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Abstract: A statistical theory is proposed for initial gravitational interactions of 

particles inside the forming cosmological bodies (molecular clouds), which have fuzzy 
contours and are represented by spheroidal forms. The equation for quasi-equilibrium 
gravitational compression of a spheroidal body in a vicinity of its mechanical equilibrium 
is considered initially. According to the proposed model of quasi-equilibrium 
gravitational compression an antidiffusion mass flow arises inside a slowly compressible 
gravitating spheroidal body. In this connection, the notions of antidiffusion mass flow 
density as well as antidiffusion particle velocity in a spheroidal body are introduced. The 
equations for calculating the partial derivative of the antidiffusion velocity (in the cases 
of absence or presence of an ordinary hydrodynamic velocity) as well as the complete 
derivative of the common (hydrodynamic plus antidiffusion) velocity with respect to 
time are obtained. As shown in this work, these equations are more general than the 
analogous equations derived in Nelson’ stochastic mechanics. They are used for the 
derivation of nonlinear time-dependent Schrödinger-like equation describing a 
gravitational formation of a cosmological body. 
Keywords: Molecular clouds, Initial gravitational interactions, Spheroidal bodies, Quasi-
equilibrium gravitational compression, Antidiffusion mass flow, Antidiffusion velocity, 
Nonlinear Schrödinger-like equation. 
 
1    Introduction 

A statistical theory of slowly compressible gravitating cosmological body 
formed by a numerous of interacted particles isolated from an influence of 
external fields and bodies has been proposed in the works [1–6]. Within 
framework of this theory, the forming cosmological bodies are shown to have 
fuzzy contours and are represented by spheroidal forms (unlike ordinary 
macroscopic bodies having distinct contours). In this connection a new notion of 
theoretical mechanics called a spheroidal body has been introduced in the works 
[1–6] (in addition to the well-known notion as mass point). A mass point  
does not possess any geometrical sizes, on the contrary, a spheroidal body with 
mass 

0m

M  has infinitely long sizes (in the physical sense of infinity, of course). 
By analogy with the well-known dilemma “particle–wave” (solved by means of 
corpuscular–wave dualism principle in the case of quantum mechanical 
particles) it is appropriate to consider a new concept “mass point–spheroidal 
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body”. Let us note that a cosmological  body can be considered as a mass point 
at long distance of its observation or as a spheroidal body at short distance 
respectively. 

In such spheroidal bodies, under the condition of critical values of mass 
density (or parameter of gravitational compression α  [5, 6]) the centrally 
symmetric gravitational field arises. The tension, force, potential and energy of 
the gravitating spheroidal body have been determined to be of probability 
character [1, 2]. It has been pointed out that a spheroidal body has a clearly 
outlined form if the potential energy of gravitational interaction of its particles is 
sufficiently great and the body’s mass itself is relatively small. Obviously, the 
spheroidal body (like the well-known objects in the theoretic physics as a single 
mass point, an absolutely rigid body etc.) is an idealized notion. 

A process of slow-flowing-in time initial gravitational contraction of a 
spheroidal body has been investigated [3, 7]. Within framework of model of 
this process, the equations have been derived for description of a slow-flowing 
quasi-equilibrium gravitational compression of a spheroidal body in a vicinity 
of unstable mechanical equilibrium (initial and quasi-equilibrium) state [3, 7]. 

This paper considers the slow-flowing process of an initial gravitational 
condensation of a spheroidal body leading to origin of its gravitational field. 
The process of initial quasi-equilibrium gravitational compression of a 
spheroidal body in space within framework of the proposed “vibrating strainer” 
model can be interpreted on the basis of Wiener process in a space-frequency 
domain [8–10]. 

Recently L. Nottale [11, 12] has developed a new theory of the scale 
relativity. In Nottale’s theory, both direct and reverse Wiener processes are 
considered in parallel; that leads to the introduction of a twin Wiener (backward 
and forward) process as a single complex process [11, 12]. For the first time 
backward and forward derivatives for the Wiener process were introduced 
within framework of statistical mechanics of Nelson [13, 14]. Both Nelson’s 
statistical mechanics and Nottale’s scale relativistic theory investigate families 
of virtual trajectories which being continuous but nondifferentiable. The 
important point in Nelson’s works [13, 14] is that a diffusion process can be 
described in terms of a Schrödinger-type equation, with help of the hypothesis 
that any particle in the empty space, under the influence of any interaction field, 
is also subject to a universal Brownian motion (i.e. from the mathematical view-
point, a Markov–Wiener process) [15] based on the quantum nature of space-
time in quantum gravity theories or on quantum fluctuations on cosmic scale 
[16–18]. 

In the previous works [1–6], it was supposed that a weakly gravitating 
spheroidal body is isolated from influence of other fields and bodies, it is 
homogeneous in its chemical structure and has the temperature close to the 
absolute zero. In this paper we accept the same methodology supposing that the 
following assumptions are used: 

1. The spheroidal body under consideration is homogeneous in its chemical 
structure, i.e. it consists of  identical particles with the mass . N 0m
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2. The spheroidal body is not subjected to an influence of external fields and 
bodies. 

3. The spheroidal body is isothermal and has temperature T  close to the 
absolute zero, besides TT <deg , where T  is a 

degeneration temperature [19],  is the Planck’s constant,  is the 
Boltzmann’s constant, n  is a concentration of particles. 

3/2
0

2
deg )k/( nmh B=

h Bk

4. The spheroidal body is weakly gravitating, i.e. it occurs in a state close to 
a state of instable mechanical equilibrium (when a hydrodynamic mass flow is 
absent though a weak mass flow takes place [20, 21]), therefore the process of 
gravitational contraction (compression) appears slowly developing in time (the 
case of unobservable velocities of particles composing the spheroidal body [4, 
22]). 

In compliance with these requirements, an attempt to derive a nonlinear 
equation describing a gravitational formation of a cosmological body based on 
model of  self-organizing processes into a spheroidal body is made in this paper. 
 
2    The density of antidiffusion mass flow and antidiffusion velocity 
into a slow-flowing gravitational compressible spheroidal body 

As shown in the papers [3, 6], the dynamics of a slowly evolving process of 
initial gravitational condensation of a spheroidal body from an infinitely 
distributed substance is described by the antidiffusion equation: 

ρ
∂
∂ρ 2)( ∇−= t

t
G ,   (1) 

where ρ  is a mass density of the spheroidal body and 

dt
dt α

α
⋅=

22
1)(G     (2a) 

is a gravitational compression function, generally speaking (or a gravitational 
compression coefficient in some particular cases [3, 7]), α  is a parameter of 
gravitational compression (slowly changing in time ), besides t 0>α  [1–7]. 
The solution of Eq. (1) gives us the mass density function of a non-rotating 
spheroidal body: 

( )
2

2
)(

0 )(,
rt

ttr
α

ρρ
−

= e ,  (2b) 

where 
3/ 2

0
( )( )

2
tt M αρ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, M  is a mass of the spheroidal body, r  is a radial 

coordinate. 
We are going to use the general equation (1) of the slow-flowing 

gravitational compression; for this we shall rewrite it taking into account that 
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gravitational compression function  does not depend on the space variable 
r, therefore: 

)(tG

( ) ( ρρ
∂

)∂ρ grad)()( tt
t

GdivG −=∇−∇= ,  (3a) 

whence 

( 0grad)( =+ ρ
∂

)∂ρ t
t

Gdiv .   (3b) 

The relation (3b) reminds completely the continuity equation expressing the 
law of conservation of mass in a nonrelativistic system [23]: 

0=+ j
t

r
div

∂
∂ρ

,    (4a) 

where j
r

 is a continuum flow density. In this connection, the value in round 
brackets of Eq. (3b) has the sense of a mass flow density (like a conductive 
flow) j

r
 arising at the slow-flowing gravitational compression of spheroidal 

body [3, 4, 7]: 

ρgrad)(tj G=
r

.    (4b) 

For the first time, conductive (owing to diffusion or thermal conductivity) 
flows in dissipative systems were investigated by I. Prigogine in his works (see, 
for example, [20, 21]). As it follows from Eq. (4b) directly, there exists an 
antidiffusion mass flow density in a slowly compressible gravitating spheroidal 
body [3, 6]. Applying the equation of continuity (4a) to this antidiffusion flow 
density (4b) we obtain again the well-known linear antidiffusion equation (1). 
Since ρ  is a function of the space variable r , then in the spherical system of 

coordinates 
r
r

r
e

r r

r
r

⋅==
∂
∂ρ

∂
∂ρρgrad . Taking into account the fact that 

according to (2) the mass density ρ  is an exponentially decreasing function, 

then its derivative 0<
r∂

∂ρ
. Consequently, the direction of the antidiffusion 

flow density vector j
r

 is directly opposite to the basis vector rer , i.e. the vector 

j
r

 is directed to the spheroidal body center. 
Like the particle momentum operator ∇= hip̂  in the quantum mechanics 

[24–26], we can introduce from Eq. (4b) a velocity operator in the case of 
unobservable velocities of particles composing a spheroidal body [4, 22]: 
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∇= )(ˆ tv G ,    (5) 

i.e. is the operator of unobservable antidiffusion velocity. Taking into account 
this Eq. (5) the antidiffusion mass flow density (4b) of slow-flowing 
gravitational contraction of spheroidal body (with unobservable velocities of 
particles) can be written as follows [4, 22]: 

v̂

ρvj ˆ=
r

.     (6) 

According to Eq. (6) the continuity equation (4a) takes the form: 

0)ˆ( =+ ρ
∂
∂ρ v

t
div .   (7) 

As it has been mentioned above, I. Prigogine, G. Nicolis, P. Glansdorff studied 
the so-called conductive (diffusive and thermal conductive) flows [20, 21] 
satisfying equations analogous to Eqs.(4a), (7). In this connection, along with 
the velocity operator  let us introduce a conductive velocity for the 
antidiffusion mass flow density or, simply say, antidiffusion velocity: 

v̂

.lngrad)()( ρ
ρ
ρ ttu GG =

∇
=

r
   (8) 

Obviously, the antidiffusion velocity ur  of the antidiffusion mass flow density 
satisfies the well-known continuity equation of the kind: 

0)( =+ u
t

rρ
∂
∂ρ div .   (9) 

Using this continuity equation (9) we can calculate the partial derivative of the 
antidiffusion velocity (8) with respect to time: 

.}/)(ln{)grad()grad()(

}{)(}/)(ln{

))}((1{)(}
)(

1{)(

}1{grad)(lngrad})({

2 udttduut

uutudttd

utu
tdt

td
t

t
dt

td
t
u

rrr

rrr

rr

r

GdivG

GG

divG
G

G

GG

+−−=

=
∇

+∇∇−=

=−∇+=

=+=

ρ
ρ

ρ
ρ

∂
∂ρ

ρ
ρ

∂
∂

 (10) 

An advantage of the antidiffusion velocity notion (8) versus the velocity 
operator notion (5) to be introduced is contained in the fact that the antidiffusion 
velocity of particles inside a slow-flowing gravitational compressible spheroidal 
body can become observable one if the mass density of spheroidal body is very 



A. M. Krot 72 

small. Indeed, according to Eq. (8) if the mass density 0→ρ  then the 
antidiffusion velocity ∞→ur (under condition that ρgrad  be finitary). The 
condition of smallness for the mass density ρ  takes place in the molecular 
clouds of distributed gas-dust substance in space [27]. Thus, as a result of 
spheroidal body formation from an initial weakly condensed gas-dust cloud it 
might be a sharp increase of the antidiffusion velocity of particles into the 
forming spheroidal body under condition of finiteness of the mass density 
gradient. In this case it is reasonable to rewrite Eq. (10) based on the familiar 
formulas of vector analysis [23]: 

( ) [ ,rotgrad
2
1 2 uuuuu rrrrr

×+∇⋅= ]   (11a) 

).rot(rot)grad(2 uuu rrr
−=∇ div    (11b) 

Taking into account Eq. (8) we can see that ,0rot =ur  whence  

( ) ,2grad 2 uuu rrr
∇⋅=    (12a) 

).grad(2 uu rr div=∇    (12b) 

Substituting Eqs.(12a,b) in Eq. (10) we obtain: 

( ) .}/dt)(ln{2)( 2 utduuut
t
u rrrr
r

GG +∇⋅−∇−=
∂
∂

 (13) 

Taking into account Eq. (12a) again, the equation (13) can be written as follows: 

( ) .}/dt)(ln{)()2/grad( 22 utdutuuu
t
u rrrrr
r

GG +∇−−=∇⋅+
∂
∂

 (14) 

The obtained equation (14) is similar to the Navier-Stokes’ equation of motion 
of a viscous liquid [23] under conditions that a gas-dust substance of spheroidal 
body is isolated from influence of external fields and .)( constt == sGG  

Now let us estimate the antidiffusion velocity (8) of particles into a 
spherically symmetric slow-flowing gravitational compressible spheroidal body 
taking account of its mass density function (2): 

.)()(}2/)()(ln{grad)(),( 2
0 rttrttttru rrrr ααρ GG −=−=  (15) 

We can see that the antidiffusion velocity ur  is expressed by the very simple 
relation (15) in the case of a spherically symmetric spheroidal body. Apropos, 
using approach proposed by W. Ebeling for the first time [28] the equation for 
spherical autowaves of magnitude of gravitational field strength 
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( )uu
t
ua rr
r

r
∇+=

∂
∂

 of a slowly contracting spheroidal body has been derived in 

the work [29]. The obtained Eq. (15) reminds the formula the velocity of 
autowave front propagation [29] for gravitational strength magnitude in a 
remote zone of slowly compressible gravitating spheroidal body. 

Along with the antidiffusion velocity ur  there exists an ordinary 
hydrodynamic velocity v (or a convective velocity in the sense of Prigogine 
[20]). In principle, the hydrodynamic velocity 

r

vr of mass flow arises as a result 
of powerful gravitational contraction of a spheroidal body on the next stages of 
its evolution. The growing magnitude of gravitational field strength ar  induces 
the significant (i.e. observable) value of hydrodynamic velocity vr  of mass 
flows moving into spheroidal body. This means that the value of antidiffusion 
velocity (8) becomes much less than the value of hydrodynamic velocity, i.e. 

vu rr
<< .    (16) 

Under this condition (16), a common (hydrodynamic and antidiffusion) mass 
flow density inside a spheroidal body satisfies the hydrodynamic equation of 
continuity [23]: 

0)( =+ v
t

rρ
∂
∂ρ div .   (17) 

Taking into account Eq. (17) we can also calculate the partial derivative of the 
antidiffusion velocity (8) with respect to time in accord with the condition (16): 

.}/)(ln{)grad()grad()(

}{)(}/)(ln{

))}((1{)(}
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1{)(

}1{grad)(lngrad})({

udttduvvt

vvtudttd

vtu
tdt
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t
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t
u
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r

GdivG
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divG
G

G
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+−−=

=
∇

+∇∇−=

=−∇+⋅=

=+=

ρ
ρ

ρ
ρ

∂
∂ρ

ρ
ρ

∂
∂

(18) 

As known from a fluid-like description [23], the complete time-derivative of 
the common (hydrodynamic plus antidiffusion) velocity uv rr

+  inside a 
spheroidal body defines the common acceleration (or gravitational field strength 
of spheroidal body) including the partial time-derivatives and convective 
derivatives: 

( ) .)()( uu
t
uvv

t
v

dt
uvda rr

r
rr

rrr
r

∇⋅++∇⋅+
∂
∂

=
+

=
∂
∂

  (19a) 
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Taking into account Eq. (14) as well as Eq. (12a), the complete acceleration 
(19a) can be represented in the form: 

( ) .})(ln{)()()( 2 u/dttdutuuvv
t
v

dt
uvda rrrrrr

rrr
r GG +∇−∇⋅−∇⋅+

∂
∂

=
+

= (19b) 

Let us note since the mass density of spheroidal body is directly proportional 
to the probability volume density function according to the relation [1–6]: 

,Φρ M=      
where Φ  is a probability volume density function to locate a particle into 
spheroidal body, M  is a mass of spheroidal body, then antidiffusion velocity 
(8) (or (15)) can be defined by the probability volume density function: 

.lngrad)()( Φ
Φ
Φ ttu GG =

∇
=

r
   (20) 

Obviously, the antidiffusion velocity (20) of probability volume flow density 
also satisfies Eqs.(10), (14), (15), (18) and (19a,b). 
 
3    A nonlinear Schrödinger-like equation in the statistical theory of 
spheroidal bodies 

Considerations in the works [1–6] point to an initial quasi-equilibrium 
gravitational compression occurring in a forming spheroidal body. Within 
framework of the proposed “vibrating strainer” model [8–10], interactions of 
oscillating particles inside a spheroidal body lead to the coherent displacement 
of particles and, as a consequence, to a resonance increase of the parameter of 
gravitational compression )(tα . This means that nonlinear phenomena arise 
owing to self-organization processes [21] into a spheroidal body under its 
formation. These nonlinear phenomena induce nonlinear autowaves satisfying a 
nonlinear  Schrödinger-like equation. 

Now let us note besides the well-known linear undulatory Schrödinger 
equation there are its generalizations in the Nelson’s statistical mechanics and 
the Nottale’s scale relativity [11–14]. Moreover, it is not difficult to see [10] that 
both these equations of Schrödinger can be derived in the special case of a 
constant  in the antidiffusion equation (1) when )(tG 02/)( mt h−=G  and 

υγ 2/)( Mt −=G  respectively. Obviously, this paper considers the general 
case of  according to Eq. (2a), which is different from the Nelson’s and 
Nottale’s considerations. In this connection let us calculate the partial 
derivatives (relative to t ) of antidiffusion velocity and ordinary hydrodynamic 
velocity with the aim to obtain a nonlinear Schrödinger-like equation by 
analogy with the Nelson’s and Nottale’s theories. 

)(tG

So, now let us consider again Eqs.(18), (19b) derived within framework of 
the statistical theory of gravitating spheroidal bodies. Taking into account the 
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simple formulas (12a), (12b), (20), these Eqs. (18), (19b) can be rewritten in the 
form: 

;})(ln{)grad()grad()( u/dttduvvt
t
u rrrr
r

GdivG +−−=
∂
∂

 (21a) 

.})(ln{)grad()()2/grad()( 2 u/dttdutuvva
t
v rrrrrr GdivG −++∇⋅−=
∂
∂
r

 (21b) 

Let us investigate some special solution of Eqs. (21a, b) in the case that the 
acceleration (or gravitational field strength) comes from a gravitational field 
potential of spheroidal body, i.e.  

ga ϕgrad−=
r

,    (22a) 

under the assumption that the hydrodynamic velocity vr  is a gradient of a 
statistical action : ℑ

ℑ= grad)(2 tv Gr
.   (22b) 

Indeed, Eq. (18) points to a possible justification of Eq. (22b); in the special 
case of a constant  as  Eq. (22b) becomes the Nelson’s formula 

[13]:    

)(tG 02/ mh

ℑ= grad
0m

v hr
. 

In this connection, 0rot =vr , i.e. )2/grad()( 2vvv rrr
=∇⋅ . Since ur  is also 

a gradient due to Eq. (20) as well as ar  and vr  according to Eqs. (22a,b), so that 
Eqs. (21a, b) become the following: 

;lngrad)(}/)(ln{

)grad()grad()()ln)((grad

Φ+

+−−=
∂

Φ∂

tdttd

uvvt
t

t

GG

divGG rrr

 (23a) 

.lngrad)(}/)(ln{)grad()(

)2/grad()2/grad(grad
))(2(

grad 22

Φ−+

++−−=
∂

ℑ∂

tdttdut

uv
t
t

g

GGdivG

G

r

rrϕ
(23b) 

Integrating these Eqs.(23a,b) and taking into account a simplification 
, we can find that /dttdt/dttd )()(})(ln{ GG =⋅ G

;ln})({)()ln)(( ΦΦ
⋅+−−=

∂
∂ /dttduvvt

t
t GdivGG rrr

 (24a) 
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.ln})({)(2/2/))(2( 22 Φϕ ⋅−++−−=
∂

ℑ∂ /dttdutuv
t
t

g GdivGG rrr
 (24b) 

Let us carry out a change of dependent variable: 

;ln
2
1 Φ=ℜ    (25a) 

,= e ℑ+ℜ iΨ    (25b) 

where ℑ  is defined by Eq. (22b), 1−=i . Obviously, as it follows from Eqs. 
(25a,b) directly 

,ℑ⋅= ieΦΨ    (26) 

so that 2ΨΨΨΦ == ∗  as usually. According to the first change (25a) it is 
not difficult to see that 

;})({2)(4)(2))(2( 2 ℜ⋅+∇ℑ⋅∇ℜ−ℑ∇−=
∂

ℜ∂ /dttdtt
t
t GGGG 22  (27a) 

.}/)({2)(2

))((2))((2))(2(

2

22

ℜ⋅−ℜ∇+

+∇ℑ−∇ℜ+−=
∂

ℑ∂

dttdt

tt
t
t

g

GG

GGG

2

22ϕ
(27b) 

Let us rewrite these two Eqs. (27a, b) as one. To this end, after multiplication of 
the second Eq. (27b) on imaginary unit and then addition both of Eqs. (27a, b), 
we can obtain the following: 

[ ]

[ ] .}/)({1(2)()(2

))((2))((2

2

22

ℜ⋅−+ℑ+ℜ∇+

+ℑ∇+ℜ∇+−=ℑ+ℜ
∂
∂

dttdiiti

itiiit
t g

G)G

GG 2ϕ
 (28) 

Taking into account the second change (25b) we can see that 

;lnlnln2;ln 2ΨΨΨΨ =+=ℜ=ℑ+ℜ ∗i  

,/)(/)(;/ln)( 2222 ΨΨΨΨΨΨΨ ∇−∇=ℑ+ℜ∇∇=∇=ℑ+ℜ∇ ii  so that 
Eq. (28) takes the form: 

[ ] .ln})({1()(2ln)(2 22
Ψ

Ψ
ΨϕΨ ⋅−+

∇
⋅+−=

∂
∂ /dttditiit
t g G)GG 2 (29) 
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After some transformations and simplifications Eq. (29) can be represented as 
follows: 

,ln}/)({ln}/)({1(

)(2)(2 2

ΨΨ⋅−ΨΨ⋅−+

+Ψ∇⋅−Ψ=
∂
Ψ∂

dttdidttdii

t
t

ti g

G2G)2

GG 2ϕ
(30) 

whence we can obtain a nonlinear time-dependent Schrödinger-like equation of 
the kind: 

.]ln[ln)(])(2[)(2 2 Ψ
Ψ
ΨΨΨϕΨ i

dt
tdt

t
ti g −++∇⋅−=

∂
∂ G2GG 2 (31) 

Let us note that constt == sGG )(  in the virial (relative mechanical) 
equilibrium states of spheroidal body [3, 6], so the nonlinear time-dependent 
Schrödinger equation (31) becomes linear one in these special cases: for 
example, the time-dependent Schrödinger equation is a particular case of Eq. 
(31) if  satisfies the Nelson’s basic assumption [13] as well as the 
generalized time-dependent Schrödinger equation in the form of Nottale is a 
special case of Eq. (31). A specific particular case of Eq. (31) also corresponds 
to the Nottale’s generalized time-dependent Schrödinger equation with a slowly 
varying diffusion coefficient 

)(tG

Dδ  depending on time. So, the Nelson’s and 
Nottale’s considerations are appropriate mainly in the case of gravitational 
interaction of particles in a spheroidal body being in a virial equilibrium state. 

Thus, the derived nonlinear time-dependent Schrödinger equation (31) 
describes not only the mentioned states of virial mechanical equilibrium 

 or quasi-equilibrium gravitational compression state 
close to mechanical equilibrium with a slowly varying antidiffusion coefficient 

 but gravitational instability states with the considered 
resonance increase of gravitational compression of spheroidal body leading to 
formation of a cosmological body. 

))( constt == sG(G

)/)( 2tGt =(G

 
 
4    Conclusions 

 
The main contribution of this paper is to show that gravitational compression 

of a spheroidal body is described by nonlinear Schrödinger-like equation as well 
as to obtain this nonlinear Schrödinger-like equation. 

In Section 2, the equation (1) for the gravitational compression of a 
spheroidal body is considered initially. This Section investigates the density of 
antidiffusion mass flow into a slow-flowing gravitational compressible 
spheroidal body. Here the notion of antidiffusion velocity (8) inside a slowly 
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compressed spheroidal body is introduced. The equations (10), (18) for 
calculating the partial derivative of the antidiffusion velocity with respect to 
time (in the cases of absence or presence of the ordinary hydrodynamic 
velocity) are obtained. The equation (19b) relative to the complete time-
derivative of the common (hydrodynamic plus antidiffusion) velocity is also 
derived. 

In this paper, interconnections of the proposed statistical theory of 
spheroidal bodies with Nelson’s statistical mechanics and Nottale’s scale 
relativistic theory are investigated. Really, both Nelson’s statistical mechanics 
and Nottale’s scale relativistic theory introduce so-called mean forward and 
mean backward derivatives [11-14]. It is remarkable that, in the proposed 
statistical theory of spheroidal bodies, the main equations (relative to 
antidiffusion velocity) have been obtained without introducing any mean 
forward nor mean backward derivatives of stochastic processes. In this regard, 
the proposed statistical theory differs profoundly from Nelson’ stochastic 
mechanics [13, 14] as well as from Nottale’s scale relativistic theory [11, 12, 16, 
30, 31]. 

Moreover, the obtained main Eqs.(18), (19b) are more general than 
analogous equations in Nelson’ stochastic mechanics. Indeed, within framework 
of the proposed statistical theory of spheroidal bodies the generalized 
Schrödinger equations can also be derived as in Nottale’s scale relativistic 
theory (in the case of a constant  the derived nonlinear Schrödinger-like 
equation (31) becomes the generalized Schrödinger equation). So, the Nelson’s 
and Nottale’s considerations are appropriate mainly in the case of gravitational 
interaction of particles in a spheroidal body being in a virial equilibrium state. 

