, and the Lambert function W  is negative on the interval 

[ )0,1 e− , we have the condition for the value of z  

 
2

1
0 z

e
< ≤ . (13) 

The next figure presents dependences (11) and (12). The parameter x  is plotted 

on the abscissa axis, the parameter z  - on the ordinate axis. The upper curve 

corresponds to condition (11), the lower one – to condition (12). At 21 ez =  

both curves merge at the point 4=x , with z  tending to zero, both curves tend 

to infinity. 
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Fig.1. The set of x and z values (crosshatched region) for which the system 

has multiple stationary states. 
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So if the value z  fails to satisfy condition (13), then only one stationary state 

will always exist in the given system, whatever the parameter x . If the 

parameter z  satisfies condition (13), then three stationary states can be found in 

the system only in case the parameter x  satisfies conditions (11) and (12) (i.e., 

is inside the crosshatched region in Fig.1).  

Table 1 shows the parameters of the system used in further calculations. 

Condition (7) of low absorptance of substance A  is not employed. On the one 

hand, these parameters agree with real values in experiments, and on the other 

hand, they satisfy conditions (11) and (12). 

 

 

Parameter Description Units Value 

V  
volume of solution exposed to 

radiation 
L 1.27⋅10

-8
 

l  dish length cm 0.2 

α  heat conductivity W/K 1.3⋅10
-3

 

0

An   initial concentration of A  

substance 
mol/L 5.1⋅10

-5
 

ε  
extinction coefficient of A  

substance 
L/(mol⋅сm) 3⋅10

4
 

A
E  activation barrier of B biradicals 

recombination 
kJ/mol 12.5 

0
T  reservoir temperature K 200 

0
K  B  biradicals recombination 

constant at temperature 
0

T  
1/s 10

5
 

ν  exciting radiation frequency 1/s 6.2⋅10
14

 

c  velocity of light m/s 3⋅10
8
 

νλ c=  exciting radiation wave length  Nm 428.6 

h  Planck constant J/s 1⋅10
-34

 

A
N  Avogadro constant 1/mol 6⋅10

23
 

R  universal gas constant J/(mol⋅К) 8.31 

z  dimensionless parameter - 0.07 

x  dimensionless parameter - 7.5 

 

 

 

Leaving aside a specific example of biradical and calculation details, for 

definiteness we take that in experimental conditions biradical lifetime m

0τ  (as a 

reverse value of )(TK ) in the presence of magnetic field (of the order of 

several oersted) differs from biradical lifetime 
0τ  in the absence of magnetic 

field approximately by 10 percent 

 1.11.1 00 == ττ m . (14) 

Table 1. Parameters used in calculations. 
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For the parameters from Table 1 below we give stationary dependences of the 

reacting system temperature T  and biradical concentration on external radiation 

value 
0

I , respectively. Solid line denotes the dependence in the absence of 

external magnetic field, dotted line – in the presence of magnetic field. 
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Fig.2. Stationary temperature dependence of the reacting system on 

external radiation value in the presence and in the absence of 

magnetic field. 

Fig.3. Stationary concentration dependence of biradicals on external 

radiation value in the presence and in the absence of magnetic field. 
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2.1    Hydrocarbon oxidation in liquid phase 

 

The second system under study describes hydrocarbon oxidation in liquid phase 

in presence of inhibitor. The reaction system under discussion is a flow reactor 

of the volume V  to the inlet of which hydrocarbon of concentration 
0][RH  is 

constantly delivered at the rate ω  in the mixture with the inhibitor of 

concentration 
0][I  under oxygen saturation conditions; the reaction mixture 

constantly flows from the chamber at the same rate. 

Elementary stages of the reaction are following [23, 24] 
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 (15) 

where I  – inhibitor; 1P , 2P  – stable reaction products. Here reaction (15.1) 

characterizes the process of the chain generation, reactions (15.2) and (15.3) 

define the chain evolution, reaction (15.4) – decay into radicals (degenerate 

chain branching), reactions (15.5) and (15.6) – chain termination. Characteristic 

rate constant values of the corresponding processes are given in Table 2.  

 

 

 

Parameter Value Units 

1k  5⋅10
-17

 L/mol·sec 

2k  2.7⋅10
6
 L/mol·sec 

3k  0.13 L/mol·sec 

4k  5.6⋅10
-10

 1/ sec 

5k  2.8⋅10
6
 L/mol·sec 

6k  2⋅10
6
 L/mol·sec 

 

 
 

 

Table 2. Rate constants of elementary stages processes (2). 
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The kinetic equations describing the change in reactants concentration in the 

reaction system are  
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, (16) 

with the following designations: ][1

•= Rx , ][ 22

•= ROx , ][3 ROOHx = , 

][RHy = , 
00 ][RHy = , ][Iz = , 

00 ][Iz = , ][ 2Og =  and V/ωυ = . 

As is known, the external magnetic field is able to affect the elementary event 

rate of radical pair recombination in liquids (the model of radical pairs). Among 

the elementary stages presented in scheme (15), only reactions (15.4) and (15.5) 

proceed with radical pairs, therefore, only they can be subjected to external 

magnetic field. 

It is assumed that external magnetic field can affect recombination rate 

constants 
4k , 

5k , and violate the stability of a steady state (at certain 

parameters of the system) thus transferring the system to another steady state 

essentially differing from the initial one.  