)(tG

As noted in Section 3, this paper investigates more general dynamical states 
of gravitating spheroidal body. Really, the derived nonlinear time-dependent 
Schrödinger-like equation (31) describes not only the mentioned states of virial 
mechanical equilibrium ))( constt == sG(G  or quasi-equilibrium 
gravitational compression state close to mechanical equilibrium with a slowly 
varying antidiffusion coefficient , but gravitational instability 
states with a resonance increase of gravitational compression of spheroidal body 
leading to formation of a cosmological body. 

)/)( 2tGt =(G

Thus, the linear Schrödinger equation as well as its generalizations are 
mentioned in this work in connection with the Nelson’s statistical mechanics 
and the Nottale’s scale relativity only. Moreover, both these equations of 
Schrödinger have been derived in the special case of a constant of gravitational 
compression function  in the proposed antidiffusion equation when 

 and 

)(tG

02/)( mt h−=G υγ 2/)( Mt −=G  respectively. In this connection the 
derived equations for calculating the partial derivatives (relative to ) of 
antidiffusion velocity and ordinary hydrodynamic velocity are used to obtain a 
nonlinear Schrödinger-like equation by analogy with Nelson’s and Nottale’s 
theories. Indeed, nonlinear phenomena arise owing to self-organization 
processes into a spheroidal body under its formation. These nonlinear 

t
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phenomena lead to nonlinear autowaves satisfying a nonlinear Schrödinger-like 
equation. 

As mentioned above, the obtained result (relative to the nonlinear time-
dependent Schrödinger-like equation (31)) has been suggested in accordance 
with similar conclusions of El Naschie [15] and Ord [32] that the Schrödinger 
equation could be universal, i.e. that it may have a large domain of applications, 
but with interpretations different from that of standard quantum mechanics. This 
main conclusion formulated with point of view of these modern quantum 
gravity theories confirms entirely correctness of the considered approach based 
on the statistical theory of spheroidal bodies. 
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Abstract: This paper examines how neural networks that use simulating annealing for 

training is relative to linear and polynomial approximations to forecast a time series that 

is generated by the chaotic Mackey-Glass differential delay equation. The forecasting 

horizon is one step ahead. A series of regressions with polynomial approximators and 

neural networks that use genetic algorithms and simulating annealing for training are 

taking place and compare the multiple correlation coefficients. The experimental results 

confirm that neural networks using simulating annealing algorithm perform well as a 

global search algorithm. Furthermore, it is shown that using the genetic algorithms to 

determine their values can improve the forecasting effectiveness of the resulting model 

when applied to a chaotic time series problem. 
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1  Introduction 

 
Chaotic theory is developing in a new way that influences the world around us 

and consequently also influences our ways of approaching, analyzing and 

solving problems. It is not surprising that one of the central models in the chaos 

literature, the Hénon-Heiles model, is presented in a paper with the title “The 

applicability of the third integral of motion: Some numerical experiments.” 

Numerical experiments in 1964 were the basis for many significant changes in 

astronomy in the decades that followed. In 1963 Edwin Lorenz, in his 

pioneering work on “Deterministic Nonperiodic Flow”, proposed a more 

prominent title for chaotic modelling, by including the term “deterministic”. His 

work spearheaded numerous studies on chaotic phenomena (Skiadas, 2009). On 

the one hand, according to Wikipedia, simulated annealing (SA) is a generic 

probabilistic metaheuristic for the global optimization problem of locating a 

good approximation to the global optimum of a given function in a large search 

space. It is often used when the search space is discrete (e.g., all tours that visit a 

given set of cities). For certain problems, simulated annealing may be more 

efficient than exhaustive enumeration— provided that the goal is merely to find 
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an acceptably good solution in a fixed amount of time, rather than the best 

possible solution. On the other hand, time series prediction is a very important 

practical problem with a wide variety of applications ranging from economic 

and business planning to weather forecasting and signal processing and control. 

A difficulty that characterizes a chaotic time series is that if the data is not 

generated by a high dimensional process, it should have short-term 

predictability and so the use of linear forecasting models is not appropriate. This 

led to the development of several mathematical tools, such as neural networks 

and neuro-fuzzy systems which deal with nonlinearity and nowadays they are 

widely used by many researchers. More specific, artificial neural networks 

(ANNs) have received more and more attention in financial time series 

forecasting in recent years. This popularity springs from their capability of 

performing highly complex mappings on nonlinear data. Nonetheless, they have 

some significant drawbacks such as the lack of any restrictive assumptions 

about the functional relationships between the predictor variables and the 

predicated variable, the difficulty to deal with qualitative information and the 

‘black box’ syndrome. On the other hand, fuzzy inference systems incorporate 

human knowledge by using the if-then rules and expertise for inference and 

decision making. However, the disadvantage of fuzzy logic is the lack of self 

learning capability.  This is the reason why the integration of these two 

approaches is preferred in order to overcome the disadvantages not only of the 

neural networks but also of the fuzzy systems and results in neuro-fuzzy system 

models. Moreover, many forecasting algorithms have also been developed in 

order to approximate initially, general continuous functions, such as polynomial 

approximation, local linear approximation, radial basis functions and neural 

networks. However, these algorithms still present some limitations as far as the 

power of prediction is concerned and this is due to the irregularity of chaotic 

behaviour related to the complication of geometric structures that chaotic 

attractors possess and the sensitive dependence on initial conditions in chaotic 

systems. This study is examining the predictability of a simulated annealing 

algorithm that is used to training an neural network, as far as a time series 

generated by the chaotic Mackey-Glass differential delay equation. The results 

are compared with linear and polynomial approximations. The rest of the paper 

is organized as follows: Section 2 reviews related research and Section 3 

discusses the proposed methodology of simulated annealing. Section 4 presents 

the models and Section 5 reports the empirical findings, while Section 6 

includes the conclusions and some further discussions about the future research 

in this sector. 

 

 

2  Related research   
 

Many researchers have worked on the chaotic Mackey-Glass differential delay 

equation and have forecasted time series using different methods including 

artificial neural networks, fuzzy logic, stochastic models, simulated annealing 

and even integration of two or more methods. Related researches are the 
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following: Skiadas C. Rompogianakis G. Atsalakis G., (2001) with the paper 

titled “Chaotic Aspects of a Generalized Rational Model and Application in 

Innovation Management” , Atsalakis, G., Skiadas C. and Braimis I., (2007) with 

the paper titled “Probability of trend prediction of exchange rate by neuro-fuzzy 

techniques”, L.P. Maguire, B. Roche, T.M. McGinnity and L.J. McDaid (1998) 

have forecasted a chaotic time series using a fuzzy neural network, Atsalakis G., 

Skiadas C. and Nezis D., (2008) have forecasted chaotic time series using a 

neural network, J. Doyne Farmer and John J. Sidorowich (1987) have forecasted 

chaotic time series using a forecasting technique, George G. Szpiro (1997) has 

forecasted chaotic time series using genetic algorithms, L. Studer and F. Masulli 

(1996) have forecasted chaotic time series using a neuro-fuzzy system, Ajoy 

Kumar Palit and D. Popovic (1999) have forecasted chaotic time series using 

neuro-fuzzy approach, Liang Zhao and Yupu Yang (2009) have used PSO-based 

single multiplicative neuron model for time series prediction, Hirotaka Inoue, 

Yoshinobu Fukunaga and Hiroyuki Narihisa (2001) have used efficient hybrid 

neural network for chaotic time series prediction, Rahib H. Abiyev (2006) has 

forecasted time series using a fuzzy wavelet neural network model, Junhong Nie 

(1994) has forecasted time series using a fuzzy-neural approach, M.R. Hassan, 

B. Nath and M. Kirley (2006) have forecasted time series using HMM based 

fuzzy model, Mohammad Assaad, Romuald Bone and Hubert Cardot (2006) 

have forecasted chaotic time series using boosted recurrent neural networks, 

Ding Gang, Zhong Shi-Sheng and Li Yang (2008) have forecasted time series 

using a wavelet process neural network, Catherine Vairappan, Hiroki Tamura, 

Shangce Gao and Zheng Tang (2009) have forecasted time series using batch 

type local search-based adaptive neuro-fuzzy inference system (ANFIS) with 

self-feedbacks, Xieping Gao and Fen Xiao (2004) have forecasted chaotic time 

series using multiwavelet networks, Cui Wan, Zhao Zhu, Chang Chun, Bao 

Wen, Xing Liu and Jun Hua (2005) have forecasted chaotic time series using 

support vector machines for fuzzy rule-based modeling, W.K. Wong, Min Xia 

and W.C. Chu (2010) have forecasted time series using an adaptive neural 

network model, Hong-Wei Wang, Hong Gu and Zhe-Long Wang (2005) have 

forecasted chaotic time series based on SVD matrix decomposition, Muhammad 

Ardalani-Farsa and Saeed Zolfaghari (2010) have forecasted chaotic time series 

with residual analysis method using hybrid Elman-NARX neural networks, Ping 

Liu and Jian Yao (2009) have forecasted chaotic time series using least square 

support vector machine based on particle swarm optimization, H.J. Song, C.Y. 

Miao, Z.Q. Shen, W. Roel, D.H. Maja and C. Francky (2010) have forecasted 

chaotic time series using neural networks, Hongwei Wang and Hong Gu (2009) 

have forecasted chaotic time series based on neural network with Legendre 

polynomials, Yuehui Chen, Feng Chen and Qiang Wu (2007) have forecasted 

time series using an artificial neural networks based dynamic decision model, F. 

Pan, H. Zhang and M. Xia (2009) have forecasted time series using a hybrid 

forecasting model and Meiying Ye (2007) has forecasted chaotic time series 

using LS-SVM with simulated annealing algorithms. 
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3  Simulated Annealing 
 

This paper considers the development of neural network that uses a simulated 

annealing algorithm in order to forecast a time series generated by the chaotic 

Mackey-Glass differential delay equation. Simulated annealing is a stochastic 

search method, which does not rely on the use of first- and second-order 

derivatives, but starts with an initial guess 0Ω  and proceeds with random 

updating of the initial coefficients until a “cooling temperature” or stopping 

criterion is reached. This method starts with a candidate solution vector, 0Ω , 

and the associated error criterion, 0Ψ . A shock to the solution vector is then 

randomly generated, 1Ω  , and the associated error metric , 1Ψ is calculated. If 

the error metric decreases the new solution vector is always accepted. However, 

since the initial guess 0Ω may not be very good, there is a small chance that the 

new vector, even if it does not reduce the error metric, may be moving in the 

right direction to a more global solution. So with a probability )( jP conditioned 

by the Metropolis ratio )( jM the new vector may be accepted, even though the 

error metric actually increases. The rationale for accepting a new vector 

iΩ even if the error iΨ is greater than 1−Ψi  , is to avoid the pitfall of being 

trapped in a local minimum point. According to Robinson (1995), simulated 

annealing consists of running the accept/reject algorithm between the 

temperature extremes. As the temperature )( jT  cools, changes are more and 

more likely to be accepted only if the error metric decreases and with gradually 

decreasing temperature, the algorithm becomes “greedy”. Simulated annealing 

is a random search that moves to a better minimum point, escaping from a likely 

local minimum rather than a global search and this is the reason why the best 

one has to do after the convergence to a given point is to see if there are better 

minimum points in the neighbourhood of the initial minimum. Moreover, the 

current state of the system or coefficient vector jΩ̂ , depends only on the 

previous state 1
ˆ

−
Ω j , and a transition problem )1( −jP  and is thus independent of 

all previous outcomes. This system has the Markov chain property and as 

Haykin points out, an important property of this system is asymptotic 

convergence, even though resort to finite-time approximation of the asymptotic 

convergence properties does not guarantee the finding of the global optimum 

with probability one (McNelis, 2005). 
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4  Models Presentation 
 

This paper proposes a chaotic time series model, which predicts a time series 

one step ahead and is generated by the following Mackey-Glass time-delay 

differential equation. 
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The time series value was obtained by applying the conventional fourth-order 

Runge-Kutta algorithm. This model shows how efficient simulated annealing is 

relative to linear and polynomial approximations. Figure 1 depicts the Mackey-

Glass chaotic time series. 

 

0 200 400 600 800 1000 1200
0

0.5

1

1.5

 
Figure 1. Mackey-Glass chaotic time series 

 
Due to the fact that the time series is chaotic, there is no clearly defined period. 

Additionally, in time series prediction known values of the time series up to the 

point in time are used to predict the value at some point in the future. A series of 

regressions with polynomial approximators and neural networks combined by 

simulating annealing model is taking place and the multiple correlation 

coefficients are compared. In this paper, the neural network that is selected uses 

simulated annealing for training. 

 

 Apart from a neural network that uses simulated annealing for training, which 

was analyzed in section 2, this paper includes the use of linear regression model, 

power polynomial-order 2 approximation, orthogonal-order 2 approximation 

(Tchebeycheff, Hermite, Legendre and Lagueree polynomials) and a simple 

neural network with two neurons and one layer, which uses genetic algorithms 

for training. Specifically, the linear regression model seeks for a set of 
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parameters for the regression model to minimize the sum of squared differences 

between the actual observations y and the observations predicted by the linear 

model, 
∧

y . In contrast to the linear regression model, a polynomial expansion 

around a set of inputs x with a progressively larger power P is capable of 

approximating to a given degree of precision any unknown but continuous 

function y  = g( x ).
5
 and the parameters here are neither limited in number, nor 

do they have a straightforward interpretation, as the parameters do in linear 

models. The orthogonal polynomials, such as the Tchebeycheff, Hermite, 

Legendre and Lagueree polynomials, unlike the typical polynomial based on 

raising the variable x  to powers of higher order, they are based on sine, cosine 

or alternative exponential transformations of the variable x  and they have 

proven to be more efficient approximators than the power polynomial. Finally, 

the genetic algorithm is an evolutionary search process, which reduces the 

likelihood of landing in a local minimum by starting with a population N
*
 (an 

even number) of random vectors. The next step is to select two pairs of 

coefficients from the population at random, with replacement and evaluate the 

fitness of these four coefficient vectors, in two pair-wise combinations, 

according to the sum of squared error function. Coefficient vectors that come 

closer to minimizing the sum of squared errors receive better fitness values and 

are retained for “breeding” purposes. Then, crossover takes place in which the 

two parents “breed” two children and following this operation, each pair of 

parent vectors is associated with two children coefficient vectors. If crossover 

has been applied to the pair of parents, the children vectors will generally differ 

from the parent vectors. The fifth step is mutation of the children where with 

some small probability, which decreases over time, each coefficient of the two 

children’s vectors is subjected to a mutation. The last step is the election 

tournament, in which the four members of the “family” engage in a fitness 

tournament with the children being evaluated by the same fitness criterion used 

to evaluate the parents. The two vectors with the best fitness, whether parents or 

children, survive and pass to the next generation, while the two with the worst 

fitness value are extinguished. The above process is repeated, with parents i and 

j returning to the population pool for possible selection again, until the next 

generation is populated by N
* 

vectors and the convergence is evaluated by the 

fitness value of the best member of each generation. Once the next generation is 

populated, elitism can be introduced where all the members of the new 

generation and the past generation are evaluated according to the fitness 

criterion. If the best member of the older generation dominates the best member 

of the new generation, then this member displaces the worst member of the new 

generation and is thus eligible for selection in the coming generation (McNelis, 

2005). 

 

 

 

5  Results 
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Table 1 summarizes the results for the goodness of fit or R
2
 statistics for this 

base set of realizations. Linear model, second-order polynomials are compared 

with simple neural networks with two neurons and one layer trained by genetic 

algorithms and simulating annealing. 

 

Table 1: Goodness of fit or R
2
 

Approximation R
2
 

Linear 0.65 

Polynomial-Order 2 0.89 

Tchebeycheff Polynomial-

Order 2 

0.89 

Hermite-Order 2 0.89 

Legendre-Order 2 0.89 

Lagueree-Order 2 0.89 

Neural Network: FF, 2 neurons, 

1 layer-genetic algorithm 

0.98 

Neural Network: FF, 2 neurons, 

1 layer-simulated annealing 

0.99 

      
 

This table shows several important results as far as the prediction of a chaotic 

time series is concerned. First, there are definite improvements in abandoning 

pure linear approximation. Second, the power polynomial and the orthogonal 

polynomials give the same prediction results and so there is no basis for 

preferring one over the other. Third, the neural network, a very simple neural 

network genetically evolved, is superior to the polynomial expansions and 

delivers a very good result. However, this section clearly demonstrates the 

effectiveness of the proposed neural network, a very simple neural network 

using simulated annealing for training for the prediction of the Mackey-Glass 

time series. This neural network prevails among all polynomial expansions and 

the genetically evolved neural network and delivers an excellent result, 

indicating that this neural network is much more precise relative to the other 

methods across a wide set of realizations. 

 

 

6  Conclusion 
 

This paper presents a neural network with two neurons and one layer, which 

uses simulated annealing to forecast the chaotic Mackey-Glass time series. The 

model is developed using Matlab software and it is compared with polynomial 

expansions and a genetically evolved neural network with two neurons and one 

layer. The results of the prediction are very satisfactory, indicating that this 

model can predict well as far as chaotic time series modeling is concerned. This 

research shows that neural networks in general are designed to mimic very well 

the ability of the human brain to process data and information and comprehend 
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patterns and have the ability to analyze and solve business problems and 

implement those solutions, resulting in being a really helpful tool for forecast 

purposes. Moreover, according to Paul Coddington from Northeast Parallel 

Architectures Center at Syracuse University, simulated annealing and its use to 

predict the chaotic Mackey-Glass time series have the following advantages, 

which make it an attractive option for optimization problems where heuristic 

methods are not available: 

 

a) It is relatively easy to code, even for complex problems. 

b) It can deal with arbitrary systems and cost functions. 

c) It statistically guarantees finding an optimal solution. 

d) It generally gives a ‘good’ solution. 

 

 Yet, further research is recommended by using various time series data in order 

to reduce the long training times and improve the forecast results. 
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Abstract. An interactive musical application is developed for realtime improvisation
with a machine based on Lindenmayer-systems. This has been used on an installation
whose goal is to draw the attention of unexperienced users to the wealth of realtime
applications in computer music. Issues on human computer interaction and improvi-
sation grammars had to be dealt with, as well as probabilistic strategies for musical
variation. The choice of L-systems as a basis for machine composition is a conse-
quence of their ability to create results that easily have aesthetic appeal, both in the
realms of sound and image.

Keywords: human-computer interaction, L-systems, fractals in algorithmic music
composition, interactive composition, improvisation, computer music.

1 Introduction

Musical variation, and composition rules defined by Schönberg, exploit to a cer-
tain extent the self-similarity of fractals, and Lindenmayer (cf. Rozenberg[11])
created algorithms (in biological research) that can be exploited fully using
iteration in algorithmic music composition. But can fractals create harmony of
sound and cantabile music as well as they create beauty for the eyes in graphical
arts?

We present examples of an interactive algorithmic music composition sys-
tem exploiting Lindenmayer’s technique, generating some forms of minimalist
music based on user input, and further developments using the interaction of
probability models, fractals and chaos.

Lindenmayer systems, or L-systems, are parallel formal grammars intro-
duced in 1968 by the botanist Aristid Lindenmayer[3] as “a theoretical frame-
work for studying the development of simple multicellular organisms” (Prusinkiewicz
and Lindenmayer[10]). As such, in essence an L-system is a rule-based gen-
erative system that, drawing from a finite set of symbols, applies substitution
schemes starting with an initial subset, called in Prusinkiewicz[9] an axiom. In
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Chomsky grammars, substitutions are made in series, with each pass focusing
exclusively on a sole symbol, while L-systems are parallel, in the sense that all
symbols are replaced within each iteration.

Extending the initial application of L-systems, developments were made in
order to generate realistic computer images of plants and trees (Smith[15]),
fractal curves (Prusinkiewicz[8]), and musical scores (Prusinkiewicz[9]).

Given words with a fair amount of complexity, an L-system will exhibit a
noticeable degree of self-similarity over iterations, which makes its results mem-
orable and pleasing when interpreted as musical height or visual branching, in
the sense that there is an equilibrium of expected and unexpected develop-
ments. In other words, as Schröder[12], p. 109, boldly presents the key ideas
of Birkhoff’s theory of aesthetic value, the results are pleasing and interesting
since they are neither too regular and predictable like a boring brown noise
with a frequency dependence f−2, nor a pack of too many surprises like an
unpredictable white noise with a frequency dependence f−0.

The remainder of this paper is organized as follows. In Section 2 we describe
implementations of L-systems for the automatic generation of music. In Section
3 the focus is on the analysis of musical parameters from user input, such as
pitch velocity and duration, and their mapping to L-systems. Section 4 deals
with possible extensions of this work to polyphonic input and output, and
Section 5 deals with the specific implementation of this project. Finally, in
Section 6, we briefly discuss further issues and possible developments.

2 Construction of an L-system

L-systems come in several categories: context-free (OL-systems) or context-
sensitive (IL-systems); deterministic or non-deterministic; propagative or non-
propagative, and so on. The interested reader is referred to Manousakis[4] and
to Rozenberg[11] for an extensive review of different types of L-systems. The
present work uses non-deterministic OL-systems, as described below.

Let A denote an alphabet of letters `, V the vocabulary, i.e. the set of
words w = `1`2 · · · `n (strings of letters from this alphabet); ∅, the empty set,
is considered a word.

A production P : A −→ V is described by random variables associated
with each ` ∈ A, i.e.

`
P7→ P (`) = X` =

 wk

pk = P[X` = wk]
,

and j-letter Lj : V −→ A selects the j-letter of any given word,

w = `1`2 · · · `k
Lj7→ Lj(w) = `j .

We assume that if `i 6= `j , then X`i and X`j are independent. If the actual
result of P (`) is w, we write ` 7→ w, and say that ` is the predecessor of w, or
alternatively that w is the successor of `.
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If w = `1`2 · · · `k, P(w) = P (L1(w))P (L2(w)) · · ·P (Lk(w)). A production
of size k with root w0, Pw0,k is

Pw0,k(·) = P(P(P(· · ·P(·) · · ·))),

and Pw0(·) =
⋃
k∈N

Pw0,k(·).

An OL-system is an ordered triplet G = {A, w0, Pw0}, with w0 ∈ A the
starting point for the successive iterations, and Pw0 is a production of finite
size with root w0. In an OL-system the predecessor is a one-letter word whereas
the successor can be of arbitrary length (it can even be an empty word). In a
non-deterministic system, different successor words may occur according to a
probabilistic distribution. Hence the production may be described in terms of a
branching process, whose many possible trajectories are tied to the possibilities
that actually do occur.

A very easy construction of a musical grammar (McCormack[5]) could be
built by taking an alphabet A = {C,D,E, F,G,A,B} corresponding to the
notes of a C major scale (or an even larger musical scale alphabet), an ax-
iom that would be given by user input and a set of productions that may be
arbitrary or may follow rules from common practice of harmony. Alternative
constructions have been given by Soddell and Soddell[16], who map branching
angles to changes in pitch, Prusinkiewicz[9] where a deterministic OL-system
is used to generate a graphical turtle interpretation of the production, and
then the resulting curve is traversed and the height of each line segment is
interpreted as pitch among others. Most of the studied constructions have
seamlessly resulted in pleasing musical results and in our approach we opted
for the former, more literal one.

As an example, consider the alphabet {C,D,Eb, F,G,Ab, B}, the root w0 =
DEbCB (the celebrated Shostakovich signature, used in many of his mature
works), and the stochastic transition matrix — a sparse matrix, so that the
equilibrium of expected and unexpected generates aesthetic value — describing
the probabilities governing the productions P :

Ab AbEb AbG B C CFD CFG DC Eb F G GAb GF
C 0 0 0 0.7 0 0 0 0 0 0 0.2 0 0.1
D 0 0 0.8 0 0 0 0 0 0 0 0.2 0 0
Eb 0 0 0 0.8 0.2 0 0 0 0 0 0 0 0
F 0 0 0 0 0.2 0 0.7 0 0 0 0 0.1 0
G 0 0.2 0 0 0.7 0.1 0 0 0 0 0 0 0
Ab 0 0 0 0 0.2 0 0 0.8 0 0 0 0 0
B 0.2 0 0 0 0 0 0 0 0.7 0.1 0 0 0
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Assume that we get the sequence

w0 = DEbCB 1
w1 = AbGBGEb 0.0896

w2 = DCCFDEbAbEbB 0.00896
w3 = AbGBBCFGAbGBDCBEb 0.078675968

w4 = DCCEbEbBCFGCDCCEbGBEbB 0.004934557

with the probabilities indicated in the right column.
So, in this example, with probability 3.11678× 10−7 we get

PDEbCB,4 = DCCEbEbBCFGCDCCEbGBEbB.

Observe that the rich theory of Markov chains, and concepts such as com-
municating events, cyclicity, stationarity, can therefore be imported to analyse
productions.

3 Analyzing user input

In the proposed interaction model, a user inputs a musical phrase which serves
as the root (axiom), and given a significant pause the system reacts branching
into the successive iterations given by the production set. At any point the user
could feel inspired by the results and step in with a new musical phrase as a
new root, stopping the automatic production, from which the computer draws
new material according to the same set of productions or a revised version of
it. The focus of this work is on the user-satisfaction with the musical results,
and as such it was decided that the interface should not be a tried and tested
one such as the music keyboard. This is also helpful in that it allows us to use
a very robust MIDI communication, leading to a clear interpretation of pitch,
velocity and duration.

The possibility of having the computer analyzing the intention of the musi-
cal input and generating different productions would be the first step towards
a musical and engaging result. A first approach should consist on scale de-
tection, and Chai and Vercoe’s strategy based on hidden Markov models (see
Chai and Vercoe[1]) was used in order to extrapolate the global outline of the
production set, cf. also Noland and Sandler[6]. The set itself was constructed
in strict adherences to classic common practice as described by authors such
as Piston[7], as it was deemed that the musical results should be satisfying to
a wide non-expert “random” audience.

An additional concern has been how to map user-inputted velocity and
duration into the productions of the model. Three approaches have been con-
sidered and tested for note duration:

• Having an additional algorithm for tempo detection and building a parallel
fixed set of productions for note duration.
• Keeping the duration that was given by user-input across successive gen-

erations of productions.
• Cycling through the set of user-inputted durations.
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The first approach has been abandoned. Without further constraints forcing
the user to adhere to a tempo it would have been unmusical to let the computer-
generated productions have a strictly quantized feel as a result of the original
input being free from adequate rules. The second approach has also been
discarded, since after a few generations a pattern of unnatural repetitiveness
would begin to emerge, creating unmusical productions. The third approach
has been, surprisingly, musically rewarding, as it potentiated the natural feel
that resulted from the self-similarity of successive iterations. Consequently, it
has been our choice to govern this parameter. The last member of the set needs
to be automatically generated, as there is no way to infer the duration of the
user’s last note. For this we simply repeat the previous duration value.

It was also not clear from the start which solution would be better for
velocity mapping and again different paths were evaluated:

• Quantizing the velocity to a set value given by the average value of the user
input.

• Giving a fixed velocity to each of the words in the vocabulary, again aver-
aging the user-inputted value for that word.

• Keeping the velocity that was given by user-input across successive gener-
ations of productions

• Cycling through the set of user-inputted velocities.

In fact, any of those solutions proved to be too mechanical, and we had to
create a new rule that would allow for musical variety. We choose to create a
set of user-inputted velocities, and to discard at random one value from the set
in each iteration. The result is immediately more natural, since now there is a
much longer period before any pattern of duration-velocity pairs can repeat.

4 Extending the system towards polyphony

The above discussion on analysis is straightforward for monophonic input and
output, but the possibility of using multiple voices poses a string of new issues
that are not so easily solvable. On the input side, making the distinction be-
tween harmonic movement and melodic movement is fraught with ambiguity
and the allocation of each melodic movement to a unique voice is also a tremen-
dous challenge. On the output side, decisions had to be made as to adherence
to melodic rules and voice independence. Each problem has to be addressed in
turn.

The distinction between harmonic and melodic movement cannot depend
on simultaneity, when human input is considered. Users never perform with
infinitesimal precision and we must therefore create time windows within which
two events can be considered simultaneous. A sensible time window would be
in the range of 30-50 ms, according to the Haas principle or precedence effect,
that states that the human listener integrates all sound events that occur within
that time frame. This is a very bold statement from a musical perspective as
musical interpretation and style might at times dictate that events that are
technically simultaneous should be performed with enough separation between
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them to clearly exceed the above-mentioned interval. One well-known and
consistent example is the Flamenco’s rasgueado, where the harmonic intervals
are always performed as a very quick succession. We must therefore agree on
an extended interval based not on a Haas-inspired pursuit of simultaneity, but
on the opposite idea of what would not be a melodic interval. With this in
mind we can safely say that is untypical for a performer to go faster than a
eighth-note on a 120 bpm tempo which would point us to a 63 ms window. This
is of course ambiguous and might be prone to error on fast ornamentations.

Correctly distributing events between voices in a setting where different
voices might have different musical durations and pauses is a subject that
has not yet been successfully solved. Indeed, it is not clear whether the rules
described in the previous section would work with multiple axioms as a starting
point. Due to those yet unsolved questions, for the time being, the input side
of polyphony has been dropped and the user would only be allowed to play
monophonically.

It was however interesting from a musical standpoint that the output could
be done polyphonically with the aid of an automatic accompaniment. A sim-
plification of the model proposed by Schwarz et al.[13], based on HMM, has
been used in order to extend the system, using a low and sparsely-generated
voice.

5 Implementation

The system was implemented in Max/MSP, making use of the in-build Jitter
object jit.linden. A first patcher parses the input and does the scale analysis,
and feeds the finished list to the patcher responsible for the productions (shown
in Fig. 1). The productions are fed to a third patcher that converts them
to MIDI and sends them as UDP packages to SuperCollider, where a simple
implementation of a quasi-sinusoidal synth that resembles a vibraphone is used
as a sound module.

An example we fed the system with Shostakovich’s aforementioned signa-
ture DSCH (used musically as D, Eb, C, B) played as a pair of quavers followed
by a pair of semi-quavers of equal velocity. The input patcher interprets the
motif as played in C harmonic minor and constructs the set of productions
already presented as a sparse stochastic transition matrix in Section 2, pre-
sented below in a more readable condensed form for those not wanting to dive
in stochastic processes theory:

P =



P11 : C
70%−→B P12 : C

20%−→G P13 : C
10%−→GF

P21 : D
80%−→G P22 : D

20%−→AbG

P31 : Eb
80%−→B P32 : Eb

20%−→C

P41 : F
70%−→CFG P42 : F

20%−→C P43 : F
10%−→GAb

P51 : G
70%−→C P52 : G

20%−→AbEb P53 : G
10%−→CFD

P61 : Ab
80%−→DC P62 : Ab

20%−→C

P71 : B
70%−→Eb P72 : B

20%−→Ab P73 : B
10%−→F


.

The result can be heard at http://www.stereosonic.org/lindenmayer.
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Fig. 1. Max/MSP main patcher

6 Concluding remarks

Many alternative ways do exist of music composition tied to fractals, cf. John-
son[2] and Skiadas[14], for instance. OL-systems as used in our examples gen-
erate appealing musical productions as far as letters map onto words of small
size.

Otherwise, the system must be interrupted by the user, since a rather small
number of iterations generates a musical output that is too clumsy. The or-
ganisation of natural languages, and namely of the mating songs of birds and
insects, seems to incorporate a strategy of long range dependence axed on a
sequence of modulated shortcut Markov-type memories.

Hence, for more elaborated vocabularies and mappings, it would be sensible
to use only the r last letters from the (k-1)-th iteration to map onto the k-th
iteration, instead of using all the letters as described for OL-systems.
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This is easily implemented using an endletters application Er : V −→ A
selecting the r-endletters of any given word,

w = `1`2 · · · `k
Er7→ Er(w) = `k−r+1`k−r+2 · · · `k−1`k,

so that the memory of the initial k − r letters is erased and the musical com-
position will flow more naturally.

One of the giants in the early development of Probability, Abraham de
Moivre, wrote in his The Doctrine of Chances

“Further, The same Arguments which explode the no-
tion of Luck may, on the other side, be useful in some Cases to
establish a due comparison between Chance and Design: We
may imagine Chance and Design to be as if it were in Competi-
tion with each other, for the production of some sorts of Events,
and may calculate what Probability there is, that those Events
should be rather owing to one than to the other.”

Pure randomness produces “grass” (a term used in some fields of engineer-
ing, since the effect of pure noise in a cathodic terminal is similar to a black
and white photo of a field of grass). It is necessary to melt randomness with a
set of rules to weave a background of order so that the interplay of predictable
and surprising events produces a pleasant result. So, among many other things,
art is one of the many fields of human activity aiming at taming randomness,
to create patterns blending together determinism and randomness.

The examples in http://www.stereosonic.org/lindenmayer reinforce the idea
that in music composition L-systems may contribute to this aim, namely cre-
ating sketches with minimalist patterns that may serve as source of inspiration
for more complex designs.
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Abstract: The complex nature of a reactive packed distillation system due to the 
occurrence of both reactions and separations in a single unit demanded the need for a 
very robust tool of representing the process. In view of this, delayed neural networks are 
considered as one that can handle this problem effectively. As such, in this work, delayed 
neural networks Nonlinear AutoRegressive, Nonlinear AutoRegressive with eXogenous 
inputs and Nonlinear Input-Output models are developed and simulated with the aid of 
MATLAB R2010b to predict the top and bottom sections temperatures of the column. 
The predicted temperatures of the Input-Output models were found not to be satisfactory. 
However, the good agreements observed from the plots and the good values of the 
correlation coefficients and the mean squared errors between the predicted temperatures 
of NAR and NARX models and the experimental ones showed that these two models can 
be used to represent the process. 
Keywords: Reactive packed distillation, Delayed neural network, Nonlinear 
AutoRegressive (NAR), Nonlinear AutoRegressive with eXogenous inputs (NARX), 
Nonlinear Input-Output (NIO), MATLAB/Simulink, Correlation coefficient (R), Mean 
squared error (MSE).  

 
1    Introduction 

In recent years, integrated reactive separation processes have attracted 
considerable attentions in both academic research and industrial applications, 
Völker et al., 2007 [1]. One of these processes which is known as reactive 
distillation is potentially attractive whenever conversion is limited by reaction 
equilibrium, Balasubramhanya and Doyle III, 2000 [2]. Reactive distillation 
combines the benefits of equilibrium reaction with a traditional unit operation 
(in this case, distillation) to achieve a substantial progress in not only promoting 
the reaction conversion through constant recycling of reactants and removal of 
products but also reducing the capital and operating costs in one way by 
reducing the number of equipment units. In addition, another advantage of 
reactive distillation is its ability to avoid azeotropes. However, the design of 
reactive distillation processes, especially when a packed column is involved, is 
still a challenge to chemical engineers because of the difficulties involved in 
obtaining process models capable of reliably describing the several complexes 
(such as the exhibition of multiple steady states) and the interrelated phenomena 
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which includes simultaneous reactions and separations in the column. The 
complicated behavior of the process made the search for a very robust and 
powerful tool of modeling and simulating the dynamics of the reactive 
distillation a big task to chemical engineers. One of the strategies proposed for 
handling this kind of a task are the delayed neural networks because they can be 
trained to handle complex functions, Beale et al., 2010 [3]. 
 
Neural Networks modeling can be viewed as a nonlinear empirical model that 
are especially useful in representing input–output data, in making predictions in 
time, and in classifying data, Himmelblau, 2000 [4]. Neural Networks can be 
highly nonlinear, can learn easily, require little or no a priori knowledge of the 
structure, are fault-tolerant and can handle complex problems that cannot be 
satisfactorily handled by the traditional methods, MacMurray and D. M. 
Himmelblau, 2000 [5]. 
 
In this paper, a reactive packed distillation column is modeled and simulated 
using three different kinds of delayed neural network models and the 
equilibrium reaction for the production of ethyl acetate from the esterification 
reaction between acetic acid and ethanol was used as the case study. 
 
2    The Model and Simulations 

2.1 Data acquisition 

The data used for the delayed neural networks modeling were acquired from the 
experiments performed in a pilot scale packed reactive distillation plant shown 
in Figure 1 below. The plant has, excluding the condenser and the reboiler, a 
height and a diameter of 1.5 and 0.05 m respectively, a cylindrical-shaped 
condenser having a height and a diameter of 22.5 and 5 cm respectively and a 
spherical-shaped reboiler with a volume of 3 Litre. The main column was 
divided into three parts of 0.5 m each. The upper, middle and lower sections 
were the rectification, reaction and stripping sections respectively. The 
rectification and stripping sections were packed with rasching rings while the 
reaction section was filled with Amberlyst 15 catalyst. The column was fed with 
acetic acid at the top (between the rectification section and the reaction section) 
whereas ethanol was fed at the bottom (between the reaction section and the 
stripping section) with the aid of peristaltic pumps which were operated via 
MATLAB/Simulink program. The top, reaction, stripping and bottom sections 
temperatures were measured and recorded on-line and in real-time using the 
thermocouples linked to the computer and also via the MATLAB/Simulink 
program. The reaction taking place in the column is given as: 

→
← OHHCOOCCHOHHCCOOHCH

bk

fk

2523523 ++   (1) 

Two different experiments were carried out using a reboiler duty of 560 W and 
applying step inputs unto the recycle ratio from total reflux to 5 and acetic acid 
to ethanol feed ratio from 0 to 1.25 to generate two sets of data. One set was 



Chaotic Modeling and Simulation (CMSIM)  1:  101-108, 2012 103

used for training the models while the other was used to test the developed 
delayed neural network models. 
 

                        
 
 

 
 
Fig. 1. Reactive Packed Distillation Pilot Plant: (a) Pictorial View; (b) Sketch 
View 

(a) 

(b) 
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2.2 Model development 

In developing the models in the MATLAB environment, the sets of data 
generated from the experiments were pretreated by converting them to time 
sequence ones which were represented by a cell array because the delayed 
neural networks models to be developed required the data to be sequential in 
nature. The parameters used for the formulation of the models are as shown in 
Table 1 below: 

 
Table 1. Neural network model formulation parameters 

S/N Parameter Value/Description 

1. No. of inputs 2 
 No. of outputs 2 
2. No. of layers 2 
3. No. of neurons 10 
4. No. of delays 5 
5. Training algorithm Levenberg-Marquardt 

 
The mathematical expressions for the three kinds of delayed neural networks 
(Nonlinear Autoregressive, Nonlinear Autoregressive with Exogenous Inputs 
and Nonlinear Input-Output) models developed for the reactive packed 
distillation column are: 

NARX: ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 , 2 ,..., , 1 , 2 ,...,y t f u t u t u t d y t y t y t d= − − − − − − (2) 

NAR:  ( ) ( ) ( ) ( )( )1 , 2 ,...,y t f y t y t y t d= − − −                    (3) 

NIO:   ( ) ( ) ( ) ( )( )1 , 2 ,...,y t f u t u t u t d= − − −                                      (4) 

 

2.2 Results and discussions 

The generated outputs recorded from the experiments carried out as described in 
Section 2.1 (that is, by applying step changes unto the recycle ratio from infinity 
to 5 and unto the feed ratio from 0 to 1.25) are as shown in Figure 2 below. 
Figure 2(a) shows the measurements taken from the pilot plant for the delayed 
neural networks training while Figure 2(b) contains another set of results taken 
from the plant for testing the models to be developed. The step changes applied 
unto the input variables (recycle ratio and feed ratio) are shown in Figure 2(c).  

It could be observed from Figure 2 that, even though the responses of the 
training and testing results are not exactly the same for both the top section and 
reaction section temperatures, their trends were found to be similar. The 
discrepancies between them can be attributed to the unmeasured disturbances 
that normally affect the performances of chemical processes. Of course, these 
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disturbances have to be taken into considerations when applying the delayed 
neural networks models in designing controllers for the plant in order to achieve 
stability and/or improve the performance of the system. 

 

59
61
63
65
67
69
71
73
75
77

0 500 1000 1500 2000 2500 3000 3500

T
em

pe
ra

tu
re

 (
o C

)

Time (s)

Top Section Temperature

Reaction Section Temperature

59

61

63

65

67

69

71

73

75

77

0 1000 2000 3000

T
em

pe
ra

tu
re

 (
o C

)

Time (s)

Top Section Temperature

Reaction Section Temperature

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

R
at

io

Time (s)

Recycle Ratio

Feed Ratio

 
 
Fig 2. Input-Output Sampled Data: (a) Training Data; (b) Testing Data; (c) 
Applied Inputs 
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After using the data in Figure 2 to develop the neural networks models for the 
reactive packed distillation column, each of them (the models) was tested using 
the testing data shown in figure 2(b) in order to confirm the accuracy of the 
model in predicting the top section and the reaction section temperatures. Figure 
3, 4 and 5 show the comparisons between the experimental and the predicted 
results of top section temperatures and the reaction section temperatures for the 
delayed neural networks NAR, NARX and NIO models respectively. 
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Fig. 3. Comparisons between Experimental Temperatures and Those Predicted 
Using Delayed Neural Networks NAR Model 
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Fig. 4. Comparisons between Experimental Temperatures and Those Predicted 
using Delayed Neural Networks NARX Model 
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Fig. 5. Comparisons between Experimental Temperatures and Those Predicted 
Using Delayed Neural Networks NIO Model 
 
 
From the results shown in Figure 3 and Figure 4, it was observed that there were 
good agreements between the experimental temperatures and those predicted 
using the developed delayed neural networks NAR and NARX. However, the 
predicted temperatures obtained using the Nonlinear Input-Output models were 
not in good agreements with the experimental ones, as seen in Figure 5.  
 
The validities of the representations of the reactive packed distillation plant 
using the developed delayed neural networks models were further investigated 
by calculating the performance indices of the models. The performance indices 
used in this work are mean squared error (MSE) and correlation coefficient (R) 
and their calculated values are as tabulated below. 
 
Table 2. Performance indices of the developed models  

Top Section Temperature 

Reaction Section 

Temperature 

  

Model Type 

MSE R MSE R 

NAR 0.0063 0.9927 0.0120 0.9852 
NARX 0.0023 0.9952 0.0011 0.9984 
NIO 0.2270 0.2642 0.3195 0.0454 
 
From Table 2, it was observed that the correlation coefficients calculated when 
NAR model was used to predict the top section and reaction section 
temperatures were 0.9927 and 0.9852 respectively while those of the NARX 
model were 0.9952 and 0.9984 respectively for the top and reaction sections 
temperatures. Also, as seen from Table 2, each of the two (NAR and NARX) 
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models was found to have a very low mean squared error. The low value of the 
mean squared error is another indication of a good model. The good 
performances showed by these models can be attributed to the use of some past 
outputs, as feedbacks, in their structures.  
 
However, in the case of the Nonlinear Input-Output model, the situation was 
different because, apart from the fact that the curves produced by this model 
were not in good conformity with those of the experimental ones, its 
performance values were also bad, as seen from Table 2. For instance, the 
correlation coefficients obtained when this model was used to predict the top 
and reaction sections temperatures were 0.2642 and 0.0454 respectively. These 
values are too low for any model that is to be used to represent a reactive packed 
distillation plant. The poor performance of this model can be as a result of the 
fact that its structure does not make use of the past values of the output 
variables. 

 

3. Conclusions 

Three kinds of delayed neural networks models have been developed and 
simulated. The good closeness of the temperatures predicted using NAR and 
NARX models to the experimental ones has revealed that both of them can be 
used to represent the dynamics of the reactive packed distillation column.  
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Abstract. During the last two decades our scientific group has developed new non-
linear methods of analysis applied to various physical systems. In this review study
we present our scientific contribution to nonlinear science, including also some novel
concepts as for the constructive role of complexity in modern physical theory. The
experimental verification of chaos existence in physical systems remains one of the
most significant problems of non linear science and complexity. The extended chaotic
algorithm presented in the following as well as the results concerning its application at
different experimental time series reveal the universal character of the complexity the-
ory for the far from equilibrium dynamics of spatially extended physical systems. The
developed methodology that was used compromises different types of computational
tools as well as theoretical concepts for the physical interpretation of the experimental
information. As we present here the strong dispute and criticism of chaos hypothesis
in physical systems during the last two decades was fruitful and challenged us to
develop a novel composition of experimental and theoretical knowledge of universal
character for the far from equilibrium dynamics. The solar and magnetospheric dy-
namics included in space plasma processes, the environmental and seismic dynamics,
the human brain or the on–chip workload are distinct systems which were studied
by our group revealing common chaotic characteristics and chaotic phase transition
processes. Moreover, the intellectual struggle for the comprehension of the theoretical
presuppositions of the experimentally observed universal chaotic character of spatially
distributed systems lead us to the fundamentals of complexity theory as manifested
at the macroscopic and microscopic level of physical reality. From this point of view,
some common characteristics of macroscopic and microscopic complexity included in
the scientific knowledge of the recent two or three decades can be used as a road
for the physical theory unification. That is complexity, scaling, chaos, quanticity and
fractality could be supported as different manifestations of a unified physical law from
the microscopic to the macroscopic and cosmological level. As we can argue, deter-
minism and probabilism can also be unified through chaoticity. Moreover, the rising
of new physical knowledge reveals that under the macroscopic or the microscopic
physical phenomena there exist a fundamental and multilevel acting unit physical
process that produces physical reality rather than a fundamental essence or simple
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substance from which cosmos can be build.
Keywords: Complexity theory, Intermittent turbulence, Nonlinear time series anal-
ysis, Nonextensive Tsallis statistics, Nonequilibrium phase transition, Chaos, SOC,
Macroscopic-microscopic complexity, Physical theory unification.
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1 Introduction

After the historical work by Prigogine, Nicolis, Glansdorff and others [43], [78]-
[83], [110], [111] the science of Complexity is rapidly growing providing the op-
portunity, combined with the computational power, for the development of new
methods of analysis, modeling and prediction of various processes with intense
stochastic or random–chaotic character. This is related to areas of great in-
terest, such as space plasmas, environment, material mechanics, bio–medicine,
economy, human society, psychology, urban development, e.t.c. On the other
hand, the nonlinear time series analysis as it was developed by Takens, Grass-
berger & Proccacia, Theiler, Tsonis and others [44], [120], [121], [124], [125]
and was systematically used and extended by Pavlos and Athanasiou [6], [7],
[90]-[104] is the road for the experimental verification of complex dynamics.
The Complexity theory and the experimental time series analysis concerning
spatiotemporal and far from equilibrium nonlinear dynamics include signifi-
cant collective phenomena such as: fractal and multifractal structures, power
law distribution and critical scale invariance, nonequilibrium fluctuations caus-
ing spontaneous nucleation and evolution of turbulent motion from metastable
states, defect mediated turbulence and localized defects changing chaotically in
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time and moving randomly in space, spatiotemporal intermittency, chaotic syn-
chronization, anomalous diffusion and directed percolation causing levy-flight
spreading processes, turbulent patches and percolation structures, threshold
dynamics and avalanches, chaotic itinerancy, or stochastic motion of vortex
like objects [10], [11], [29]-[31], [48], [67], [73], [118], [133].

In particular, in the phase space of a complex system various finite dimen-
sional attractors can exist such as: fixed points, limit cycles - torus or more
complicated structures as strange attractors. Strange attractors can correspond
to chaotic dynamics as self-organized critical dynamics (SOC) or strong chaos.
Generally, spatiotemporal chaos includes early turbulence with low effective
dimensionality and few coherent spatial patterns or states of fully developed
turbulence. These states are out of equilibrium steady states related to bifurca-
tion points of the nonlinear distributed dynamics, as well as to first and second
order non-equilibrium phase transition processes. Also, other spatial and tem-
poral patterns as well as spatially localized structures are possible solutions
of the nonlinear spatially extended dynamics. With regard the exploration
of space plasma complexity by experimental time series analysis, the primary
studies by Vassiliadis, Pavlos and other scientists including nonlinear analysis
of magnetospheric data [12], [90]-[92], [129], [130], as well as the hypothesis of
magnetospheric chaos went through a strong and fruitful criticism [107]-[109].
This criticism was a general dispute about the experimental verification of
chaos. In the following we present the main points of the criticism against low
dimensional chaos: a) The correlation dimension of experimental time series
cannot be distinguished from a stochastic signal with the same power spectrum
and amplitude distribution as the original data. b) There is no evidence for
the existence of low-dimensionality according to their estimate of correlation
dimension obtained using Takens method. c) When there is some evidence of
nonlinearity in the experimental time series it is not clear whether it is the
result of intrinsic dynamics or nonlinearities in the external pertubations of
the system. d) When the system is open and externally largely controlled this
alone should provide evidence against the existence of a strange attractor in the
observed signals as the system is a randomly driven non-autonomous system.

The refutation of the concept of low dimensional chaos in spatially extended
systems as the space plasmas it was further strengthened after the introduction
of the concept of self organized criticality (SOC) [10], [25], [64]. Under this cir-
cumstantial evidence, Pavlos et al. [95] introduced the term “pseudo–chaos”
to discriminate the real low-dimensional chaotic dynamics from the stochastic
and nonchaotic colored noise processes. Furthermore, the Thrace group cre-
ated an extended algorithm for the detection of low dimensional chaos by time
series analysis and the discrimination of chaos from stochastic processes which
can mimic low dimensional chaos. This algorithm was based on the Wold‘s de-
composition theorem, the theory of input–output dynamics and the embedding
theory of Takens, as well as the fruitful contribution of Theiler concerning the
method of surrogate data [2]-[7], [44], [95]-[98], [120], [121].

During the last two decades the chaotic algorithm was used to analyse
experimental time series corresponding to various physical or technical systems
such as: The solar corona and the Earth–Jovian magnetospheres, the solid
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outer crust of the earth, the atmospheric system, the human brain and the
Network–on–chip Architecture of the mobile technology [53]-[55], [60]-[62], [98]-
[101], [126]. The far from equilibrium distributed input–output dynamics is the
common character in all these distinct cases of physical systems in which the
chaotic analysis of experimental time series revealed significant characteristics
such as: multiscale and critical dynamics phase transition processes as well as
the noticeable coexistence of intermittent turbulence, high dimensional SOC
and low dimensional chaotic processes.

After all, a necessity was raised for a theoretical interpretation of the uni-
versal and experimentally observed characteristics that lead us to the funda-
mentals of complexity theory, according to which phase transition processes or
intermittent turbulence phenomena and low dimensional self organized chaos
are at the edge of macroscopic and microscopic complexity. Moreover, the uni-
versality of Tsallis non-extensive statistics, verified at the macroscopic and the
microscopic level, indicates also the universality of complexity theory at both
macroscopic and microscopic level [122], [123]. After all the obtained until now
practical and theoretical experience makes us to believe that the complexity
theory could be the prime motivator towards a global theoretical unification
of our understanding of nature from the microscopic to the macroscopic level.
However, for such a dream to come true, new physical and mathematical con-
cepts must be used such as, cooperation of local, non–local and long–range
correlations in complex systems. A new complementarity is developed funda-
mental local physical interactions and global ordering physical process including
fractal space–time, or fuzzy space and non–communicative geometry or wild
topologies [15], [36], [38], [46], [50], [84], [87]. In this direction and in order to
remark the new state we can summarize by the following phrase of Castro: It
is reasonable to suggest that there must be a deeper organizing principle, from
small to large scales, operating in Nature which might be based in the theories
of complexity, non linear dynamics and information theory where dimensions,
energy and information are intricately connected [22].