Now considerable attention has been given to finding the stationary states 

possible in the system, and defined by the conditions 

 0321 =====
dt

dy

dt

dz

dt

dx

dt

dx

dt

dx . (17) 

Let us assume that hydrocarbon concentration inside the reactor is equal to its 

initial concentration delivered to the reactor inlet, e.g., it is kept constant 

 0yy = . (18) 

The assumption seems to be valid, since the initial concentration is rather high, 

and reactions (15.1), (15.2) and (15.3) can be neglected.  Initial concentration of 

the inhibitor is rather small (as is seen from typical conditions of experiments of 

this kind), and so processes with its participation could not be neglected [25-28]. 

The approach essentially simplifies further mathematical examination of system 

(16), and allows one to obtain a cubic equation for stationary peroxide radical 

concentration  

 0
322

2

21

3

2
=+++ axaxax , (19) 

where the corresponding coefficients are 
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 (20) 

 

The third power of equation (20) for stationary radical concentration indicates 

that for constant external parameters of the system, three stationary states with 

different concentrations of reactants can exist. The condition of three real roots 

of the equation is defined as follows 
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According to the Descartes theorem, all roots of the equation written as (20) are 

positive if and only if its consistent coefficients are of opposite sign, i.e. 

 0,0,0
321
<>< aaa . (22) 

In Table 3 represents system parameters and elementary rate constants which 

were fitted close to the established ones in experiments of hydrocarbons in the 

liquid phase under oxygen saturation conditions so as to satisfy conditions (21) 

and (22). Assumption (18) concerning constant hydrocarbon concentration 

inside the reactor is not used. 

 

Parameter Value Units 

][ 2O  10
-3

 mol/L 

0][RH  5 mol/L 

υ  1⋅10
-6

 1/sec 

 

 

Taking into account actual values of recombination rate constants 
4k  and 

5k  

(see Table 2), we assume that only recombination rate constant of peroxide 

radicals could be affected by external magnetic field [29]. Leaving aside a 

specific example of the radical, we assume the magnetic field effect to be 10%.  

 

Following figure shows two stationary concentrations of peroxide radicals as a 

function of inhibitor concentration delivered into the reactor in the presence and 

in the absence of external magnetic field (solid line denotes the dependence in 

the absence of external magnetic field, dotted line – in the presence of magnetic 

field).  

 

 

Table 3. System parameters. 
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3    Conclusions 

External magnetic field affects on rate constants of reactions with paramagnetic 

particles. Though these effects are rather insignificant, they are responsible for 

the fact that in the system under study the set of stationary states in the absence 

of external magnetic field does not coincide with the set of stationary states in 

the presence of magnetic field. These distinctions are most noticeable in 

bistability region. 

Consider photochemical system more carefully. The external radiation power 

0
I  is the control parameter. It is seen that at certain values of the control 

parameter there exist critical points: 0.88 W and 0.96 W. These are bifurcation 

points, since with increasing (or decreasing) laser power the number of 

stationary states changes abruptly – depending on laser radiation intensity 
0

I  

stationary states with one or three different values of the reacting system 

temperature can be observed. At the parameter values slightly higher (or slightly 

lower) than the critical value the state is stable. In degeneration region of 

stationary states only stationary states lying between the curve maxima and 

minima (Fig.2) are asymptotically unstable.  

Two characteristic regions can be distinguished where great effect of weak 

magnetic field on the system is noted: at the values of 
0

I  from 0.74 W to 0.88 

W, and from 0.88 W to 0.96 W. Examine the behavior of the system at external 

radiation power 0.81 W. In the absence of magnetic field the reacting system is 

in the stationary state characterized by stationary temperature about 308 K. In 

the presence of magnetic field this stationary state becomes unstable, and at the 

given radiation power the system abruptly changes to high temperature branch, 

and to another stationary state with the temperature about 232 K. Now consider 

Fig. 4. The dependence of stationary concentration of peroxide radicals on 

the concentration of inhibitor delivered into the reactor in the presence and in 

the absence of external magnetic field. 
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the second region, i.e., the external radiation power is 0.92 W. Let the magnetic 

field be present, then the reacting system will have the stationary temperature 

about 238 K. Switching off the magnetic field will make this stationary state 

unstable, and the system will abruptly go to another stationary state with the 

temperature about 344 K. This will lead to intensive heating of the system. As is 

seen from Fig.3, the change in stationary temperature will be accompanied by 

an abrupt change in stationary concentrations of reactants. 

Analogous magnetic field effect could be observed in system described 

hydrocarbon oxidation in liquid phase (see Fig.4). To reveal the essence of the 

effect, examine the behavior of the system at the inhibitor concentration 
8

0 107,2][ −⋅=I  mol/L. Let the system be in a steady state which corresponds to 

point 1 in the diagram. This steady state is stable, and concentration of peroxide 

radicals is 11

2 108][ −• ⋅=RO  mol/L. Switching on the external magnetic field 

violates the stability condition of this state, and the system is to change to 

another branch of steady states. Thus with constant 
0][I  the system goes to 

another steady state under the action of external magnetic field. This state (point 

2 in the diagram) will be characterized by another stationary concentration 
17

2 101][ −• ⋅=RO  mol/L of peroxide radicals. 

So the possibility of strong effect of weak magnetic fields of the order of several 

oersted in the considered systems is theoretically predicted. External magnetic 

field may be responsible for the violation of the stationary state stability 

condition, and change radically the system properties. It is similar to the phase 

transition of the first kind, and will be accompanied by intensive heating 

(cooling) of the system, and abrupt change in concentrations of reacting 

substances. 
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