According to the previous description, this study includes two distinct parts.
In the first part (sections 2-4), we present the algorithm of chaotic analysis, as
well as significant results by using the chaotic algorithm at experimental signals
extracted by complex spatially extended systems. The physical presuppositions
of the algorithm and significant applications are presented also. In the second
part (sections 5-10), we introduce in a synthetic way significant theoretical
concepts aiming at the unifying role of complexity theory from the microscopic
to the macroscopic physical level.

2 Theoretical Presuppositions and New Tools for the
Time Series Analysis

In general, the spatiotemporal dynamics of spatially extended physical sys-
tems is related to irreversible or non–equilibrium thermodynamics, as well as
to non–equilibrium statistical physics [25], [58], [123]. According to Nicolis and
Prigogine, [78]-[83], [110], [111] the existence of low dimensional order (peri-
odic or chaotic) in an extended system is the central character of physical self
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organization and complexity theory. As we present here, different far from
equilibrium spatially extended physical systems reveal self organized complex-
ity and chaotic dynamics or other complex dynamics at the edge of chaos as
well as non–equilibrium statistical profile according to Tsallis non–extensive
statistical theory [123]. These significant characteristics of complexity theory
have been revealed by the application of an extended algorithm of nonlinear
time series analysis presented in the following.

The experimental study of spatiotemporal complexity includes the question:
“if you have a time signal, what is the kind of information that you hope to get
out of it?”. The physical systems, which we are interested in, are dissipative
and spatially extended. The attempt to understand the complex deterministic
motion of spatially extended nonlinear dissipative systems, so–called spatiotem-
poral chaos (STC), is at the forefront of research in nonlinear dynamics. In
contrast to simple chaotic systems in the time domain, in which few degrees of
freedom are nonlinearly coupled, spatially extended systems include an infinite
number of spatially distributed degrees of freedom. For this reason tools and
methods developed for low dimensional systems described by non-linear Ordi-
nary Differential Equations (ODE) must be adapted to spatially distributed
systems described by nonlinear Partial Differential Equations. The transition
to chaos in spatially extended systems is widely investigated in many natural
phenomena such as hydrodynamics or magnetohydrodynamics, chemical reac-
tions, pattern formation in biology or brain activity. Spatiotemporal chaos
involves intermediate situations between chaos and turbulence or to fully de-
veloped turbulence when the system is sufficiently confined. In these states it is
possible to characterize the dynamics from a local time series alone estimating
fractal dimensions, or Lyapunov exponents in the reconstructed phase space.
When the physical extension of the system increases then quantities, measuring
the amount of chaos, scale like the system size. When the system size is much
larger than the correlation length then the system can be viewed as a collection
of essentially independent sub–systems with a size of the order of correlation
length, so that the amount of chaos should be proportional to the number of
sub–systems. As long as xi > L, where xi is the correlation length and L the
system size, we are dealing with a small system which may be chaotic in time
and coherent in space. In the opposite limit xi << L the dynamical behavior
is incoherent in space. This regime occurs for L >> le − lD, where lD is the
dissipative length and le the excitation length, and it is the regime of spatial
chaos or weak turbulence. Weak turbulence is characterized by the chaotic
evolution of coherent structures roughly of the size of the correlation length ξ.
The dimension of a local attractor can scale linearly with the system volume
Ld, where d is the dimensionality of space while the attractor density DH/Ld
can be well defined. When the spatial structure plays an essential role then,
according to Chate, Manneville and Wang [29], [30], [133] the spatiotemporal
dynamics of the system can be very complex revealing chaotic synchronization,
spatiotemporal intermittency or directed percolation, sporadic chaos, localized
structures, and defect turbulence as well as phase transition processes. More-
over, defect turbulence and intermittent turbulence, self organized criticality
(SOC), avalanche threshold dynamics, spinodal and nucleation phenomena and
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far from equilibrium phase transition, Tsallis entropies and non–Gaussian fluc-
tuations as well as diffusion or Levy motion, are some of the different manifes-
tations of spatiotemporal complexity and multiscale–multifractal phenomena
that must be studied using nonlinear signal analysis [16], [63], [88], [122].

The chaotic algorithm that can be used to uncover the hidden nonlinear spa-
tiotemporal dynamical characteristics underlying the experimental time series
includes different group of tools summarized as follows:

i. Computation Phenomenological Characteristics

(a) Autocorrelation Coefficient and Power Spectrum (Linear correlations,
periodicities, scaling laws

(b) (Mutual Information (Linear and Nonlinear Correlations)

(c) Probability Distributions (Power Laws)

(d) Hurst exponent (Persistence, anti-persistence, white noise)

(e) Flatness Coefficient F (Intermittent turbulence)

(f) Structure Functions (Turbulence, anomalous diffusion)

(g) (Phase portrait (Low Dimensionality)

(h) Entropy, energy, multifractal structures

(i) Estimation of q-Tsallis Statistics

(j) Wavelet analysis (Spatiotemporal structures)

ii. Computation of Geometrical characteristics in the reconstructed state space

(a) Correlation Dimension (Degrees of freedom)

(b) Generalized Dimension (Multifractals)

(c) False Neighbors (Degrees of Freedom)

(d) Singular values spectrum (SVD components, filtering)

iii. Computation of Dynamical Characteristics in the reconstructed state space

(a) Maximum Lyapunov Exponent (Sensitivity in initial conditions)

(b) Power Spectrum of Lyapunov Exponents (Sensitivity in initial condi-
tions in all dimensions in space state)

(c) Nonlinear modeling and nonlinear prediction algorithms

iv. Testing of Null Hypothesis in order to discriminate between low dimensional
chaotic dynamics and linear high dimensional stochastic dynamics

(a) Surrogate data

(b) Discriminating statistics

v. Singular Value Analysis in order to

(a) Estimate Degrees of Freedom

(b) Filter signals from White or Colored Noise

(c) Search for input-output dynamics

vi. Recently the above algorithm has been completed by significant new tools
such as

(a) Fuzzy analysis of time series

(b) Cellular automata, genetic algorithms and neural network modeling
(For spatiotemporal modeling and prediction of complexity)
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3 Significant Applications of the Chaotic Algorithm

3.1 Solar activity

Solar activity is produced by the emergence of magnetic flux through the pho-
tosphere. The magnetic flux forms active regions which include sunspots and
solar flares. The physical system underlying the solar activity and the solar
cycle is the convection zone of the sun. Convection zone is a strongly turbulent
region which occupies the one third of the solar interior. The generation of the
magnetic field and its evolution inside the convection zone is one of the most
challenging problems for the solar physics, related to the convection zone turbu-
lence, the coronal heating, the solar flares, particle acceleration and transport.
The random character of solar activity has been associated theoretically with
chaotic behavior and a solar low dimensional strange attractor [106], [113]. For
the first time [95] applied chaotic analysis at the sunspot index presenting some
evidence for low dimensions solar chaos. Price et al. [108] have criticized the
chaos hypothesis concerning the solar activity as they reported that applying
the chaotic analysis to the wolf sunspot number time series no evidence was
found for low dimensional deterministic nonlinear process. Oppositely, the self
organized criticality (SOC) theory was introduced for the explanation of solar
activity [132]. In a series of studies by Karakatsanis and Pavlos [60], Karakat-
sanis et al. [61] we have presented strong evidence for the coexistence of two
clearly discriminated physical processes in the solar activity. The first process
corresponds to the existence of self organized critical state according to the
general profile of SOC theory process. The second process corresponds to low
dimensional chaotic dynamics. These results were obtained after the nonlinear
analysis of the Sunspot Index, according to which, the original signal reveals
characteristics of a SOC process, that is, high dimensionality and zero value
of the largest Lyapunov exponent. The low dimensional chaotic process was
revealed after using high pass filtering of the original Sunspot Index and Solar
Flare Index with the methods of first difference or singular value decomposi-
tion analysis. The dual character of the solar activity which is hidden in the
observed Sunspot Index reveals a double input–output dynamics corresponding
to the photospheric and sub-photospheric zones activity of the Solar system.
Also, [60], [61] found strong evidence for intermittent solar turbulence as well
as for non-extensive statistical processes, according to Tsallis q–statistics.

3.2 Chaos at the Earth and Jovian magnetospheres

The hypothesis of magnetospheric chaos was supported originally by Baker
[12], Pavlos [90]-[94] and Vassiliadis [130]. In this direction Tom Chang [24]
proposed for the far from equilibrium space plasmas dynamics the generaliza-
tion of Wilson Renormalization Group theory predicting SOC or chaos states.
Strong objection and criticism against the magnetospheric chaos was presented
by Price and Prichard [107]-[109]. Pavlos [90], Pavlos et al. [95] paralelly to
the nonlinear analysis of magnetospheric signals supported the hypothesis of
magnetospheric self organization as basic nonlinear and holistic theory space
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plasmas, according to [45], [79]. Moreover, the hypothesis of SOC process was
strongly supported as a physical explanation of the magnetospheric dynamics,
by Klimas et al. [64], Consolini [31], Uritsky [128], Chapman [28] and others.
After this in a series of papers we have shown the existence of two distinct mag-
netospheric dynamical components: one which is low dimensional and chaotic
and a second which is high dimensional of SOC type [95]-[97], [102].

In particular we have shown:

• Change of the plasma sheet state from stochastic and high dimensional
(SOC state) to low dimensional and chaotic (chaos state) during the devel-
opment of a superstorm event.

• Strengthen of the intermittent character during the substorm period as well
as development of global self-organization and long-range correlation at the
plasma sheet.

• Low dimensional self-organization with long range, intermittent and cor-
related profile can be developed at regions near the magnetopause and the
bow shock.

• High dimensional and stochastic processes and intermittent turbulence dur-
ing quiet periods inside the plasma sheet

• q-Gaussian statistics and strong evidence for the application of non-extensive
statistics, according to Tsallis theory to space plasmas

These results confirm the model of phase transition-like behavior of the
magnetosphere during substorms introduced by Sitnov et al.[117]. According
to this model the magnetospheric dynamics includes multiscale self organized
criticality processes corresponding to second-order phase transition, as well
as low dimensional and chaotic processes corresponding to first-order phase
transition. The dual character of magnetospheric dynamics observed in situ by
the space-craft GEOTAIL by Pavlos et al. [101], [104] is in agreement with our
previous results [95], [97] and verify the concept of low dimensional chaos at
the magnetospheric dynamics, as well as the intermittent turbulence and SOC
in accordance with the general theory of Tom Chang [23], [27] concerning the
far from equilibrium self-organization of the magnetospheric system and the
far from equilibrium renormalization theory for critical dynamics.

3.3 Low dimensional chaotic seismogenesis

The existence of power law distributions led many scientists to explain earth-
quakes as a Self Organized Critical (SOC) process, according to Bak theory [10]
as well as to consider seismicity as the turbulence of the solid earth crust [10],
[11], [18], [40], [59]. These concepts showed that earthquakes can be understood
via the general theory of statistical physics for dynamical processes of far from
equilibrium phase transitions applied to distributed fault‘s systems. The SOC
process has already been connected in the past to the unpredictability of earth-
quakes since the SOC dynamics is related to the edge of chaos phenomenon
characterized by strong randomness and high-dimensionality [119] since SOC
models have often been considered as alternatives to the low dimensional chaos
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interpretation of the seismic process [98], [100]. On the other hand, chaos in-
cludes low dimensional determinism, in contrast with complete unpredictability
or randomness, which is lost over long enough time scales, but long-term, inter-
mediate and short term prediction could be related to a chaotic seismic-cycle
process [18], [40]. It was for the first time that Pavlos [96] constructed in-
terevent seismic time series according to the dripping faucet dynamical system
for testing the hypothesis of seismic chaos. The dripping faucet model is well
known for illustrating the appearance of chaotic behavior in nonlinear systems,
where time intervals between successive drop detachments are used to recon-
struct the dynamics of the system [115]. At low dripping rates the system is
periodic, while above a critical dripping rate the system exhibits chaotic behav-
ior characterized by qualitatively different types of strange attractors. Using
interevent time intervals between one drop to the next one, the reconstructed
dynamics reveals low dimensional deterministic behavior in the reconstructed
state space. According to Iliopoulos et al. [53] and Pavlos et al. [96] con-
cerning a seismic process, the loading rate m(t) of mass in the mechanistic
dripping faucet model of Shaw corresponds to the transfer of stress in the fault
system by the mantle and plate tectonic dynamics (the external driver of the
system), while mass unloading corresponds to earthquakes, as releases of the
elastic strain energy stored along a fault. The dripping faucet similarly to the
earthquake process can be understood as a local, driven, threshold process. In
a series of papers by Iliopoulos et al. [53]-[55] and Pavlos et al. [98] the seis-
mic low dimensional chaos was faithfully supported for the case of the Hellenic
seismogenesis. These studies showed clearly the existence of a global seismic
strange attractor in the Hellenic region with low dimensionality and strong
sensitivity to initial conditions concerning the spatiotemporal distribution of
earthquakes. Moreover, the chaotic analysis of seismic time series revealed
an independent high dimensional SOC dynamics concerning the energy release
process. Moreover, [55] applied nonlinear analysis to various seismic time series
indicating local low dimensional temporal chaotic character of the seismic pro-
cess in the North Aegean area and high dimensional SOC process concerning
the bursting seismic energy release. The non-extensive q-statistics of Tsallis
was observed also by [55].

3.4 Brain activity during health and seizure state

The human brain can be modelled as a driven nonlinear threshold system
including interacting spatial networks of statistically identical, nonlinear units
or cells. Each cell fires or falls when the electrical potential or current reaches
a threshold value. Numerical simulations of these systems reveal spatial and
temporal patterns of firing while the dynamics may also be modified by the
presence of noise. The spatiotemporal complexity of brain activity can reveal
various dynamical states during health or seizure periods [11], [41], [52], [66],
[69], [88], [98], [127], [134] applied chaotic analysis for EEG signals as the brain
activity changes from health to epilepsy seizure. In this study, we have shown
a phase transition process of brain activity from a high dimensional SOC state
during the health period to a gradually developed low dimensional chaotic
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state. Tsoutsouras et al. [126] produced a cellular Automata (CA) model
of healthy and epilepsy brain states. In this study, the chaotic clustering of
neurons was indicated as a basic mechanism of the phase transition of the
brain activity from high-dimensional stochastic dynamics to low-dimensional
chaotic dynamics. The CA modeling of brain activity by [126] was found to
simulate faithfully the brain dynamics underlying to real data. The brain phase
transition process from high-dimensional stochastic to low-dimensional chaotic
states supported by CA modeling and by real data chaotic analysis was found
to belong to a universal complex spatiotemporal process observed at various
physical systems such as the solar activity at the magnetospheric substorms,
as well as at the seismic process of the earth lithospheric fault system [54], [60],
[61], [101].

3.5 Self Organized Criticality and Chaos at the on-chip workload
process

In recent years, the mobile technology was developed so dramatically that has
opened new challenges in the embedded system design domain. Different, from
the traditional desktop systems, embedded devices demand not only high pro-
cessor performance but also low power consumption. Thus, the development
of proper methods in power consumption management, which will extend the
battery life, is without doubt, an imperative need. It was the first time that
a SOC–Chaos phase transition process was observed during periods of on-chip
workload by [136]. These are results of high significance concerning the design
of Network-on-chip Architecture. Dynamic frequency scaling (DFS) is used
to adjust the working frequency according to the system workload in order to
save the power consumption without degrading the system performance signif-
icantly beyond the application tolerance. The main problem of DFS solutions
is how to compute the system workload trend. Generally, the workload anal-
ysis is an open issue which has occupied the international literature by the
beginning of the computer science technology. Recently, [136] used chaotic
analysis of workload time series in order to develop novel power aware dynamic
frequency scaling technique based on the workload treud of an embedded ap-
plication. Particular chaotic analysis of workload signals showed the existence
of workload critical dynamics and phase transition between states with distinct
dynamical dimensionality. This gives the opportunity to handle dynamic data
streams with complex behavior. The benefit of this approach based at the real
time chaotic analysis of the workload signal is related to the management of
the power consumption. The simulation results showed that the methodology
based on chaotic analysis can achieve remarkable improvements at the final
power consumption. The main idea of our approach is to adjust the process-
ing frequency of our system by analysing the workload fluctuations without
degrading the final performance or violating any deadline. The key of our
methodology is that we use an abstract model of workload analysis that com-
bines advanced mathematical tools from the Chaos Theory domain. This gives
us the opportunity to handle dynamic data streams with complex behavior.
The benefit of our approach is that it is a system-level platform independent
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technique, which permits us, through the analysis and the prediction of the
workload trend, to manage the power consumption of an embedded system
calibrating only the processing frequency. The simulation results showed that
our methodology can achieve remarkable improvements at the final power con-
sumption, which range between 17% and 38% depending on the restriction of
the application deadlines. These results are complementary to previous analy-
sis of system performance degray taking into account the interaction between
workload fluctuations and the nonlinearity of the system. Moreover, the phase
transition process described by Zompakis [136] can be used for proposing new
adaptive techniques related with dynamics power management.

4 Theoretical Documentation of the Results Obtained
by Chaotic Analysis

Until now, Chaos or SOC states, intermittent turbulence including multifractal
and multiscale characteristics, Tsallis q-statistics, as well as out of equilibrium
phase transition processes, were found to be of universal character at distinct
physical or technological systems. Also, all the previous systems at which the
chaotic analysis was applied belong to the general type of distributed and far
from equilibrium input-output threshold nonlinear dynamics. For these sys-
tems the general theory of far from equilibrium non linear stochastic dynamics
described by generalized Langeving equations can be applied [47]. According
to Chang [23]-[25] the stochastic Lagrangian methodology for the solution of
the stochastic Langevin equations and the far from equilibrium renormalization
group theory can be used for the estimation of the fixed points of the dynam-
ics. From this point of view, various macroscopic states and process can be
related to different fixed points in the affine space of the stochastic Lagrangian
dynamics. In general, far from equilibrium nonlinear stochastic dynamics can
be described by a set of generalized Langevin equations [25]:

∂φi
∂t

= fi(φ, x, t) + ni(x, t) (1)

where fi(i = 1, 2, . . .) are nonrandom forces corresponding to the functional
derivative of the free energy functional, xµ(µ = 1, . . . , d) are the spatial coordi-
nates, t is the time and φ(x, t) represents the stochastic variables which describe
the fault dynamics and ni(x, t) are random force fields or noises. According
to Chang [24] the behavior of a nonlinear stochastic system far from equilib-
rium can be described by the density functional P , defined by path integral
formulation:

Pφ(x, t) =

∫
D(x) exp−i

∫
L(φ̇,φ,x)dxdt (2)

where L(φ̇, φ, x) being the stochastic Lagrangian of the system, which de-
scribes the full dynamics of the stochastic system. Moreover, the far from equi-
librium renormalization group theory applied to the stochastic Langrangian L
gives the singular points (fixed points) in the affine space of the stochastic
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distributed system. At the fixed points the system reveals the character of
criticality, as near criticality the correlations among the fluctuations of the
random dynamic field are extremely long-ranged and there exist many corre-
lation scales. Also, close to dynamic criticality certain linear combinations of
the parameters, characterizing the stochastic Lagrangian of the system, cor-
relate with each other in the form of power laws and the stochastic system
can be described by a small number of relevant parameters characterizing the
truncated system of equations with low or high dimensionality. According to
these theoretical results, the stochastic system can exhibit low dimensional
chaos or high dimensional SOC like behavior, including spatiotemporal fractal
structures with power law profiles. The power laws are connected to the near
criticality phase transition process which creates spatial and temporal corre-
lations as well as strong or weak reduction (self-organization) of the infinite
dimensionality corresponding to a spatially distributed system. According to
Lyra and Tsallis [71], the power laws are not caused by the SOC process, but by
the nonextensive statistics observed at far from equilibrium process with long
range correlations. From this point of view, a SOC or low dimensional chaos
interpretation depends upon the kind of the critical fixed (singular) point in the
functional solution space of the system. When the stochastic system is exter-
nally driven or perturbed, it can be moved from a particular state of criticality
to another characterized by a different fixed point and different dimensionality
or scaling laws. Thus, SOC theory could be a special type of critical dynam-
ics of an externally driven stochastic system [70]. Furthermore, according to
Chang [26], Chang et al. [27] as well as Vieira [131], SOC and low dimensional
chaos can coexist in the same dynamical system as a process manifested by
different kinds of fixed (critical) points in its solution space. As the dynamical
system evolves in time (autonomously or under external forcing), the state of
the system described by the values of the dynamical parameters in the stochas-
tic Lagrangian L, changes as well. The change of the critical state of the system
can reveal different dynamical scenarios, as it evolves from one critical state
to another, after external tuning. Also, it is possible to reveal local instabili-
ties by creating metastable states which evolve to states of lower energy. This
is a local symmetry breaking phenomenon and leads to a local phase transi-
tion process. Such local instabilities are connected to avalanche or nucleation
dynamics, which can be present in systems that are at mean-field or near-mean-
field state, with the possibility of spinodal decomposition process [63], [114].
Moreover, the theory of far from equilibrium critical dynamics can be related
to the equilibrium phase transition theory, as both include local metastable
states characterized by spinodal lines and spinodal phase transitions.

5 Is Complexity the Road for the Final Unification
of the Physical Theory? New Concepts for an Old
Problem.

The old problem in physics is the unification of mechanics and thermodynam-
ics. For Albert Einstein, physical theory must correspond objectively to the
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physical reality. Thus, the hard core of a final physical theory must be the
mathematical determinism. For Heisenberg, Bohr and Born, physical theory
has to be related to the phenomenology of reality. Because of this, probabil-
ism is the unavoidable hard core of every physical theory. On the other hand,
the hard core of complexity is nonlinearity. Nonlinear dynamics includes de-
terminism in the form of periodic attractors with integer dimension as well
as probabilism in the form of chaotic fractal attractors. From this point of
view we understand that there exists an internal connection between nonlinear
dynamics and thermodynamics since entropy is a propabilistic property of a dy-
namical system. Nonlinear deterministic dynamics including strong irregularity
of chaotic mixing or f∗ exact type, includes thermodynamical characteristics
[72]. Such a type of strongly nonlinear unstable determinism is equivalent also
to stochastic or probabilistic dynamics [74], [83], [111].

Moreover determinism and probabilism can be interrelated also through
Rochlin theorem [112] according to which every f∗ exact transformation is the
factor of a k automorphism. In this way Boltzmann‘s (stochastic) dynamics can
be proved to be the trace of Liouville‘s (deterministic) dynamics or the Boltz-
mann‘s equation is the trace of Liouville equation [72]. In the same direction
quantum probabilism can be related to classical determinism and dissipation
according to [32], [49]. Another significant character of nonlinear deterministic
dynamics is the bifurcation profile of solutions and the critical point dynamics
(near or far from equilibrium) as the pattern formation or morphogenesis char-
acter [47]. According to Wilson [135] the critical physical theory related to the
dynamics must take into account the entire spectrum of length scales from 10−8

cm to 1011 cm. However, more than this it seems that complexity and nonlin-
ear dynamics includes the theoretical kernel for a global unification of physical
theory, as we argue in a previous study by Pavlos et al. [101]. Critical dynamics
showed the significance of renormalization group theory, the scale invariance
principle related to fractal geometry, as well as the relation of dynamics with
topological and dimensional characteristics of space. However, the deep ques-
tion of complexity theory is how forms are generated in nature and what is
the relationship between physical forces and the stable geometries of morpho-
genesis and pattern formation. According to Kovacs [67] somehow space-time
symmetries create the fundamental laws of nature. Moreover, it could be pos-
sible to imagine some extended kind of geometrical invariance principle and
novel topological characteristics to produce every kind of pattern, according to
the dream of Einstein, concerning the geometrical unification of physical theory
and physical dynamics. According to El Naschie [36], [39] and Ord [87] non-
commutative geometries and fractal space-time can be used for the extension
of complexity from the macroscopic to the microscopic level. Scale invariance
principles also can be used for the unification of microscopic and macroscopic
complexity. Some efficient evidence for such a dream we present indicatively
in the following.
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6 Complexity as a New Physical Theory

Is Complexity a major revolution in science such as Relativity and Quan-
tum Theory? For many scientists attempts to explain complexity and self-
organization by using the basic laws of physics have met with little success.
Novel forms of self-organization are generally unexpected for the classic re-
ductionistic point of view. However, while complexity is considered as a new
and independent physical theory which was developed after the Relativity The-
ory and Quantum mechanics, it must be consistent with these theories. It is
related to far from equilibrium dynamics and concerns the creation and destruc-
tion of spatiotemporal patterns, forms and structures. According to Balescu
[8], Nicolis and Prigogine [78], [79], Nicolis [80], [81], and Prigogine [110], [111],
complexity theory corresponds to the flow and development of space-time corre-
lations instead of the fundamental local interactions. According to the classical
point of view the physical phenomena (macroscopic or microscopic) must be
reducible to a few fundamental interactions. However, according to Nicolis [82],
since 1960 an increasing amount of experimental data challenging this idea has
become available. This impose a new attitude concerning the description of
Nature. Moreover, according to Sornette [118], systems with a large number
of mutually interacting parts and open to their environment can self-organize
their internal structure and their dynamics with novel and sometimes surpris-
ing macroscopic emergent properties. These general characteristics make the
complexity theory, a fundamentally probabilistic theory of the non-equilibrium
dynamics.

7 Complexity as a Form of Macroscopic Quanticity

The central point of complexity theory is the possibility for a physical sys-
tem, which includes a great number of parts or elements, to develop internal
long-range correlations leading to macroscopic ordering and coherent patterns.
These long-range correlations can also appear at the quantum level. In partic-
ular, according to the general entanglement character of the Quantum theory,
the quantum mechanical states of a system with two or more parts cannot be
expressed as the conjunction of quantum states of the separate parts. This
situation generally reflects the existence of non-local interactions and quantum
correlations while the measurements bearing on either part correspond to ran-
dom variables which are not independent and can be correlated independently
with the spatial distance of the parts [116]. This means that the quantum den-
sity operator cannot be factored while the quantum state corresponds to the
global and undivided system. The macroscopic manifestation of the quantum
possibility for the development of long-range correlations is the spontaneous
appearance of ordered behavior in a macroscopic system, examples of which
are phenomena like superfluidity and superconductivity or lasers [68].

These quantum phenomena display coherent behavior involving the col-
lective cooperation of a huge number of particles or simple elements and a
vast number of degrees of freedom. They correspond also to equilibrium or
nonequilibrium phase transition processes which constitute the meeting point
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of quantum theory and complexity. Here the development of quantum long-
range correlations leads to a macroscopic phase transition process and macro-
scopic ordering. It is not out of logic or physical reality to extend the (unifying)
possibility of quantum process to developed long-range correlations, according
to the quantum entanglement character, into a macroscopic self-organizing fac-
tor causing also the far-from equilibrium symmetry breaking and macroscopic
pattern formation. From this point of view we can characterize complexity as
a form of a macroscopic quanticity [34], [135].

8 Quantum Theory as a Form of Microscopic Chaoticity
and Complexity

Bohm and Hiley [21] imagined that the Quantum theory must be the mani-
festation of subquantum complex dynamics. During the last years, we observe
the productive onset or the impetus invasion of chaos and complexity from
macroscopic to the microscopic quantum level. In the following we present
some novel concepts in this direction:

• Determinism at the Planck‘s scale [49]-[51].
• Order and deterministic chaos at the quantum level [32]
• Analytical continuation and fractal space-time can convert an ordinary dif-

fusion equation into a Schrodinger‘s equation and a telegraph equation
into a Dirac’s equation. From this point of view analytical continuation is
a short cut of quantization [76], [77].

• Positive Lyapunov exponents of non-abelian gauge fields reveal the signifi-
cance of chaos for the quantum field theory [20].

• Coupled map lattices with spatiotemporal chaotic profile can be used to
simulate quantum field theories in an appropriate scaling limit [17], [22].

• Kaneko‘s coupled map lattices including chaotic strings provide the back-
ground for the Parisi-Wu stochastic quantization of ordinary string and
quantum field theories [14], [15]. Chaotic strings can be used also to pro-
vide a theoretical argument why certain standard model parameters are re-
alized in nature reproducing numerical values of the electroweak and strong
coupling constants masses of the known quarks and leptons neutrino, W
boson and Higg’s mass.

• Renormalization group (RG) flows on the superstring world sheet becomes
chaotic and leads to non-Markovian Fokker-Planck equation with solutions
describing the transition from order to chaos and revealing the Feigenbaum
universal constant [65]. The appearance of this constant reveals the scaling
of space-time curvatures at the fixed points of the RG flow which becomes
chaotic near singularities where the curvature is very large [75], [105].

• The Parisi-Wu [89] stochastic quantization theory relates the quantum field
theory inD-dimensions to a classical Langevin equation inD+1-dimensions
where the Parisi-Wu fictitious time plays the role of an extra dimension.
In this picture there exists a short of classical stochasticity and quantum
theory duality [33]. The stochastic quantization can be transformed to
chaotic quantization, similar to chaotic deterministic dynamical systems
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which can generate Langevin dynamics in an appropriate scaling limit. In
this approach, quantum field theories can be simulated by chaotic dynamics

• Non-extensive statistics [123], fractal string and branes, fractal statistics,
fractons and anyons particles as well as chaotic M(atrix) theory indicate the
establishment of chaos and complexity at the microscopic and the quantum
level [22]. In this direction, Gerardus ’t Hooft raised the conjecture that
quantum theory can be derived as the low-energy limit of a microscopically
deterministic but dissipative theory [50]. According to this concept clas-
sical Perron-Frobenius operators or deterministic automata can produce
quantum states in Hilbert spaces as well as the Schrodinger equation [1],
[9], [35], [42].

After all, we can imagine that quantum states are produced by a sub-
quantum self-organized process. This sub-quantum self-organization must con-
cern information process rather than simple material or energy self-organization.

9 Universality of Tsallis non-extensive statistical
mechanics

According to Tsallis, Boltzmann-Gibbs statistical mechanics and standard ther-
modynamics do not seem to be universal. Tsallis extended the Boltzmann-
Gibbs statistics and Boltzmann-Gibbs entropy to non-extensive statistical me-
chanics and non-extensive q-entropies. The classical Boltzmann-Gibbs exten-
sive thermostatistics constitutes a powerful tool when microscopic interactions
and memory are short ranged and space-time is a continuous and differentiable
Euclidean manifold. However, far from equilibrium these characteristics are
changed as multiscale coupling and non-locality characteristics can appears. In
turbulence for example, the presence of long-range correlations imply non-local
interactions between large and small scales as the relation between them is not
local in space and time but functional. This indicates that small-scale fluctua-
tions in each time space point depend on the large scale motions in the whole
time-space domain and vice versa. Generally, the non-extensive statistical me-
chanics introduced by Tsallis rather than being just a theoretical construction
it is relevant to many complex systems at the macroscopic or the microscopic
level with long-range correlations-interactions or multifractal behavior. A cru-
cial property of Tsallis entropy Sq is the pseudo-additivity for given subsystems
A and B in the sense of factorizability of the microstate according to the rela-

tions Sq(A+B) = Sq(A) +Sq(B) + (1− q)Sq(A)Sq(B) where Sq = kB
(1−

∑
pq
i

q−1
and kB is Boltzmann‘s constant. The non-local coupling and long-range cor-
relations of complex dynamics corresponds to the multiplicative tern of the
previous relation. Also, the non-extensive behavior of macroscopic or micro-
scopic complexity is related to the non-Euclidean and multi-fractal space time
[22], [46], [58], the quantum gravity and quantum entanglement [122].
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10 The road of Complexity for the Physical Theory
Unification

According to previously presented concepts and descriptions, about the nonequi-
librium statistical mechanics, the Feynman rules and diagrams become common
tool from the estimation of probabilistic processes at the microscopic quantum
level or the macroscopic level of continuous media as they are being described by
the Ginzburg-Landau model [13], [19], [47]. In this direction, we could imagine
Feynman rules and renormalization group theory as the universal characteris-
tics of probabilistic processes at the microscopic and the macroscopic level. The
renormalization group equations have many common features with non-linear
dynamical systems, so that apart from existence of isolated fixed points, the
coupling in a renormalizable field theory may flow also towards more general
even fractal attractors. This could lead to Big Mess scenarios in application
to multiphase systems, from spin-glasses and neural networks to fundamental
string theory [75]. In this direction Cristopher Hill [46] introduced the fractal
theory space where the key idea is that the Feynman path integral is invariant
under a sequence of renormalization group transformations that map the kth
lattice into the k − 1 lattice. In the continuum limit these models produced
quantum field theories in fractal dimensions D. These theories are connected
to the scaling behavior of fractal strings (branes), while the couplings oscillate
on a limit cycle. Moreover the concept of fractal space-time can be used for
the foundation of an extended Einsteins Relativity Principle unifying the micro
and macro levels [84], [85].

In this direction, [87] showed that fractal trajectories in space with Hans-
dorff dimension D = 2 exhibit both an uncertainty principle and a De Broglie
wave - particle duality relations. Furthermore, Nottale [84], [85] introduced
the principle of Scale Relativity according to which the laws of physics are
scale invariant. This theory is related also to the concept of fractal space-
time. According to Nottale, the consequence of scale invariance principle and
space-time fractality opens the door for a grand unification of cosmos, from
the microscopic quantum level to the macroscopic and cosmological level. The
starting point of the theory is the refusing of the unjustified assumption of
the differentiability of the space-time continuum. The non-differentiable space-
time continuum is necessarily fractal. The development of the theory starts by
making the various physical quantities explicitly dependent on the space-time
scale while the fundamental laws become also scale dependent. In this frame of
theory the non-differentiability of space-time implies the breaking of time re-
versibility, and the global unification of microscopical and macroscopical laws,
[37], [56], [57], [86], [103].

References
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Abstract. This article is dedicated to the problems of modeling and simulation of
combined stochastic and chaotic systems. Modern informational technologies for non-
linear stochastic systems are used to solve these problems. Discussed methods are
based on the off-line information of stochastic systems. They use equivalent lineariza-
tion and normal approximating techniques for solving equations for mathematical ex-
pectations and covariances. Two results for Duffing equation are given in this paper.
This example contains the solution for harmonically and stochastically forced Duffing
equation. Second example contains the solution for quasiharmonically forced Duffing
equation.
Keywords: Combined stochastic and chaotic systems, Equivalent linearization tech-
niques (ELT), Informational technologies, Analytical modeling, Duffing equation, Ito
stochastic differential equation, Gaussian (normal) process, Wiener process, Poisson
process, Mathematical expectation, Covariance matrix, Matrix of covariance func-
tions, One-dimensional distribution, Two-dimensional distribution, MATLAB.

1 Introduction

It is known [5], [6] modern modeling (analytical, statistical and combined) and
estimation (filtering, extrapolation, interpolation, parameters identification) in-
formational technologies (IT) for nonlinear stochastic systems (StS) are based
on off-line and on-line information. For engineering applications there are suc-
cessfully used quasilinear methods based on equivalent linearization techniques
(ELT) for solving equations (Eqs) for mathematical expectations and covari-
ances. Experimental results received in [6],[7] for combined StS and chaotic
systems (ChS) research IT show that these ELT may be used also.

The article is devoted to ELT for the combined stochastic and chaotic sys-
tems based on the off-line information. Problems of modeling and simulation
based on the on-line information will be discussed in next articles.
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2 Eqs of combined stochastic and chaotic systems

For off-line analytical modeling of ChS with Gaussian perturbations based on
Fokker-Plank- Kolmogorov Eq, Feller-Kolmogorov Eq for Poisson perturbations
and Pugachev-Sinitsyn Eq for perturbations being the derivative of stochastic
process with independent increments need to solve singular Eqs. The solution
of these Eqs is very difficult for nowadays computers as for the on-line and the
off-line information.

According to ELT one linearize the right hand of given stochastic differ-
ential Eq (in Ito sense) and implement known Pugachev-Dunkan ordinary de-
terministic Eqs for mathematical expectation, covariance matrix and matrix
of covariance functions at corresponding initial conditions. The coefficients of
these Eqs due to nonlinearity depend on mathematical expectation and co-
variance matrix. So these deterministic Eqs are interconnected and need joint
solution.

For robust ELT it is quite enough to suppose the normal law for density
of input signal for nonlinear element and use known formulae of statistical
linearization for typical scalar and vector nonlinear functions [5],[6].

Following [5] let us consider differential combined StS and ChS described
by the vector Ito Eq:

dY = a(Y, t)dt+ b(Y, t)dW0 +

∫
Rq

0

c(Y, t, u)P 0(t, du), Y (t0) = Y0. (1)

Here Y = [Y1 . . . Yp]
T is the state vector; a = a(Y, t) and b(Y, t) are known

(p×1) — dimensional and (p×m) — dimensional functions of Y, t; W0 = W0(t)
is the m — dimensional Wiener random process of the intensity ν0 = ν0(t);
c = c(Y, t, u) is (p × 1) — dimensional function of Y , t and of the auxiliary
(q × 1) — dimensional parameter u;

µ =

∫
4

dP (t, A)−
∫
4

νP (t, A) dt (2)

is a centred Poisson measure, where the second integral term in (2) is a number
of the jumps of a Poisson process P (t, A) at time interval 4; νP = νP (t, A)
is the intensity of P (t, A); A is the Borel set of the space Rq0 with the pricked
origin of the coordinates.

The integral in Eq (1) is extended on Rq0. The initial value Y0 represents a
random variable which does not depend on the increments of W0(t) and P (t, A),
4 = (t1, t2] which follows t0, t0 ≤ t1 ≤ t2 for any set A.

At practice when the integrand c(Y, t, u) admits presentation: c(Y, t, u) =
b(Y, t)c′(u) we need to assume the formulae for stochastic process with inde-
pendent increments:

W (t) = W0(t) +

∫
Rq

0

c′(u)P 0(t, du). (3)
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In this case we get instead of Eq (1) the following Eq:

Ẏ = a(Y, t) + b(Y, t)V, Y (t0) = Y0. (4)

Here V = Ẇ is the white noise with one-dimensional characteristic function
h1 = h1(ρ; t) and its logarithmic time derivative

Ψ(ρ; t) =
1

h1(ρ; t)

∂h1(ρ; t)

∂t
= −1

2
ρT ν0(t)ρ+∫

Rq
0

[
eiρ

T c′(u) − 1− iρT c′(u)
]
νP (t, u) du, (5)

where ν0(t) id the intensity of W0(t) and νP (t, u) du is the intensity of the
Poisson stream of the jumps equal to c′(u).

3 Basic Eqs for ELT

Approximating the one-dimensional distribution Y (characteristic function and
probability density) by normal (Gaussian) one we shall have

g1(λ; t) ≈ exp
{
iλTmy −

1

2
λTKyλ

}
,

f1(λ; t) ≈
[
(2π)

p|Ky|
]−1/2

exp
{
−1

2
(y −my)TK−1y (y −my)

} (6)

In Eqs (6) my and Ky are the expectation and covariance matrix of the
state vector defined by the ordinary differential Eqs:

ṁy = ϕ1(my,Ky, t), my(t0) = m0, (7)

K̇y = ϕ2(my,Ky, t), Ky(t0) = K0. (8)

Here

ϕ1(my,Ky, t) = ENa(Y, t),

ϕ2(my,Ky, t) = ϕ21(my,Ky, t) + ϕT21(my,Ky, t) + ϕ22(my,Ky, t),

ϕ21(my,Ky, t) = EN
{
a(Y, t)(Y −my)T

}
,

ϕ22(my,Ky, t) = ENσ(Y, t)T ,

(9)

σ(Y, t) = σ0(Y, t) +

∫
Rq

0

c′(u)b(Y, t)b(Y, t)
T
c′
T

(u) νP (t, du),

σ0(Y, t) =ENb(Y, t)ν0(t)b(Y, t)
T

(10)
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and the subscript N denotes that the expectation EN is calculated for normal
distribution N(my,Ky). The number of Eqs for normal approximation method
(NAM) is equal to QNAM = p(p+ 3)/2.

NAM for approximate determination of stationary m∗y and K∗y gives Eqs:

ϕ1(m∗y,K
∗
y ) = 0, ϕ2(m∗y,K

∗
y ) = 0. (11)

For two-dimensional distributions in addition to Eqs (7)–(11) we have

gt1t2(λ1, λ2) ≈ exp
{
iλ
T
m2 −

1

2
λ
T
Knλ

}
,

f2(y1, y2; t1, t2) ≈
[
2π2p|K2|

]−1/2
exp
{
−1

2
(y2 −m2)TK

−1
n (y2 −m2)

}
,

(12)

and p2 ordinary differential Eqs:

∂Ky(t1, t2)

∂t2
= Ky(t1, t2)Ky(t2)

−1
ϕ21(my(t2),Ky(t2), t2)

−1
,

Ky(t1, t2) = Ky(t2, t1)
T
,Ky(t1, t1) = Ky(t1) at t1 = t2,

(13)

dky(τ)

dτ
= ϕ21(m∗y,K

∗
y )K∗y

−1ky(τ),

ky(τ) = Ky(t1, t1 + τ) = ky(−τ)T , k(0) = K∗y ,

(14)

where

λ = [λT1 λ
T
2 ]T , m2 =

[
my(t1)T my(t2)T

]T
,

K2 =

[
Ky(t1, t1) Ky(t1, t2)
Ky(t2, t1) Ky(t2, t2)

]
, y2 = [yT1 y

T
2 ]T .

For stationary systems in Eqs (11), (14) one use the spectral density instead
of covariance matrix and amplitude-frequency characteristic.

ELT Eqs (6), (7), (8), (12), (13) for the combined StS and ChS described
by Eq (4) at b(Y, t) = b0(t)

Ẏ = a(Y, t) + b0(t)V, Y (t0) = Y0 (15)

after statistical linearization by known formulae [5]:

a(Y, t) = a0(my,Ky) + a1(my,Ky)Y 0, (Y 0 = (Y −m)) (16)

may be presented in the form:

ṁy = a0(my,Ky, t) = ENa(Y, t), my(t0) = my0 , (17)
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K̇y = a1(my,Ky, t)Ky +Kya1(my,Ky, t)
T+

b0(t)ν(t)b0(t)T , Ky(t0) = Ky0 , (18)

∂Ky(t1, t2)

∂t2
= Ky(t1, t2)a1(t1, t2)T at t2 > t1

Ky(t1, t2) = Ky(t2, t1)T at t2 < t1.

(19)

Putting ṁy = 0, K̇y = 0, Ky(t1, t1 + τ) = ky(τ) we get Eqs for stationary
processes. Eqs (17)–(19) are the basic Eqs for ELT analytical modeling of
Combined StS and ChS.

It is evident that in combined StS and ChS chaotic properties will prevail
when corresponding amplitude-frequency characteristic for Eq (17) parametri-
cally dependent on my and Ky is not simple.

When the stochastic input signal contains the harmonic component one use
combined harmonic and statistical linearization [6].

For input signal given by canonical expansion (CE) we develop correspond-
ing ELT based on [6] and symbolic calculations [7], [8]. IT based on CE ELT
are effective as for analytical, statistical and combined modeling (simulation).

For the on-line information optimal nonlinear estimation in ChS with small
stochastic perturbations is based on Kushner-Stratonovich Eq for conditional
density or corresponding Eq for conditional characteristic function. These Eqs
are very difficult for solution on nowadays computers even for simple models
[5], [6].

According to robust ELT based on normal density one may use Kalman,
Kalman-Bucy or Pugachev Eqs with coefficients depending on mathematical
expectation and covariance matrix.

The discussed ELT was realized by modern software tools developed in
MATLAB.

Applications: statistical and chaotical vibromechanics, fluctuations of the
Earth Pole and irregular rotation of the Earth.

4 Examples

4.1 Harmonically and stochastically forced Duffing Eq

Let us consider harmonically and stochastically forced Duffing Eq:

Ẍ + αẊ + βX + γX3 = A0 +A cos(ωt) + V, X(t0) = X0, Ẋ(t0) = Ẋ0, (20)

where α, β, γ, A0, A, ω being constant values; V = Ẇ is the white noise of the
intensity ν = ν(t); W being the process with independent increments. After
putting X1 = X, X2 = Ẋ and X3 statistical linearization performing by the
formulae [5]:
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X3
1 ≈ K0(m1, D1)m1 +K1(m1, D1)X0

1 ,

K0(m1, D1) = (m2
1 + 3D1), K1(m1, D1) = 3(m2

1 +D1)
(21)

we get Eqs for mathematical expectations:

ṁ1 = m2, ṁ2 = −αm2 − βm1−γ(m2
1 + 3D1)m1 +A0 +A cos(ωt),

m1(t0) = m10 , m2(t0) = m20

(22)

and centered variables:

Ẋ0
1 = X0

2 , Ẋ
0
2 = −αX0

2 − βX0
1 − 3γ(m2

1 +D1)X0
1 + V,

X0
1 (t0) = X0

10 , X0
2 (t0) = X0

20 .
(23)

Ordinary differential Eqs for K11(t) = D1 = MX02
2 , K12(t) = KXẊ ,

K22(t) = D2 = MX02
2 may be presented in the form

{
K̇11 = 2K12, K̇22 = −2αK22 − 2

[
β + 3γ(m2

1 +D1)
]
K12 + ν,

K̇12 = K22 − αK12 −
[
β + 3γ(m2

1 +D1)
]
K11

(24)

at corresponding initial conditions. Eqs (22) and (24) are interconnected due
to dependence of coefficients at mi, Di (i = 1, 2) on m1 and D1.

Eqs (22) and (24) permit to detect the following effects.

1. At A0 = 0 and given D1 the chaos structure described by Eqs (22) coincides
with the structure of chaos in Eqs (22) at V = 0 for βξ = β + 3γD1 [4].

2. At A0 = 0 and given ν = const the chaos structure described by Eqs
(22) coincides with the structure of chaos in Eqs (22) at V = 0 for m1

and D1 described by joint set of Eqs (22) and (24) for β = β + 4β(ν),
4β(ν) = 3γD1(t, ν).

3. At given periodical intensity ν = ν(Ωt) we find the bias detecting effect
due to parametric term 〈D1m1〉 at n1ω+n2Ω = 0. Such structure of chaos
corresponds to bias chaos structure [4] at Aξ0 = A0 − 3γ〈m1D1〉.

4.2 Quasiharmonically forced Duffing Eq

Let us consider quasiharmonically forced Duffing Eq:

Ẍ + αẊ + βX + γX3 = A0 +A cos(ψ),

X(t0) = X0, Ẋ(t0) = Ẋ0,
(25)

ψ̇ = ω + Y, (26)
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Ẏ = −α1Y + V, Y (t0) = Y0 (27)

where α, β,γ, A0, A, ω, being constants; ν = ν(t) being the intensity of the
white noise V. Putting

X1 = X, X2 =Ẋ1, X3 = Y,

X3
1 ≈ (m2

1 + 3D1)m1+3(m2
1 +D1)X0

1 ,

cos(ψ) ≈ e−D3/2 cos(ωt+m3) +
[
−e−D3/2 sin(ωt+m3)

]
X0

3 ,

(28)

we get the joint set of Eqs for mi, Kii = Di and Kij (i, j = 1, 2, 3) :
ṁ1 = m2, ṁ2 = −αm2 − βm1 − γ(m2

1 + 3D1)m1+

A0 +Ae−D3/2 cos(ωt+m3),

ṁ3 = −α1m3,

(29)


Ẋ0

1 = X0
2

Ẋ0
2 = −αX0

2 − βX0
1 − 3γ(m2

1 +D1)X0
1 −Ae−D3/2 sin(ωt+m3)X0

3 ,

Ẋ0
3 = −α1X

0
3 + V ;

(30)

K̇11 = 2K12, K̇33 = ν − 2α1K33,

K̇22 = −2
[
β + 3γ(m2

1 +D1)
]
K12 + 2αK22 − 2Ae−D3/2 sin(ωt+m3)K23,

K̇12 = K22 −
[
β + 3γ(m2

1 +D1)
]
K11 − αK12 +Ae−D3/2 sin(ωt+m3)K13,

K̇13 = K23 − α1K13,

K̇23 = −
[
β + 3γ(m2

1 +D1)
]
K13 +Ae−D3/2 sin(ωt+m3)K33 − (α+ α1)K23.

5 Conclusions

1. At given m∗3 = 0, D1 = D∗1 , D3 = D∗3 , Eqs (25) have chaos structure for
Eq (25) at Y ≡ 0 [4] if we put βξ = β + 3γD∗1 , Aξ = Ae−D

∗
3/2.

2. At given ν = const the chaos structure for Eq (25) is described by known
formulae [4] at βξ = β +4β(ν), 4β(ν) = 3γD1(t, ν), Aξ = Ae−D3(t,ν)/2.
More then that due to the dependence ofD1(t) on sin(nωt) and cos(nωt) (n =
2, 3, . . . ) we find the parametric effect of pulsation.

3. At given periodical intensity ν(Ωt) we may find bias effect on frequencies
nΩ and nω in chaos structure.

The derived results of modeling of the chaos structure coincides with the
results from [4], [3], [1], [2].

In Figure 1 presented the secant plane t = [mod2π/ω] for the case of rigid
elastic characteristic: α = 0.2, β = 1, γ = 1, A0 = 0, A = 50, ω = 1.9.
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Fig. 1. Chaos structure for rigid elastic characteristic.

Fig. 2. Chaos structure for asymmetrical external influence.

In Figure 2 presented the secant plane t = [mod2π/ω] for the case of asym-
metrical external influence: α = 0.05, β = 0, γ = 1, A0 = 0.04, A = 0.14,
ω = 1.

The work is supported by Russian Foundation for Basic Research (Project
10-07-00021).
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Abstract: It has been found/ proposed/ that the growth curves representing neuronal 

differentiation or malignant tumor progression can be successfully fitted by the temporal 

fractal function y(t), which describes the time-evolution of the system, characterized by 

the temporal fractal dimension bt and scaling factor at. It can be proved that for  

biological systems whose growth is described by the Gompertz function, the temporal 

fractal dimension and scaling factor are time-dependent functions bt(t) and at(t), which 

permits calculation of their values at an arbitrary moment of time or their mean values at 

an arbitrary time-interval. The model proposed has been applied to determine the 

temporal fractal dimension of the tumor growth and synapse formation as qualitatively 

these processes are described by the same Gompertz function. The results obtained 

permit formulation of two interesting rules: (i) a system of interacting cells within a 

growing biological system has its own, local intrasystemic fractal time, which differs 

from the linear (bt=1) scalar time of the extrasystemic observer; (ii) the fractal structure 

of time, characterizing  biological growth, is lost during progression. The possibility of 

mapping the Gompertz growth function onto the temporal fractal one, confirms the thesis 

that biological growth is a self-similar, alometric and coherent process of a holistic nature 

 

Keywords: Fractal space-time, Temporal fractals, Mapping procedure, Biological 

growth, Tumorigenesis, Synapse formation.  

 

 
1    Introduction 

The morphometric computer-aided image analysis reveals that the growth of 

biological systems occurs in the space-time with the spatial fractal dimension 

(also called Haussdorff dimension) defined by  

                                                   

0

ln ( )
lim

ln(1/ )
s

n
b ε

ε
ε→=

                                            
Here, n(ε) is the minimum number of hypercubes of dimension ε required to 

completely cover the biological, physical or mathematical object under 
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consideration. The fractal dimension can be defined also by the self-similar 

power law scaling function  

 

                                            
0               )( >= xxaxy sb

s                                                           
 

in which y(x) denotes the number of self-similar objects in the sphere or circle 

of a radius x;  bs and as stand for the spatial fractal dimension and the scaling 

factor, respectively. In biological systems the fractal structure of space in which 

cells interact and differentiate is essential for their self-organization and 

emergence of the hierarchical network of multiple cross-interacting cells, 

sensitive to external and internal conditions. Hence, the biological phenomena 

take place in the space whose dimensions are not represented only by integer 

numbers (1,2,3 etc.) of Euclidean space. In particular, tumors and synapses 

grow in a space with non-integer fractal dimension. Cellular systems grow not 

only in space but also in time. Recently, an idea has been developed that the 

curves describing the growth of biological systems can be successfully fitted by 

the temporal counterpart of the space fractal function [1,2] 

 

                                    
( )                     0tb

ty t a t t= >
 

 

in which y(t) characterizes the time-evolution of the system, bt is its temporal 

fractal dimension whereas at - a scaling factor. In this work we present the 

results of mapping of the Gompertz function  [3] 

 

                                                     

( )ate
a

b

eGtG
−−

=
1

0)(
                                                

 

widely applied to fit the demographic, biological and medical data, onto the 

fractal function y(t). As a result one obtains the time-dependent expressions for 

bt(t) and at(t), which permit calculation of their values at an arbitrary moment of 

time or their mean values at an arbitrary time-interval. In the Gompertz function 

G0 stands for the initial mass, volume, diameter or number of proliferating cells, 

a is retardation constant whereas b denotes the initial growth or regression rate 

constant. 

 

2    The Model  

To obtain the explicit form of bt(t) and at(t) by the mapping procedure, we 

employ the generalized spline interpolation method [4], which permits 

interpolating the Gompertz function by a family of power law curves 
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                                    { }( )( ) ( )     1,2,....t ib t
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determined at the points {ti, yi(ti)}. Defining the sets of parameters bt ={bt(ti), 

i=1,2…}, at ={at(ti), i=1,2…}, one may derive the fractal  function y(t) assuming 

that the Gompertz and interpolating  functions are isovalued and isosloped for 

the each momentum t. Then the equality of the functions y(t), G(t) and their first 

derivatives provides the set of nonlinear equations   

   

( ) ( )1 1
1

1         
at at

t t

b b
e e

b b ata a
t t ta t e ba t be e
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whose solutions  are the analytical expressions 
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defining the fractal function  

 

( )
( ) ( ) tb t

ty t a t t=
 

 

characterizing the Gompertzian growth. The above specified formulae satisfy 

the proper boundary conditions for t→0 and G0=1 (one cell). From their plots it 

can be easily proved that function y(t) is indistinguishable from G(t), hence the 

mapping procedure is successful.   

 

3    The results 

The synapse formation can be characterized by the Gompertz growth curve 

obtained by the fitting the experimental data obtained by Jones-Villeneuve et al. 

[5]. The fit provided [2] the parameters: a=0.0739(89) [hour], b=0.3395(378) 

[hour] for constrained G0=1 evaluated with the nonlinear regression coefficient 

R=0.9737. In the next step the parameters a and b were used to calculate the 

time-dependent fractal dimension bt(t) and scaling factor at(t) using the above 

specified formulae. Their plots are presented in Fig. 1.  
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Fig. 1. Plots of the time-dependent temporal fractal dimension bt(t) and scaling 

factor at(t) for neuronal cells growth characterized by the Gompertz parameters 

a=0.0739(89) [hour] and b=0.3395(378) [hour] [2].  

 

 

In the case of tumorigenesis, we consider as an example the Flexner-Jobling 

rat’s tumor whose growth is described by the Gompertz function with the 

parameters:  a=0.0490(63) [day], b=0.394(66) [day] determined by Laird [6]. 

They were used to generate plots of bt(t) and at(t) presented in Fig. 2.  

 

Analysis of the results obtained reveal that during  neuronal differentiation and 

synapse formation, the temporal fractal dimension bt(t) increases from 1 for t=0 

to a maximal value 1.80 for  t=11.97 [day] and then decreases to zero. We find 

here an interesting correlation with the spatial fractal dimension calculated in 

vivo for retinal neurons; it takes value 1.68(15), whereas the diffusion-limited-

aggregation model predicts 1.70(10) [7]. These spatial dimensions are equal in 

the range specified standard errors to the temporal fractal dimension 1.80 

determined in this work. In the case of brain’s neurons of two teleost species 

Pholidapus dybowskii and Oncorhynchus keta, the application of the box-

counting method provided the fractal dimension equal to 1.72 for less 

specialized neurons, whereas highly specialized neurons displayed a relatively 

low  dimension [8]. We conclude that the temporal fractal dimension can be 

applied as a numerical measure of the neuronal complexity emerging in the 

process of differentiation, which is correlated with the morphofunctional cell 

organization. In particular, the change from the maximal value of the fractal 

dimension bt(t=11.97)=1.80 to the dimension attained at the plateau bt(t=50)= 

0.43 reflects the appearance of the highly specialized neurons evolving from the 

less specialized ones. The temporal fractal dimension of the Flexner-Jobling’s 

tumor growth increases from 1 for t=0 to a maximal value of 2.98 for t=20 [day] 

and then decreases to zero. Both bt(t) and at(t) determined for neuronal 

differentiation and tumour progression behave in the identical manner. We 

conclude that tumorigenesis has a lot in common with the neuronal 

differentiation and synapse formation, although the dynamics of these processes 
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are different: the maximal values of the temporal fractal dimension are equal to 

1.8 and 2.98, respectively. 

 

 

          
 

Fig. 2. Plots of the temporal fractal dimension bt(t) and the scaling factor at(t) 

for Flexner-Jobling rat’s tumor whose growth is characterized by the parameters  

a=0.0490(63) [day], b=0.394(66) [day] [6]. 

 

 

4    Conclusions 

 

The results obtained permit formulation of two interesting rules governing the 

biological growth in the fractal space-time: 

 

(i) A system of interacting cells within a growing biological system, has 

its own, local intrasystemic fractal time, which differs from the 

linear (bt=1) scalar time of the extrasystemic observer; 

(ii)  The fractal structure of time characterizing  biological growth, is lost 

during progression.  

 

The point (i) admits that intrasystemic time has  more than one dimension. This 

conclusion is consistent with the results of theoretical investigation proving that 

the best manifold for description of physical phenomena is a six-dimensional 

space-time with the same number of temporal and spatial dimensions [9-12]. 

The point (ii) can be interpreted in the framework of the noise theory [13,14].  

The temporal fractal dimension bt(t) characterizing the tumorigenesis and 

synapse formation, takes values from the range <1,0>. The formal replacement 

of time by the reciprocal frequency in bt(t)  

 
1/

( ) (1/ )
t f

t tb t b f
→→  

 

enables interpretation of  different phases of the biological growth in terms of 

noise characteristics. By analogy to the frequency of signals of the spatial or 

temporal fractal characteristics, the limit bt(t=0)=1 corresponds to the pink noise 
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(1/f
1
 noise),  bt(t =∞)=0 – white noise (1/f

0
 noise), whereas deviation of  bt(t ) 

from unity reveals fractality [13,14] of the biological processes. So, the loss of 

the fractal structure of time during progression can be interpreter as a transition 

to the stage of white noise. 

 

Following  Bajzer and Vuk-Pavlovic [15,16] one may prove that the Gompertz 

function satisfies the self-similar relationship 

 
( ) 1 ( )( ) ( ) ( )    (s) exp( )     ( )s sG t s s G t as s Gβ βα β α −

∞+ = = − =
 

 

which links also the scaled fractal function 

 

[ ] ( )

0 0( ) ( ) ( )
s

y t s G s y t G
βα+ + = +  

 

The possibility of mapping of the Gompertz growth function onto the temporal 

fractal one, confirms the thesis that biological growth is a self-similar, alometric 

and coherent process of a holistic nature [17]. It means that all spatially 

separated subelements (cells) of the whole system, are interrelated via long-

range (slowly decaying) interactions, which seem to be an essential ingredients 

of the self-organized systems. Such interactions can be mediated e.g. through 

diffusive substances (growth factors), which interact with specific receptors on 

the surface of the cells, affecting and controlling proliferation. It has been 

proved [17] that the Gompertz function represents the coherent state of growth, 

which is a macroscopic analogue of the quantal minimum-uncertainty coherent 

state of the Morse oscillator. Such states are space-like (nonlocal) and propagate 

along the well-defined time trajectory being coherent in space. The mapping 

procedure transfers this peculiar property of the Gompertz function onto the 

fractal y(t) one. Hence, the biological growth in the fractal space-time with 

temporal fractal dimension is predicted to be coherent in space.    
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Abstract: It is generally difficult to synchronize a ring network that features chaotic 

behaviour, especially if the system’s order is too large. In this paper, we consider a ring 

network of three identical nonlinear and non-autonomous circuits of fourth order, which 

are bidirectionally coupled through three coupling linear resistances RC. We present 

simulation and experimental results for synchronization of such a network in low 

frequency area, and derive a sufficient condition for chaotic synchronization of this type 

of network. 

Keywords: Ring connection, Nonlinear circuit, Low frequency area, Chaotic 

synchronization.  

 
1    Introduction 

Synchronization is an important property of chaotic dynamical systems. In the 

past decades the synchronization in large scale complex networks has attracted 

lots of attention in various fields of science and engineering [2, 3, 5, 14, 15, 16]. 

In general, a complex network is a large set of interconnected nodes, where a 

node is a fundamental unit-joint with detailed contents, which lines intersect or 

branch. 

The nonlinear electric circuits are veritable tools to study the fundamental 

mechanisms underlying the onset of chaos. A variety of autonomous [7, 8, 12] 

and non-autonomous [6, 10] circuits have been reported in the literature in 

recent times. A plethora of bifurcation and chaos phenomena, such as period 

doubling routes to chaos, intermittency, quasi periodicity, chaotic 

synchronization and so on, have been studied extensively.      

In this paper, theoretical and experimental results of chaos synchronization of 

three identical non-autonomous circuits, bidirectionally coupled in ring 

connection network are presented. The system’s evolution from non 

synchronized oscillations to synchronized ones, when its individual circuit 

exhibits chaotic behaviour, is studied. 

 

2    The Nonlinear, Non-Autonomous Circuit 

Chaotic performance of the fundamental non-autonomous circuit has been 

investigated in the past [4]. It is based on a third order autonomous piecewise 
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linear circuit, which introduced by Chua and Lin [1], and is capable of realizing 

every member of Chua's circuit family. A second inductor L2 has been added in 

the branch of the voltage source vs(t), in order to enrich circuit’s dynamics. The 

circuit also consists of two active elements, a nonlinear resistor RN, which has a 

v-i characteristic of N-type with Ga=-0.35mS, Gb=5.0mS and Bp=0.8V, and a 

negative conductance Gn=-0.50mS. In recent papers, circuit’s dynamics in low 

frequency area has been studied extensively [10, 11, 13]. The circuit’s 

parameters are considered unchangeable during our study. More particularly: 

L1=L2=100mH, C1=33nF, C2=75nF and R1=1KΩ. We use sinusoidal input 

signal vs(t) with amplitude Vo equal to 0.60V or 0.75V, while the frequency f 

ranges from 30Hz to 50Hz. Using the above parameters circuit exhibits chaotic 

behaviour. In Figures 1a) and b) theoretical and experimental phase portraits vC2 

vs. vC1 for Vo=0.75V and f=35Hz are presented, respectively. The maximum 

Lyapunov exponent for the above parameters is positive (LEmax=0.0156), 

which indicates that the system exhibits chaotic behavior. 

 

 

 
 

a) theoretical b) experimental 
 

  Fig. 1. Phase portrait vC2 vs. vC1 for Vo=0.75V and f=35Hz. 
 

 

3    Dynamics of Ring Connection Topology 

In a recent paper [9] we have seen that chaotic synchronization of two identical 

non-autonomous, unidirectionally coupled, nonlinear, fourth order circuits is 

possible. In this work, chaotic synchronization of three bidirectionally coupled 

circuits in ring connection, as seen in Figure 2, is studied.  

More particularly, as illustrated in Figure 2, circuits NA1C1, NA1C2 and 

NA1C3 are bidirectionally coupled through three identical linear resistances RC. 

The connection points are in capacitances C2i, where i=1, 2 and 3 denotes circuit 

NA1C1, NA1C2 and NA1C3, respectively.  
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  Fig. 2. Three non-autonomous, nonlinear fourth order circuits in ring 

connection. 

 

 

The resulting set of system’s differential equations is derived using Kirchhoff’s 

circuit laws. 
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Where the current iRNi through the nonlinear element i, with i=1, 2, 3 for circuit 

1, 2 and 3 respectively, and input signal vs(t) are given by equations: 

 

( ) ( )1 1 10 5RNi b C i a b C i p C i pi G v . G G v B v B= + − + − −  

2s ov ( t ) V cos( ft )π=  

 
In figures 3a) and b) bifurcation diagrams vC21(t)-vC22(t) vs. eC and vC22(t)-vC23(t) 

vs. eC are presented, where eC is the coupling parameter and is given by 

equation. 

1C Ce R / R=  

where RC is the coupling resistance. 

We can see that chaotic synchronization of the three identical circuits in ring 

connection is observed for coupling parameter eC>0.568, or for coupling 

resistance RC<1.8kΩ 

  
 

a) vC21(t)-vC22(t) vs. eC b) vC22(t)-vC23(t) vs. eC 
 

  Fig. 3. Bifurcation diagrams for Vo=0.75V and f=35Hz. 
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In figure 4 simulation and experimental results of waveforms vC21(t)-vC22(t) for 

various values of coupling resistance RC are presented. More particularly, in 

figures 4a), c) and e) simulation vC21(t)-vC22(t) for RC=1.0MΩ (eC→0),  

RC=10.0kΩ (eC=0.1) and RC=1.8kΩ (eC=0.568) are shown, while in figures 4b), 

d) and f) experimental vC21(t)-vC22(t) for the same parameters are illustrated.  

 

 

  
 

a) RC=1.0MΩ (simulation) b) RC=1.0MΩ (experimental) 

 

  

  

c) RC=10.0kΩ (simulation) d) RC=10.0kΩ (experimental) 

  

  
  

e) RC=1.8kΩ (simulation) f) RC=1.8kΩ (experimental) 

  

 
  Fig. 4. a), c), e) Simulation and b), d), f) Experimental waveforms vC21(t)-

vC22(t) (x: 1ms/ div, y: 1V/ div). 
 

 

In figures 4e) and f) we can see that chaotic synchronization occurs for coupling 

resistance RC=1.8kΩ (eC=0.568). This threshold synchronization value of RC is 
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lower than in the case of chaotic synchronization of two bidirectionally coupled 

identical circuits, with the same circuit’s settings, which is RC=2.28 (eC=0.479) 

[9]. 

In figures 5 and 6 a collection of results are displayed. Specifically, in figure 5 

we can see the threshold synchronization value of coupling parameter eC versus 

frequency f, for amplitude of the input sinusoidal signal Vo=0.60V and 

Vo=0.75V. We can see that the values of eC in the case of Vo=0.60V are lower 

than in the case of Vo=0.75V. In figure 6 the threshold synchronization value of 

coupling resistance RC versus frequency f for the same parameters as in figure 5 

is presented. 

 

 

Fig. 5. Threshold synchronization value of coupling parameter eC vs. f. 

 

 

Fig. 6. Threshold synchronization value of coupling resistance RC vs. f. 
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4    Conclusions 

In this paper, we have studied chaos synchronization of three identical non-

autonomous circuits, bidirectionally coupled in ring connection network, in low 

frequency area. Simulation and experimental results of the system’s evolution 

from non synchronized oscillations to synchronized ones, when its individual 

circuit exhibits chaotic behaviour, were presented. Both, theoretical calculations 

and experimental results appear to be in complete agreement. We have seen that 

the values of threshold synchronization coupling parameter eC in the case of 

Vo=0.60V are lower than in the case of Vo=0.75V, for various values of input 

frequency f, but higher than in the case of two bidirectionally coupled identical 

circuits with the same setup.  
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Abstract. The residential environments are an important scenario for Ultra Wide
Band (UWB) communication systems. In this paper, the performance of correlating
receivers operating in a Line-Of-Sight (LOS) scenario in these environments is evalu-
ated. In such channel the interference between users is an additional source of noise,
that may deteriorate the performance of the system. In this research axis; it aims to
exploit the richness of chaotic and spatiotemporal sequences with respect to topologic
properties. We check through simulations, that chaotic sequences are shown to have
improved performance compared to the Gold sequences in terms of Bit Error Rate
(BER).
Keywords: Time hopping Utra wide band, Chaotic sequences, Multi-path channel,
Spatiotemporal..

1 Introduction

Ultra-wideband (UWB) systems [1] use ultrashort impulses to transmit infor-
mation which spreads the signal energy over a very wide frequency spectrum of
several GHz. The sucess of UWB systems for short-range wireless communica-
tions [1,4] is due to the fact that they potentially combine reduced complexity
with low power consumption, low probability-of-intercept (LPI) and immunity
to multipath fading. In 2004, the IEEE 802.15.4a group presented a comprehen-
sive study of the UWB channel over the frequency range 2-10 GHz for indoor
residential, indoor office, industrial, outdoor and open outdoor environments
[5]. In this work we are concerned with the indoor residential environment
channel.
In time-hopping format (TH-UWB) TH codes are used as multiple user di-
versity and pulse position modulation (PPM) as data transmission [1,4]. As
any wireless communication system, the interference between users is an addi-
tional source of noise, that may degrade the performance of the system. Thus
the choice of the modulation type, the multiple access techniques, the codes
allowing multiple access is important in the determination of the system per-
formance. Different works have tackled the statistical characteristics of the

Received: 28 June 2011 / Accepted: 28 December 2011
c© 2012 CMSIM ISSN 2241-0503
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Multi-User Interference (MUI). Many of them have modeled the MUI as a ran-
dom Gaussian process [1,4,6]. Due to this assumption, no code optimization
has been considered.
Other works have dealt with the optimization of the performance by code selec-
tion [2,3]. In [3], the authors considered the asynchronous case, multi channel
propagation such IEEE 802.15.3a channel model and rake receiver; they de-
rived a criterion to find optimal codes that minimizes the variance of the MUI
of a reference user. The proposed criterion appears as a significant measure to
design TH-codes that optimize the performance of a reference user.

In [7] a criterion named Average Collision Number (ACN) that minimize
the MUI variance has been defined then the average BER of active users was
computed to confirm the relevance of this criterion, it has been shown that
sequences having smaller ACN allow better BER. As we show later this criterion
is unsuitable in some cases for selecting codes. In this contribution, instead of
the ACN criterion we will use the new criterion called Average of Squared
Collision Number (ASCN). Based on this criterion we will analyse how much
chaoticity of the chaotic codes affects the performance of the considered TH-
UWB system. To validate our criterion, the performance in terms of BER is
computed by simulating the TH-UWB system with line-of-sight (LOS) multi-
path and AWGN channel in a residential environment IEEE 802.15.4a.

This paper is organized as follows. Section 2 gives a detailed description
of the TH-UWB system; after introducing the TH-UWB-PPM system model,
we give the format of the channel model IEEE 802.15.4a and the statistics of
correlation receiver. In Section 3 the ASCN criterion is defined and compared
to ACN [7]. In section 4 we define the different considered sequences; for chaotic
sequences, the ASCN is computed versus bifurcation parameter and compared
to Lyapunov exponent. In section 5, we validate our method by reporting
simulation results showing the advantage of using ASCN. Finally we conclude
in section 6.

2 System description

In this section, we begin by reminding the TH-UWB system model and the
expression of the received signal in a synchronous TH-UWB system using the
PPM modulation. Then we compute the variance of the MUI versus TH-codes
when a correlation receiver is used.

2.1 System model

A typical expression of the TH-UWB transmitted signal for a user j is given
by equation 1.

s(j)(t) =

∞∑
k=−∞

Nf−1∑
l=0

w(t− kTs − lTf − c̃(j)l Tc − d(j)k δ) (1)

Where w(t) is the transmitted UWB pulse shape, Ts is the period of one
bit.Every bit is conveyed by Nf frames. Each frame has a duration of Tf and
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is divided into Nc time slots. Each time slot has a duration of Tc. c̃
(j)
l is the

TH code sequence assigned to the user j, where c̃
(j)
l ∈ {0, 1, . . . , Nc−1}. The

location of each pulse in each frame is defined by the code c̃
(j)
l . d

(j)
k ∈ {0 , 1}

is the binary transmitted symbol at time k by user j, δ is the time shift asso-
ciated with binary PPM, the pulses corresponding to bit 1 are sent δ seconds
later than the pulses corresponding to bit 0. N = NcNf presents the total
processing gain of the system.

2.2 IEEE 802.15.4a Channel Model (CM1)

The IEEE 802.15.4a has recently proposed a channel model [5] propagation in
residential area [5]. According to this model the impulse response is [5,8],

h(j)(t) =

M−1∑
m=0

R−1∑
r=0

α(j)
r,mδ(t− T (j)

m − τ (j)r,m) (2)

where αr,m is the tap weight of the r-th ray (path) in the m-th cluster, Tm is
the arrival time of the m-th cluster and τr,m is the arrival time of the r-th ray
in the m-th cluster. The distribution of the cluster arrival times is given by a
Poisson process and the distribution of the ray arrival times is given by a mixed
Poisson process [5]. The small scale fading statistics are modeled as Nakagami-
m distributed with different m-factors for different multipath components. The
probability density function of Nakagami-m distribution is given in [5]. The
ray amplitudes are lognormal distributed. The channel model which is used
in the paper is for LOS scenarios in residential environments, referred to as
CM1 [5]. The parameters of the channel are modeled as a function of the
transmitter-receiver distance and the line-of-sight (LOS) availability.

If Nu is the number of active users transmitting asynchronously; the re-
ceived signal is

r(t) =

Nu∑
j=1

M−1∑
m=0

R−1∑
r=0

α(j)
r,ms

(j)(t− T (j)
m − τ (j)r,m) + n(t) (3)

2.3 Statistics of the correlation receiver

The output of the correlation receiver of the ith user at time h is given by:

s
(i)
h =

Nf−1∑
p=0

∫ hTs+pTf+c̃
(i)
p Tc+Tc+τ

(i)
0,0+T

(i)
0

hTs+pTf+c̃
(i)
p Tc+τ

(i)
0,0+T

(i)
0

r(t)v(t−hTs−pTf−c̃(i)p Tc−τ (i)0,0−T
(i)
0 )dt

(4)
where v(t) is the receiver’s template signal defined by v(t) = w(t+ δ)− w(t).

An accurate value of τ
(i)
0,0 can be obtained by UWB acquisition techniques such

as [13]. From the previous equations and after variable changes, we obtain

s
(i)
h = TU (i) + TISI(i) + TI(i) + TN (i) (5)
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with
TU is the useful signal, TISI is inter-symbol interference signal, TI is the

MUI and TN is the term corresponding to the noise.

In [7], we defined a criterion named ACN for selecting codes in synchronous
and single-path TH-UWB system. Also we have shown numerically, that this
criterion is adequate even in the multi path channel.
Indeed in the synchronous case, it has been shown that

TI(i) = Ew

Nu∑
j=1,j 6=i

α(j)(2d
(j)
h − 1)cn(i, j) (6)

where Ew is the amplitude which controls the transmitted power, α(j) is the

tap weight of the user j, d
(j)
h is the binary sequence, cn(i, j) is the number

of collision between codes c̃(i) and c̃(j). c̃(j) can be computed by taking into
account the developed Time-Hopping Codes (DTHC) [9] corresponding to TH
codes as follows, for a given code c̃(j), the DTHC is a binary code of length
NcNf and is defined by

c(j)r =

{
1 if r = c̃

(j)
l + lNc, r = 0 . . . , NcNf − 1.

0 otherwise.
(7)

cn(i, j) =

NfNc−1∑
l=0

c
(i)
l c

(j)
l (8)

The Average Collision Number ACN of the sequence set (c̃(j)), j = 1, . . . Nu
is therefore defined by [7]:

ACN =
1

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1,j 6=i

cn(i, j) (9)

3 ASCN criterion

In [7] we have defined the ACN criterion, and we have showed that the exper-
imental results validate the relevance of the ACN as an ’off-line’ performance
evaluation criterion for codes sequences. These results motivated us to use the
ACN as a tool to predict the performance of code sequences.
However, we found intuitively that this criterion may in some cases be unsuit-
able for code selection. For example we take three users (Nu = 3). For scenario

A, the THC are respectively c̃
(1)
l = [ 0 0 1 1 ], c̃

(2)
l = [ 1 1 1 1 ] and c̃

(3)
l = [ 0 0 2 2 ].

We find that the total number of collisions is equal to 4. For scenario B, the

THC are respectively c̃
(1)
l = [ 0 0 1 1 ], c̃

(2)
l = [ 0 0 1 1 ] and c̃

(3)
l = [ 2 2 2 2 ]. Also

the total number of collisions is equal to 4. In both scenarios, ACN = 4
6 .

To remedy to this drawback, we defined a new criterion called Average of
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Squared Collision Number ASCN which is defined as:

ASCN =
1

Nu(Nu − 1)

Nu∑
i=1

Nu∑
j=1,j 6=i

cn2(i, j) (10)

This is motivated by the observation that when the collisions are regrouped on
few positions the performance are significantly degraded.
Now if we consider this new criterion; for scenario A, ASCN = 8

6 . For scenario
B, ASCN = 16

6 . In this work, we propose to use the ASCN criterion to exam-
ine the performance of the TH-UWB system.
This is confirmed by Table 1 where we represented the BER for the two sce-
narios with Nu = 3 and Nc = 4. We can see that the BER of scenario A is
almost the half of the BER of scenario B.

Table 1. ACN vs ASCN with BER simulation.

ACN ASCN BER

Scenario A 4/6 8/6 0.0728

Scenario B 4/6 16/6 0.1662

4 ASCN optimization using chaotic sequences

Chaotic sequences have some properties that motivate researchers to use them
in various applications: determinism, long term unpredictability and high sen-
sitivity to initial conditions. Especially chaotic sequences generated by one
dimensional non linear transformation have been used in cryptography, water-
marking, spectrum spreading systems [10].

We begin by defining Gold and chaotic sequences that will be considered in
this work; then we define the ASCN for chaotic sequences versus their bifurca-
tion parameter, and analyse how chaoticity measured by Lyapunov exponent
is correlated with the ASCN.

Gold sequences

The Gold sequence based TH codes are generated as shown in [11], where we
illustrate how is generated a sequence taking values in {0, 1, · · · , Nc − 1 = 7}
and with a length Nf ≤ 29.

Sequences generated by Skew tent map

Chaotic sequences are generated by the Skew tent map defined by:

xn+1 =

{ xn

r , 0 ≤ xn ≤ r
1−xn

1−r , r < xn ≤ 1
(11)
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The skew tent map exhibits chaotic behavior for every value of the bifurcation
parameter r ∈ [0 1].

Sequences generated by Logistic map

The logistic map is given by the following equation:

xn+1 = rxn(1− xn) (12)

The logistic map exhibit alternatively regular and chaotic behavior when r
belongs to [3 4].

Figures 1 and 2 show the Lyapunov exponent and ASCN versus the bifur-
cation parameter r for different chaotic sequences. We can see that the curves
of the ASCN follow the one of Lyapunov exponent and that the greater the
exponent is the smaller the ASCN. For logistic map r = 4 gives the best value
of Lyapunov exponent and ASCN. For skew tent map r = 0.5, have the best
ASCN and Lyapuonv exponent. According to these two examples, we showed
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Fig. 1. Lyapunov exponent and ASCN
for logistic.
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Fig. 2. Lyapunov exponent and ASCN
for skew tent map.

numerically that the ASCN of a quantized chaotic sequence depends on the
chaoticity of these sequences measured by their Lyapunov exponent.

In Figure 3, we represent the ASCN versus user number for Nc = 8; for
Gold sequences considered here as a reference and the two quantized chaotic
sequences defined above; the ASCN of chaotic sequences are averaged over 100
realizations. For both logistic and skew tent maps we considered the bifur-
cation parameter that gives the best ASCN, i.e. r = 4 for logistic map and
r = 0.5 for skew tent.
The results show that skew tent map chaotic sequences, have a better ASCN
than Gold sequences. We can notice likewise that Gold sequences show better
performance compared to the chaotic sequence when Nu < 6, this is because
of the orthogonality of this sequences.
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Fig. 3. ASCN versus user number for different types of codes. Nc = 8.

Sequences generated by spatiotemporal chaotic systems

Spatiotemporal chaotic systems have been the subject of intensive research in
physics in the 80’s to model and study some physical phenomena exhibiting
chaotic behavior in time and space at once, such as turbulence, convection
in chemical reactions and engineering. They have generally been modeled by
networks of coupled lattice or CML (Coupled Map Lattices). Different models
of CML have been proposed in the literature [12]. In our work we are interested
only to the family of CML given by:

xi+1(k + 1) = (1− ε)f [xi+1(k)] + εf [xi(k)] (13)

Where:

• i is the space index, i = 1, · · · ,M , M the system dimension
• k is the time index, k = 1, · · · , N
• f is a one dimensional chaotic map defined in the interval [0 1].
• ε is the coupling coefficient.

Spatiotemporal systems exhibit greater complexity compared to classical chaotic
systems. They also provide more chaotic sequences, this increases the chaoticity
of the system is a property of great importance in the use of CML to generate
code sequences.

5 Performance comparaison of classical and chaotic
codes sequences

In this section, we present the performance of MA-TH-UWB system in a resi-
dential environment CM1 channel by simulating the system and computing the
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BER; we consider the correlation receiver and the Gaussian pulse defined by:

w(t) = (1− 4π(
t

τ
)2) exp(−2π(

t

τ
)2) (14)

The simulation parameters are listed in table 2. For simplicity, we assume that

Table 2. Simulations parameters of TH-UWB system

Simulation parameters Acronym Value
Pulse duration τ 0.2ns

Sampling frequency Fs 8GHz
Chip duration Tc 1ns

Number of sampling Ne 50
Number of chip Nc 8
Number of frame Nf 4

Number of bits for each user Nb 105

Factor for spread spectrum Gold N 31
Number of path L 10

Signal to Noise Ratio SNR 10dB

the number of paths L is the same for all users.
For chaos based TH-codes we used logistic and skew tent maps with parame-
ters r = 4 and r = 0.5 respectively. These values correspond to the minimal of
ASCN (the maximal of Lyapunov exponent) in the two cases. The simulation
results are shown in Fig. 4 where we presented the BER of the system versus
user number for Gold and the two chaos based sequences. We can see that
skew tent map based sequences allow the best performance however logistic
map based ones allow the worst performance. These results compared to the
results shown in Fig. 3 prove that the ASCN is a suitable criterion to select
TH-codes.

The ASCN of the used skew tent map is equal to 1 however it is equal to
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Fig. 4. BER performance of asyn-
chronous TH-UWB system for different
TH codes.
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Fig. 5. BER performance of asyn-
chronous TH-UWB system: Skew tent
map vs. spatiotemporal.

almost 1.3 for the used logistic map. This explains the superiority of skew
tent map based sequences with respect to the logistic map based ones. In Fig.
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5 we represent the BER versus user number for the skew tent map and the
spatiotemporal system (13) based on skew tent map, for a coupling coefficient
ε = 0.97, the spatiotemporal are averaged over 100 realizations and the bifur-
cation parameter is set to the value that gives the best ASCN, i.e. r = 0.5. We
can see clearly that the THC generated by the CML can get better performance
than THC generated by the skew tent map. Thus, the proposed spatiotemporal
chaotic system considered is not only advantageous in terms of synchronization,
but can also generate THC outperform the conventional chaotic system.

6 Conclusion

In this contribution we considered code selection problem for MA-TH-UWB
systems. We defined the ASCN criterion to choose codes and we showed that
the lower the ASCN the better the performance. Based on this result, we chose
to look for codes with low ASCN by using the features of chaotic transforma-
tion; we found that the ASCN of chaotic map based sequences depends on the
chaoticity of the map measured by Lyapunov exponent; we showed specifically
that the higher the Lyapunov exponent the lower the ASCN; and subsequently
the better the performance.
On the other hand, the use of THC generated by spatiotemporal chaotic sys-
tem has shown better performance in term of BER that other sequences used
in this article. This improves the quality and the security of the transmission,
and shows the significance of using chaos specifically spatiotemporal chaotic
system in communication.
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Abstract. The atlas of maps of dynamic regimes of system ”pendulum–electric mo-
tor” is constructed. It is established that the deterministic chaos is a typical steady-
state regime of the given system. Its class of Feigenbaum universality is defined. The
analytical approximation of a Poincare map in a chaotic regime is discovered.
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1 Introduction

In the majority of investigations of the dynamics of pendulum systems are be-
ing conducted without taking into account the limitations of excitation source
power, so it is assumed that the power of excitation source considerably ex-
ceeds the power that the vibrating system consumes. Such systems are called
ideal in sense of Sommerfeld–Kononenko [2]. In many cases such idealization
leads to qualitative and quantitative errors in describing dynamical regimes of
pendulum systems [4]–[6].

Therefore, in most practical problems an object ”the oscillating system –
the source of oscillation” should be principally treated as a nonideal in sense
of Sommerfeld–Kononenko dynamical system [2]. In such systems, the oscil-
lation source power is always assumed comparable to the power consumed by
the oscillating system. This requires taking into account interactions between
oscillating loading and the energy source of oscillations.

2 Mathematical model of the system

As it has been established in [4]–[6], the motion equations of the ”pendulum–
electric motor” can be described by the following deterministic dynamical sys-
tem:
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dy1
dτ

= Cy1 − y2y3 −
1

8
(y21y2 + y32);

dy2
dτ

= Cy2 + y1y3 +
1

8
(y31 + y1y

2
2);

dy3
dτ

= Dy2 + Ey3 + F ;

(1)

where phase variables y1y2 describe the pendulum deviation from the vertical
and phase variable y3 is proportional to the rotation speed of the motor shaft.
The system parameters are defined by

C = − δ

ω0

(
a

l

)−2/3
, D = −2ml2

I
, F = 2

(
a

l

)−2/3(
N0

ω0
+ E

)
(2)

where m - the pendulum mass, l - the reduced pendulum length, ω0 - eigenfre-
quency of the pendulum, a - the length of the electric motor crank, δ - damping
coefficient of the medium resistance force, I - the electric motor moment of in-
ertia, E, N0 - constants of the electric motor static characteristics.

Since the system of equations (1) is nonlinear, the identification and study
of its attractors can only be done through a series of numerical methods and
algorithms. The methodology of such studies is suggested and described in [6],
[7].

3 Maps of dynamic regimes

A very clear picture of the dynamical system behavior can give us a map of
dynamic regimes. It is a diagram on the plane, where two parameters are
plotted on axes and the boundaries of different dynamical regimes areas are
shown. Since the number of parameters in the system (1) is more than two,
the detailed map of dynamic regimes will consist of many sheets.

In fig. 1 several sheets of dynamical regimes maps are shown. Two of four
parameters (C,D,E, F ) of the system (1) were constants and two others varied
within certain limits. The map in fig. 1a was built when C = −0.1, E = −0.59.
The map in fig. 1b was built when F = −0.17, E = −0.59. The last two
maps in fig. 1c-d were built when D = −0.6, F = 0.19 and C = −0.1, F = 0.19
respectively. The dark-grey areas of the maps correspond equilibrium positions
of the system (1), the light-grey – to limit cycles and the black – to chaotic
attractors.

As we can see, in each map there are extensive areas where the system has
chaotic regimes. This means that the deterministic chaos is a typical steady-
state regime of the given system.

It should be emphasized that consideration the problem in ideal formulation,
i.e. neglecting the pendulum influence on electric motor functioning, can lead
to gross errors in describing of the dynamics of system. Indeed, in the ideal
formulation of the problem in the system of equations (1) should be put D = 0,
then the system of equations disintegrates into two subsystems. The first one



Chaotic Modeling and Simulation (CMSIM) 1: 195–204, 2012 197

a b

c d

Fig. 1. Maps of dynamic regimes

will consist of the first two equations of (1), and the second one will consist of
the one third equation of the system (1). Therefore, in the ideal formulation of
the problem, the maximum phase space dimension of the obtained equations
will be equal to two. In the spaces of this dimension the existence of chaotic
attractors is theoretically impossible [6], [1].

The obtained maps of dynamical regimes allow us to conduct a quick qual-
itative identification of the type of steady-state regime of the system (1). On
the basis of the constructed maps, more detailed studies of emerging dynamic
regimes can be carried out. Particularly, the transition from regular to chaotic
regimes.

For this purpose, we carry out a vertical (horizontal) section of maps and
build other characteristics of the system. For instance, let us carry out a
vertical section of the map, that is shown in fig. 1b, along the line C = −0.07.
In fig 2a a fragment of phase-parametric characteristic (”bifurcation tree”)
of the system is shown and in fig 2b the dependence of maximal non-zero
Lyapunov’s characteristic exponent of the system from the parameter F is
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depicted. These characteristics correspond to the parameter D change in range
of −0.55 to −0.4. The intervals of the parameter D, in which there are separate
branches of the bifurcation tree ”crown”, correspond to the periodic regimes
of the system steady oscillations. And the intervals in which the ”crown” is
represented by saturated black color, correspond to chaotic regimes. As it
has been established in [4]–[6], this kind of ”bifurcation tree” corresponds to
transitions ”cycle – chaos” according to the Feigenbaum’s scenario from the
right side of the bifurcation parameter changes and to intermittency in the
sense of Pomeau-Manneville from the left side of the bifurcation parameter
changes.

a b

Fig. 2. Phase-parametric characteristic of the system (a), the dependence of maximal
non-zero Lyapunov’s characteristic exponent (b)

4 The universality class determination

Let us consider the behavior of the system when parameters are C = −0.1,
D = −0.5, E = −0.59, and 0.16 ≤ F ≤ 0.27. In fig. 3a the dependence of
maximal non-zero Lyapunov’s characteristic exponent of the system (1) from
the parameter F is depicted. As we can see, there are several intervals of
variation F where the system has positive Lyapunov’s characteristic exponent.
The attractor of the system in these intervals is a chaotic attractor. In the
region of existence of chaotic attractors, in the left side of the fig. 3a, we
can notice several dips of the Lyapunov’s exponent graph to negative values.
Small intervals of the parameter F in which there are such dips form the so-
called windows of periodicity in chaos. In these windows attractors of the the
systems are limit cycles. Also in the right side of the fig. 3a we can clearly
see the approaches of maximal Lyapunov’s exponent to the zero line, which
correspond to the points of bifurcation of period-doubling.

In fig. 3b the phase-parametric characteristic of the system is shown. A
close examination of this figure shows as the bifurcation points of regular
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a b

Fig. 3. The dependence of maximal non-zero Lyapunov’s characteristic exponent from
F (a), phase-parametric characteristic of the system (b).

regimes as well as the bifurcation points, at passing of which, regime changes
from regular periodic to chaotic. So in this case, at decreasing the parameter
F , transition to chaos happens through the infinite cascade of period-doubling
bifurcations according to the Feigenbaum’s scenario.

In order to determine the class of universality for the system (1), we need
to calculate the Feigenbaum’s constant, which is determined by the formula:

δ = lim
n→∞

δn = lim
n→∞

Fn − Fn−1

Fn+1 − Fn
, (3)

where Fn – value of the bifurcation parameter at the n-th point of period-
doubling bifurcation.

Bifurcation values of Fn correspond to the approaches of maximal Lya-
punov’s exponent to the zero line (fig. 3a) or to the cleavage points of separate
branches of ”bifurcation tree” in fig. 3b. We should mention, that for a correct
calculation of the Feigenbaum’s constant the bifurcation values of Fn must be
determined with a sufficiently high accuracy. Therefore using fig. 3 we ini-
tially roughly define the interval of the parameter F variation that contains
the first bifurcation point. As can be seen from fig. 3, 0.26 < F1 < 0.27. Then
we build the dependence of maximal Lyapunov’s characteristic exponent from
F and phase-parametric characteristic on the interval (0.26, 0.27) and specify
the value of the first bifurcation point. Repeating the procedure of decreasing
the interval of the parameter F variation and constructing the dependence of
maximal Lyapunov’s characteristic exponent from the parameter F and phase-
parametric characteristic on the smaller scale we can obtain the value F1 with
a sufficiently high accuracy. In order to verify the correctness of the bifurca-
tion point determination we build phase portraits of the system passing the
first point of bifurcation and make sure, that the structure of phase portraits
changes from single-turn cycle to two-turn cycle. Similar procedures are used
for defining the following period doubling bifurcation points.
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In our case, the values of bifurcation points were determined with an accu-
racy to ε < 10−7. At F = 0.265967 the attractor of our system is single-turn
limit cycle and at F = 0.265966 this cycle loses its stability and in the system
arises two-turn limit cycle. We take the average of this two values as the first
point of period-doubling bifurcation, so that we assume that F1 = 0.2659665.
At F = 0.211192 the system has two-turn cycle and at F2 = 0.2111915 the
second period-doubling bifurcation takes place and four-turn cycle arises in the
system as a result of it. This cycle loses its stability at F3 = 0.1971565 and
8-turn limit cycle arises in the system. The fourth and fifth period-doubling
bifurcations occur respectively at F4 = 0.1942145 and F5 = 0.1935835. As a
result 16- and 32-turn cycles appear in the system. At F6 = 0.1934483 32-turn
limit cycle loses its stability and 64-turn cycle arises in the system. This infi-
nite cascade of period-doubling bifurcations comes to end by origin of a chaotic
attractor.

Substituting the obtained values into the formula (3) we get:

δ2 = 3.90274, δ3 = 4.77056, δ4 = 4.66244, δ5 = 4.66720

We take the value δ5 = 4.66720 as an approximate value of the Feigenbaum’s
constant.

Let us show that the value of the Feigenbaum’s constant remains virtually
unchanged at different set of the parameters of the system (1). Let the pa-
rameters of the system are C = −0.1, D = −0.5, F = 0.14. As bifurcation
parameter we choose E that varies −0.77 ≤ E ≤ −0.6. In fig. 4a,b the de-
pendence of maximal non-zero Lyapunov’s characteristic exponent from E and
phase-parametric characteristic of the system are shown respectively.

a b

Fig. 4. The dependence of maximal non-zero Lyapunov’s characteristic exponent from
E (a), phase-parametric characteristic of the system (b).

The qualitative similarity of fig. 3a-b with the respective fig. 4a-b should
be noted . As in the previous case, there are several intervals of the parame-
ter change (in this case it is E) in which the system has positive Lyapunov’s
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characteristic exponent (fig. 4a). Therefore in these intervals the system has
chaotic attractors. Again in fig. 4a we can clearly see the approaches of maxi-
mal Lyapunov’s exponent to the zero line. The form of ”bifurcation tree” (fig.
4b) clearly illustrates the Feigenbaum’s scenario of transition to chaos. How-
ever, as opposed to the previous case, the infinite cascade of period-doubling
bifurcations takes place at increasing of the bifurcation parameter.

Let us find the values of the parameter E at which period-doubling bifur-
cations are happening. The methodology of obtaining these values is similar
to that which was used in the previous case for finding bifurcation values of
F . At E = −0.76763 the attractor of our system is single-turn limit cycle,
which loses its stability at E1 = −0.767625 and in the system arises two-turn
limit cycle. At E = −0.64983 the system still has two-turn limit cycle and
at E2 = −0.649825 the second period-doubling bifurcation takes place and
four-turn cycle arises in the system as a result of it.

This cycle loses its stability at E3 = −0.632405 and 8-turn limit cycle
arises in the system. The fourth and fifth period-doubling bifurcations occur
respectively at E4 = −0.629315 and E5 = −0.628666. As a result 16- and
32-turn cycles appear in the system. At E6 = −0.628527 32-turn limit cycle
loses its stability and 64-turn cycle arises in the system. This infinite cascade
of period-doubling bifurcations comes to end by origin of a chaotic attractor at
E = −0.62848. Using the formula (3) and respectively substituting the values
Ei instead of Fi into it, we get the following values:

δ2 = 6.76234, δ3 = 5.63754, δ4 = 4.76117, δ5 = 4.66906.

We take the value δ5 = 4.66906 as an approximate value of the Feigenbaum’s
constant.

The obtained values quite accurately match with the Feigenbaum’s con-
stant, which approximately equals 4.6692. This means that we can state that
the system (1) apply to class of universality with the classical Feigenbaum’s
constant.

5 Analytical approximation of Poincare map

In the previous studies of the ”pendulum–electric motor” [4]–[6] it has been
established that chaotic attractors that exist in this system, generally, have
”quasi ribbon” type of Poincare maps.

This means that the original system of differential equations can be approx-
imately reduced to one of the discrete maps [3], [1]. The study of the dynamics
of this discrete map will be much easier than investigation the dynamics of the
original system.

Let the system (1) has following values of parameters C = −0.1, D = −0.5,
E = −0.59, F = 0.19. At these values of the parameters in the system there is
a chaotic attractor. Its phase portrait is depicted in fig. 5.

In fig. 6 the Poincare maps of this chaotic attractor are shown. As can
be seen from this figure, the Poincare maps on both phase variables have a
structure that is close to a line on the plane. Both maps represent some chaotic
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Fig. 5. Phase portrait of the chaotic attractor at C = −0.1, D = −0.5, E = −0.59,
F = 0.19

set of points. Quantity of these points increases with increasing the time of
numerical integration. It is impossible to foresee the order of points placement
along ”the ribbons” that form the map. However, it is known beforehand that
they can only be placed along these ribbons.

a b

Fig. 6. The Poincare maps of the chaotic attractor.

Let us consider the Poincare map that is shown in fig. 6a. The graph of
this map is defined by a set of discrete coordinate values

(y1,n+1, y1,n), n = 1, 2, ..., N, (4)

where N – is a number of discrete points on which the Poincare map is con-
structed. Let us set the problem of finding the polynomial whose graph as close
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as possible to the points of the Poincare map. For this purpose, the LS method
has been used. For set of points (4) we find a m-order polynomial:

f (m)(y1) = p1y
m
1 + p2y

m−1
1 + ..pmy1 + pm+1, (5)

the coefficients of which are solution of the minimization problem

min
p1,p2,...,pm+1

N∑
i=1

(
f (m)(y1,i) − y1,i+1

)2
. (6)

The approximation errors have been estimated using the mean-squared error,

i.e. ε(m) =

√√√√ min
p1,p2,...,pm+1

N∑
i=1

(
f (m)(y1,i) − y1,i+1

)2
. Applying this method,

the following approximations have been obtained:

f (2)(y1) = −0.8377y21 − 3.8947y1 − 5.7267, ε(2) = 0.0506;

f (3)(y1) = −0.0067y31 − 0.8881y21 − 4.0199y1 − 5.8292, ε(3) = 0.0505;

f (4)(y1) = −0.5365y41 − 5.3596y31 − 20.778y21 − 36.6289y1 − 25.7282,

ε(4) = 0.0096.

Then, the only approximation errors are shown:

ε(5) = 0.0087, ε(6) = 0.0082, ε(7) = 0.0081, ε(8) = 0.0081.

It is seen that with the increasing the polynomial order, starting from the
order m = 4, the approximation accuracy increases insignificantly.

Fig. 7. The Poincare map and its second-order polynomial approximation
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The fig. 7 shows an enlarged fragment of the constructed polynomial
f (2)(y1) (continuous line in the figure) that is overlaid on the Poincare map.
As can be seen from this figure, these two graphs are close enough to each
other. Therefore, this gives us basis to consider the principal possibility to
study the continuous system ”pendulum–electric motor” (1) using discrete map
y1,n+1 = f (2)(y1,n). More accurate results will be obtained when the maps
y1,n+1 = f (m)(y1,n), m = 4 ÷ 8 are used.

6 Conclusion

At the study of the dynamical system ”pendulum–electric motor”, the atlas of
maps of dynamical regimes has been constructed. It has been established that
deterministic chaos is a typical steady-state regime of the given system. The
Feigenbaum’s constant of system ”pendulum–electric motor” is obtained. The
class of universality of the given system is defined. The analytical polynomial
approximations of the Poincare map have been found.
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Abstract: We have analyzed experimental temperature time series from a horizontal 

turbulent heated jet, in order to identify the jet axis location using non linear measures. 

The analysis was applied on both, the original time series as well as on the extreme value 

(minimum and maximum values) time series. In our analysis we employed mainly non-

linear measures such as mutual information and cumulative mutual information. The 

results show that the analysis of the extreme values time series using cumulative mutual 

information permits to distinguish the jet axis time series from the rest of the jet, as well 

as discriminate regions of the jet located close to jet axis or close to the boundaries. 

Furthermore, it is of interest that the application of simple statistical measures and 

clustering techniques shows that the use of extremes time series let us distinguish with 

greater confidence the jet axis than the use of the original one. 

Keywords: Non-linear time series analysis, turbulence, mutual information, cumulative 

mutual information, clustering. 
 

1    Introduction 

Jet flow is a very important research subject that has attracted scientific interest 

due to extensive applications in environmental engineering. So far a large 

number of investigations have been carried out to locate the trajectory and 

understand the turbulence properties of the flow using statistical methods which 

do not necessarily lead to understanding the dynamics of the flow [3, 19]. 

The transition from laminar to turbulent flow in a jet has been extensively 

studied as a fundamental non linear dynamical problem [4, 5, 17, 25]. The study 

of dynamical systems by analysis of the time series of a variable measured in a 

physical system, is of particular interest over the last decades, and gives the 

possibility of comprehension the underlying system dynamics. Time series 

analysis may include linear and non linear methods. The linear analysis includes 

simple statistical measures such as autocorrelation function and power 

spectrum, while non linear analysis methods based on the reconstruction of 

phase through spaces include the mutual information and correlation dimension. 

For a concise review of these methods one can consult the book by Kantz and 

Schreiber (1995) [10] and Abarabnel (1996) [1]. These more complex methods 
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allow us to extract more detailed characteristics of the underlying dynamical 

system. 

In this paper linear and non linear measures are used to analyze temperature 

fluctuation time series. Our aim was to study the dynamic characteristics of the 

temperature fluctuation experiment. More specifically we analyze the 

temperature fluctuation measurements recorded using fast response thermistors 

along a horizontal line in order to investigate if one can discriminate time series 

corresponding to regions close to the jet axis, where conditions of fully 

developed turbulence are expected, from time series corresponding to regions 

that are more distant and from those close to the boundary with the ambient 

water. Horizontal buoyant jet investigations [2, 6, 9, 18] are mainly concerned 

with the structure of the flow. 

The novelty of the present work is that the analysis was applied both on the 

original time series as well as on the extreme value (minimum and maximum 

values) time series. The initial time series is reduced to a series (extreme time 

series) of successive pairs of minimum and maximum values. The objective of 

our analysis is to investigate whether it is possible that a time series of extreme 

values can reveal dynamic characteristics of the underlying system in the same 

or better way as the analysis of the original time series. One can easily 

understand that the interest is important, since this would permit us to study 

dynamical systems using reduced information.  
 

The structure of the paper is as follows. In Sec. 2 we discuss briefly the 

theoretical background and the experimental set-up for the temperature 

measurements. In Sec.3 we present the methodology employed for data analysis 

along with the linear and nonlinear measures. The results and discussion are 

presented in Sec. 4.  Finally the conclusions are presented in Sec. 5.  

 

2    Theory and Experimental Set-up 

2.1 Theory  

A horizontal heated round jet of diameter D  and density ορ  flows out of a 

nozzle with velocity U  in a calm ambient fluid of density αρ . The specific 

volume, horizontal momentum and buoyancy fluxes are defined as 
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respectively, where g  is the gravitational acceleration and '

og  the effective 

gravity that will subsequently produce vertical momentum flux. Fisher et al. 

(1979) [7] have defined two characteristic length scales as:  
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the ratio of which is the initial jet Richardson number  
oR :
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where 
oF  is the initial densimetric Froude number.  

The temperature difference between the jet and ambient fluid produces the 

density deficiency that is responsible for the initial jet specific buoyancy flux. 

The dilution S  at a point of the jet flow field is defined to be the ratio:  
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=

−                                                    (4) 

 

Where 
oT  is the initial jet temperature 

aT  the ambient temperature and the T  

the local time-averaged temperature. Jirka (2004) [8] has defined the jet axis to 

be the point of minimum dilution Sc: 

 

o a

c

c a

T T
S

T T

−
=

−                                                    (5) 

 

where 
cT  is the maximum time-averaged (centerline) temperature. We define 

cx  and cy  the horizontal and vertical distances from the nozzle where the jet 

axis is located. Near the nozzle ( )1/ <Mlx  the jet trajectory is horizontal, the 

flow is mainly driven by the initial momentum flux and it is characterized as jet-

like [18]. When ( )2/ >Mly  the trajectory of the flow is altered to vertical and 

the flow is characterized as plume-like. The flow regime ( )5/1 << Mlx  is the 

transition from jet-like to plume-like flow [18], [21]. 

 



                 Charakopoulos et al. 208

2.2 Experimental setup 

The experiments were performed at the Hydromechanics and Environmental 

Engineering Laboratory of the University of Thessaly [20]. The dispersion tank 

is made of 12.5mm thick Lucite with orthogonal horizontal section 0.90m x 

0.60m and 0.80m depth. A perspective view of the experimental setup is shown 

in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig. 1. Perspective view of the experimental setup 
 

The tank was equipped with a peripheral overflow to remove excess water. In 
this mater the depth of water is fixed at 77 cm. The hot water jet supply consists 
of a water heater made of stainless steel, which is well insulated and pressurized 
by air at 2 atm, to provide adequate constant head pressure to drive to jet. 
During the water heating, a recirculating pump was used to ensure that the hot 
water is well mixed and there are no temperature gradients. An insulated pipe 
drives the water from the heater into the jet plenum, through a calibrated flow 
meter. A jet nozzle of 0.65cm diameter was used. The jet water temperature was 
around 60 ºC, while the ambient water temperature ranged between 18 to 20 ºC. 
Temperature measurements were obtained by an array of eight fast response 
thermistors spaced equally at 1cm apart, positioned at constant elevation from 
the nozzle, on the plane of symmetry of the buoyant jet. The jet was made 
visible by means of a slide projector on a semitransparent paper sheet 
(shadowgraph) in order to place the rake of thermistors properly. In this paper, 
we use the data recorded at an elevation of 5cm above the nozzle axis. The 
initial parameters of the flow are shown in table 1. We analyzed 24 recordings 
of temperature time series, one for each location of measurement, where the 
sampling time at each location was 30s at a frequency of 200Hz. 
Comprehensive details about the experimental setup can be found in 
Karakasidis et al (2009) [11]. 
 

Table 1. Experimental conditions  

D(cm) W(cm/s) To(
oC) Ta(

oC) M(cm4/s2) B(cm4/s3) Re lm(cm) Ro yc/lm 

0.65 29.25 60 17.8 284 149 1646 5.66 0.102 0.883 

X=7.5 X=30.5 

Close to jet 

axis 
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3.    Time series analysis 

3.1  Methodology 

In an effort to discriminate the jet axis time series from the rest of the jet we 

used linear and nonlinear measures applied both on the original time series as 

well as on the extreme value (minimum and maximum values) time series. The 

initial time series is reduced to a series (extreme time series) of successive pairs 

of minimum and maximum values following the methodology by D.Kugiumtzis 

et al., 2006 [14]. The goal of this work was to examine if simple linear and non 

linear methods such as cumulative mutual information, can discriminate 

different states of systems from the analysis of the reduced length time series, 

instead of the full original time series. 
 

3.2 Data set – Extreme time series model 

As already mentioned 24 time series of temperatures have been recorded using 

fast response thermistors along a horizontal line of a fully developed turbulent 

heated jet. Consequently some of the time series correspond to conditions of 

turbulent flow (time series derived close to centerline of the jet) while other time 

series, obtained close to the boundary between the heated jet and the ambient 

water, have intermittent (laminar and turbulent) flow characteristics. Each time 

series consist of 6000 observations.  

We derived new extreme time series of successive maximum and minimum 

values from each initial time series. Suppose we have a time series of length N , 

( )tχ , 1,2,....t N= . If  
1 1

( )y tχ=  the first minimum, 
2 1 ...

( )y tχ +=  the first turning 

point (maximum), 
3 2 ...

( )y tχ +=  the second turning point (minimum) etc we 

extract from the initial time series the time series
1 2 3

( ) , , ,.....
n

y t y y y y=  called 

extreme time series. The extracted time series have lengths varying from N=130 

to 1500 depending on the structure of the initial time series. 

An example of a whole initial and extreme time series is shown in Fig. 2(a). In 

Fig. 2 (b) a zoom of a segment of the initial temperature time series of Fig 2(a) 

is presented.  
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Fig. 2. (a)  Initial and extreme time series. (b)  Segment of initial and extreme 

time series. 
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3.3 Nonlinear measures 

The most widely known nonlinear measure, which is used to select the 

appropriate delay time τ for state space reconstruction is the Mutual Information 

Ι(τ) and is defined as: 

x(ti),x(ti+ )

P(x(ti),x(ti+ ))
I( )= P(x(ti),x(ti+ ))*log[ ]

P(x(ti))*P(x(ti+ ))τ

τ
τ τ

τ
∑                      (6) 

Where ( )ix t is the i
th

 data point of time series, max
( 1, 2,..... )k t k kτ = ∆ = ; 

( )( )
i

P x t  is the probability density at ( )
i

x t ; ( )( , ( ))
i i

P x t x t τ+  is the joint 

probability density at ( ) ( ),
i i

x t x t τ+ ; τ is the delay time. 

The delay τ of the first minimum is chosen as a delay time for the reconstruction 

of phase space. 

We also used a new nonlinear measures the Cumulative Mutual Information  

max
( )M τ , defined as the sum of mutual information Ι(τ)  D.Kugiumtzis et al., 

2007 [14] for a number of delay τ. 

 

    

max

max

1

( ) ( )M I
τ

τ

τ τ
=

= ∑                                                 (7) 

 

3.4 Clustering analysis using the Cumulative Mutual Information 

function 

Clustering is an important technique that groups together similar data sets. 

Several studies used clustering methods based on mutual information [23, 24]. 

In our study we used single linkage hierarchical clustering algorithm in order to 

classify our data. The clustering techniques applied both on the original time 

series as well as on the extreme value (minimum and maximum values) time 

series. As a measure of similarity we used the Cumulative Mutual Information.  

One of the main advantages of hierarchical clustering is that a dendrogram can 

be drawn to find the appropriate number of clusters in a dataset. Briefly we 

propose the following clustering algorithm steps: 

o We compute the Euclidean distance y between pairs of objects in n-by-p 

data matrix X. Rows of X correspond to observations; columns correspond 

to variables. 

o We create a hierarchical cluster tree z from the distances in y (y is a 

Euclidean distance matrix or a more general dissimilarity matrix, formatted 

as a vector). 

o Finally we group the data set into clusters. The most dependent data are 

grouped together. 
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4. Results and Discussion 

During the experiment the jet axis (at elevation 5cm above the nozzle axis) was 

located by optical measurements nearly at the midpoint between the jet 

boundaries (x=16.5 – 17.5 cm). This was also supported by the behavior of the 

average temperatures observed in these time series, as well as from Recurrence 

Plot analysis [11]. It is well known from the theory of fluid mechanics that 

turbulence near the center of the jet is fully developed. There appear many 

short-lived small scale turbulent structures, while near the jet boundary the large 

scale flow structures live longer.  

We calculated the mutual information function for both, the original as well as 

for the extreme data series and the results are presented in Figs. 3(a)-(b). In Fig. 

3 (b) we observe that for the extreme time series reported at x=16.5 cm and 

x=17.5 cm (points which are near jet axis) the mutual information function 

clearly attains the lowest values for any value of the time delay, if compared to 

the results for the rest of the time series. Such behavior is consistent with what 

we expected since close to the jet centreline the memory of the flow structures is 

lost fast.  

             (a) 
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Fig. 3. (a)  Mutual information of the Initial time series along the horizontal line. 

(b) Mutual information of the Extreme time series along the horizontal line 

 

In Fig. 3(a) we can see that there are time series presenting the smallest local 

minimum but not the lowest values of average mutual information which 
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correspond in fact to regions in or close to the ambient water, while time series 

close to the jet axis (close to x=17.5cm) present the lowest values of average 

mutual information although for larger lags. As we get far from the jet axis ,but 

always in the turbulent jet region, average mutual information increases and 

time lags of the minimum are shifted toward larger times. We must however 

bear in mind that the time lags are not directly compared for the original and the 

extreme time series, since the distance between successive points varies. 

 

In Fig.4 (a) and (b) we summarize results for the cumulative mutual information 

for the original and extreme time series. A close look in Fig. 4(b), where the 

cumulative mutual information for the extreme time series is presented, 

indicates that we can discriminate three main regions corresponding to time 

series. The first region corresponds to a set of time series toο far from the 

centerline of jet (x=7.5cm, x=27.5cm, x=28.5cm, x=29.5cm, x=30.5cm). The 

second region corresponds to a set of time series very close to the center of jet 

(x=16.5cm, x=15.5cm, x=17.5cm, x=18.5cm, x=19.5cm). The third region 

corresponds to a set of time series (x=9.5cm, x=21.5cm, x=22.5cm, x=23.5cm) 

far from the center of jet but not as much as the time series from the first region.  
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(b) 
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Fig. 4. (a)  Cumulative Mutual information of the Initial time series along the 

horizontal line. (b) Cumulative Mutual information of the Extreme time series 

along the horizontal line 

 

It is of interest to note that such a detailed discrimination of the three regions is 

not so straightforward in Fig. 4(a) where the cumulative mutual information 

from the original time series is presented. 

 

Furthermore we evaluate the discriminating power of cumulative mutual 

information, applying a clustering algorithm to the set of our cumulative mutual 

information time series. For the clustering we used the algorithm described in 

paragraph 3.4. The hierarchy built by the clustering algorithm based on 

cumulative mutual information from reduced and original time series is 

represented by the dendrograms given in Fig. 5 and Fig.6. 
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Fig. 5. (a), (b), and (c)  Dendrogram Cumulative Mutual information of 

the Extreme time series along the horizontal line at different cut point 
 

 

In Figure 5(a) we present the hierarchy clustering of each extreme time series. 

We decided to make two ΄΄cuts΄΄ at the dendrogram at different levels of 

distance (vertical axis). In Fig. 5(b), the first ΄΄cut΄΄ is made at distance~16, 

where one can clearly see two main partitions. One main group consisted from 

the time series at x=7.5cm, x=26.5cm, x=27.5cm, x=28.5cm, x=29.5cm, 

x=30.5cm. This group corresponds to the region toο far from the axis of the jet. 

The second main cluster includes the remaining time series. This first step is 

important because we can exclude the time series time series corresponding to 

the edges of the measuring area.  

 

In Fig. 5 (c) we can see the dendrogram which results in from the second ΄΄cut΄΄ 

at distance~3.5. We can see more clearly some major cluster and some smaller. 

Specifically the time series at x=23.5cm, x=24.5cm, x=20.5cm and at x=9.5cm, 
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x=21.5cm, 22.5cm join and at x=21.5cm, x=10.5cm, x=19.5cm is joined with 

x=18.5cm. These above partitions correspond to a set of time series far from the 

center of jet but not as much as the time series from the first step (x=7.5cm, 

x=26.5cm, x=27.5cm, x=28.5cm, x=29.5cm, x=30.5cm). 

Moreover in Fig. 5 (c) we can distinguish other some small clusters which 

include the time series at x=15.5cm, x=14.5cm, x=20.5cm and x=13.5cm, 

x=12.5cm, x=17.5cm. We can notice that the time series at x=16.5cm 

correspond close to the centerline of jet is separate from other.  
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Fig. 6. Dendrogram Cumulative Mutual information of the Initial time series 

along the horizontal line. 

 
As we can see in Fig 6 where the results for the cumulative mutual information 

resulting from the analysis of the original time series are presented, there are 

several clusters without the same discriminating structure observed from the 

analysis of the extremes time series (Fig.5). 

 

5. Conclusions  

In this work we have investigated a new approach in order to detect the jet axis 

of temperature time series derived from experimental data. The novelty of this 

study is that the analysis was applied both on the original time series as well as 

on the extreme value (minimum and maximum values) time series. More 

specifically we focus to a new measure the Cumulative Mutual Information, and 

we showed that it can discriminate the underlying dynamics from one time 

series to another. Another important issue is that the performance of the 

Cumulative Mutual Information was applied to a reduced length time series 

(extreme time series) and showed that it has higher discriminating power than in 

the original time series. This issue is very important if we take into account the 
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size of the computational analysis of original data due to the length of the time 

series.  
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Abstract: Changes in EEG time series before, during and after removing a pain 

syndrome by applying the psychorelaxation technique are examined for healthy subjects 

and patients with chronic psychogenic pain disorders connected with disruptions of 

interrelations between cortex and subcortex on the thalamic and the brain-stem level. The 

degree of psychorelaxation and decrease of the pain syndromes is estimated as a change 

in the multifractality degree gained by the wavelet transform modulus maxima method. 

For the healthy subjects we observe the reliable decrease of the multifractality degree and 

the enhancement of the anticorrelated dynamics of consecutive EEG values during the 

pain and their recovery up to the previous values during psychorelaxation. The all 

healthy subjects notice that the pain syndrome disappears. The analogous dynamics in 

the multifractality and the improvement of the functional state are observed only for 70% 

“thalamic” patients. For other 30% patients of the group the multifractality degree 

remains less than for the healthy subjects. For all the “brain-stem” patients during 

relaxation the multifractality degree remains high and the singularity spectrum 

corresponds to both the correlated and anticorrelated dynamics. The study demonstrates 

that the changes in the multifractality give a good ability to estimate the psychorelaxation 

efficiency for the healthy and pathological human brain. 

Keywords: EEG, Psychorelaxation technique, Multifractal analysis.  

 
1    Introduction 

It is well known that bioelectrical activity of the human brain recorded from the 

head surface as electroencephalography signal (EEG) can be considered as 

oscillatory processes exhibiting clearly defined variability and having the 

chaotic and fractal properties [2, 9]. Fractal dynamics of EEG is supported by 

the form with step-like features and some sort of self-similarity at least 

stochastically. In other words, on small scales EEG patterns are not identical to 

the whole signal but the self-similarity remains after averaging by statistically 

independent samples of the signal. Multifractality of the human brain is found in 

EEG time series in both healthy and pathologic states [5, 7]. The present work is 

devoted to the comparative analysis of the multifractality degree in EEG 

patterns of normal and pathological brain activities. Impairments connected with 

anxious phobic disorders are considered as pathology. Chronic pain complaints 

are specific for patients suffering these disorders. These complaints frequently 
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are not confirmed by medical research and accompanied by emotional 

disturbances leading to a significant reduction in the level of social functioning 

[4]. Neural disorders of this type are rather resistant to medicinal treatment. That 

is why the development of various psychotherapeutic methods is of interest to 

clinical practice. These methods sometimes allow removing pain symptoms. 

One of the methods is psychorelaxation technique [3] in which the 

psychorelaxation is in switching attention from the pain sense on the perception 

of color spots arising spontaneously in the state of concentrating on the pain 

locus with closed eyes. Switching attention from the pain intensity to the color 

spots is accompanied by decreasing the pain symptoms up to their complete 

disappearance. 

The aim of the work is to estimate the psychorelaxation efficiency for treatment 

of psychogenic pain in patients with anxious phobic disorders by the method of 

multifractal analysis. For solving the task we analyze EEG fragments recorded 

during the perception of psychogenic pain and during its removal by the 

psychorelaxation technique. 

 

2    Experimental procedure 

The scalp EEG data were recorded during 50 minutes with Ag/AgCl electrodes 

placed at the frontal F3, F4, Fz and occipital O1, O2, Oz sites from 15 healthy 

subjects and 18 patients with neural impairments connected with anxious phobic 

disorders. For healthy subjects the pain was evoked by a tactile stimulation on 

the midpoint between the first and second fingers during 1 minute. The pain was 

removed by psychorelaxation technique. For patients with psychogenic pain its 

reduction was perfomed during 10 - 20 psychorelaxation trials. So, the 

recordings were obtained for three states: before tactile pain stimulation (10 

minutes), during it (20 minutes) and during relaxation (20 minutes) for the 

healthy subjects and during psychogenic pain and in relaxation state for the 

patients with neural disorders. The psychorelaxation technique [3] was is in 

switching attention from the pain sense on the perception of color spots arising 

spontaneously when concentrating on the pain locus with closed eyes. Thus, in 

the psychorelaxation state the pain sense transformed into a color image by the 

patient brain. The observed color spots could appear as achromatic (black or 

grey) colors or chromatic (red, orange, yellow or blue) ones and they could 

change the color. As attention was shifted from the pain to the color spots and 

their color was changed, the patient’s condition could be improved up to the 

complete disappearance of pain symptoms. 

The data were sampled at a rate 256 samples/sec with a resolution of 12 

bits/sample. Then the data were digitally filtered using 1–45 Hz band pass filter. 

The each state included 256000 samples and it was divided into 20 segments of 

the duration 50 seconds. After repeated recordings 60 non- artifact segments of 

equal duration were randomly chosen from the sets: “before pain”, “during 

pain” and “during psychorelaxation”. 
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3    Estimation of EEG multifractality 

To estimate multifractal scaling properties of EEG time series we applied the 

wavelet transform modulus maxima (WTMM) method [1]. The algorithm of the 

method consists of the following procedures. 

1) The continuous wavelet transform of the time series describing the examined 

signal x(t): 
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is used. Here a and t0  are the scale and space parameters, ψ((t- t0)/a) is the 

wavelet function obtained from the basic wavelet ψ(t) by scaling and shifting 

along the time, symbol * means the complex conjugate. As the basic wavelet we 

use the complex Morlet wavelet: 
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The value ω=2π gives the simple relation between the scale a and the frequency 

f:  f=1/a. 

2) A set L(a) of lines of local modulus maxima of the wavelet coefficients is 

found at each scale  a. 

3) The partition functions are calculated by the sum of  q - powers of the 

modulus maxima of the wavelet coefficients along the each line at the scales 

smaller the given value a: 
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tl(a*) determines the position of the maximum corresponding to the line l at this 

scale. 

4) By the fact that the partition function is )(~),( qaaqZ τ at a→0 [1], the 

scaling exponent can be extracted as .log),(log~)( 1010 aaqZqτ  

5) Choosing different values of the power q one can obtain a linear dependence 

τ(q) with a constant value of the Hölder exponent constdqqdqh == )()( τ  for 

monofractal signals and nonlinear dependence )()()( hDqqhq −=τ with large 

number of the Hölder exponents for multifractal signals. 

6) The singularity spectrum (distribution of the local Hölder exponents) is 

calculated from the Legendre transform [1]:  ).()()( qqqhhD τ−=  
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Using the WWTM algorithm for the different EEG segments we obtain the 

multifractal parameter, namely, the width of the singularity spectrum 

∆h = hmax – hmin , where hmax  = h (q = – 5) and hmin = h (q = 5) are the maximal 

and minimal values of the Holder exponent corresponding to minimal and 

maximal fluctuation of the brain activity, respectively. Smaller ∆h indicates that 

the time series tends to be monofractal and larger ∆h testifies the enhancement 

of multifractality. To examine the differences between the mean values of the 

parameter obtained for all the segments of different sets of one subject the non-

parametric Mann-Whitney test ( p < 0.05) was applied. 

 

4    Results and discussion 

Power spectra of EEG of all the healthy subjects have no significant differences 

in three different states, namely, background (before the pain stimulation), 

during the pain stimulation and during psychorelaxation. Alpha activity [7 - 14] 

Hz dominates. 

Multifractal analysis enables us to distinguish the EEGs in the three states. For 

the all examined electrode sites the width of the singularity spectrum (∆h) 

decreases during the pain stimulation and recovers up to previous values after 

pain removing. In the all states hmax <0.5 (Fig. 1), hence, the singularity 

spectrum corresponds to anticorrelated dynamics of consecutive EEG values.  
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Fig. 1. The examples of singularity spectra of a healthy subject in three 

functional states (the curve denoted as “*” symbol corresponds the state before 

the tactile pain stimulation, the curve specified as “o” describes the state during 

the pain stimulus and the solid line corresponds to the psychorelaxation state. 

 

Thus, persistent sequences are characterized by stochastically “up - down” 

patterns. The decrease of hmax during the pain stimulation testifies about the 

enhancement of the anticorrelation degree, so that the signal becomes less 

smooth and more singular and the randomness of the fluctuations increases. 

Therefore, the interval time series tend to become more random during the pain 

stimulation and recover during relaxation. 
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The decline of the width of the singularity spectrum during the pain stimulation 

shows a reduction of nonuniformity of the signal and a fall in the multifractality 

degree. This fall is due to weak fluctuations (for q<0,  h>0), and аt strong 

fluctuations (q>0) the time series become monofractal (uniform by scaling 

characteristics) and the singularity spectrum transfoms into a point (h=const). 

In the state of concentration of the attention on the pain sense the all healthy 

subjects noticed achromatic colors (black or grey) and the short-wavelength 

colors (blue or green) in the relaxation state. The pain syndrome disappeared. 

The results agree with the previous data in which each color image caused a 

specified shift in the psychophysiological state of a subject and determined the 

presence of psychoemotional stress [6]. In the work [3] it has been revealed that 

psychotherapeutic influence relieving the stress, is accompanied by a reliable 

enhancement of colors of the short-wavelength part of visible light. 

The patients with neural disorders were separated into two groups accordingly 

to the classification [8]. For the first group of patients (10 subjects) the 

disruptions of interrelations between cortex and subcortex on the thalamic level 

were found in the rest state. It was expressed in changing thalamo – cortical 

(vertical) and thalamo – thalamic (horizontal) links. Except for alpha activity 

describing optimal cortico – subcorctical relations, the EEG time series of the 

patients included theta activity specified pathological changes in these relations. 

During the pain sense the power spectra are characterized by the increase in 

theta activity. It testifies about an enhancement of unstability of neurodynamic 

processes. During psychorelaxation theta activity falls in occipital sites of 45% 

of the group and remains or increases both in frontal and occipital sites (55% of 

the group). Improvement of psychophysiological state did not correlate with a 

decrease of theta activity. In other words, there were no reliable changes in 

power spectra. 

During concentrating on the pain locus the patients observed mainly the long-

wavelength colors (red, orange, yellow). These colors remained during the 

psychorelaxation for the 30% patients of the group. The other 70% patients 

noticed the transformation of color spots to the short-wavelength blue and the 

complete removal of the pain sense. 

Multifractal analysis shows the reliable changes in the electrical brain activity. 

In all states of the patients with disruptions on the thalamic level the Holder 

exponent values and the width of the singularity spectrum are less than the 
values obtained for the healthy subjects. It means that the degree of 

anticorrelation of persistent sequences of EEG is higher and the randomness of 

“up – down” patterns increases. It corresponds to the enhancement of unstability 

of neurodynamic processes in the brain of the patients as compared with the 

healthy subjects. 

During the pain sensation by the patients the multifractal parameter reduces in 

all electrode sites. During psychorelaxation the recovery of the Holder exponent 

values up to the values corresponding to the healthy subjects corresponds to the 

transformation of color spots to the short-wavelength blue (70% patients of the 

group) (Fig. 2). For other 30% patients the maximal values of the Holder 

exponent increase weakly during psychorelaxation and they do not reach the 
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values obtained for the healthy subjects. The width of the singularity spectrum 

remains less than for the healthy subjects. 
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Fig. 2. The examples of singularity spectra of a subject with disruptions of 

cortico – subcortical links on the thalamic level during the pain sense and during 

the psychorelaxation (the curve specified as “o” describes the state during the 

pain sensation and the solid line corresponds to the psychorelaxation state) 

 

Thus, the removal of pain syndromes for the first group patients corresponds to 

the fall in the degree of anticorrelation of persistent EEG sequences and decline 

of the randomness of “up – down” patterns observed in all electrode sites. 

Hence, the improvement of the functional state testifies about a decline of 

unstability of neurodynamic processes of the brain and optimization of cortico – 

subcortical links. 

For the patients of the second group (8 subjects) disruptions in cortico – 

subcortical relations manifest on the brain-stem level that leads as a rule to 

distortion of the stem – cortical and cortico – thalamic (vertical) links. It results 

to the significant suppression of the alpha component and emergence of the 

theta acitivity. It is accompanied by the large unstability of neurodynamic 

processes and amplification of the psychoemotional stress. So, the theta acitivity 

is prevalent in the all states of this group of the patients . The spectra decline 

with increasing frequency remembering the spectrum of the pink noise with its 

inverse proportionality to frequency (~1/f). 

The Holder exponent values and the width of the singularity spectrum are larger 

than the values obtained for the healthy subjects in all studied electrode sites. 

That is why the multifractality degree of the persistent sequences of EEG far 

exceeds the degree obtained for the healthy subjects. 

During the pain sense the singularity spectrum (0.1<h<0.9) corresponds to the 

both correlated dynamics (h>0.5) and anticorrelated dynamics (h<0.5) (Fig.3). 

During relaxation аt strong fluctuations (q>0) the Holder exponent values 

decline but the multifractality degree remains high and the singularity spectrum 

corresponds to both “up - down” and “up - up” patterns. 
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Fig3. The examples of singularity spectra of a subject with neural disorders on 

the brain stem level during the pain sense and during the psychorelaxation (the 

curve specified as “o” describes the state during the pain sensation and the solid 

line corresponds the psychorelaxation state) 

 

The transformation of achromatic dark color spots is not observed for 81% 

patients. For others 19% achromatic dark colors change into long - wavelength 

red or orange (distant from colors for the healthy subjects). The both cases are 

characterized by the similar changes in the singularity spectra and the absence 

of the improvement of the psychophysiological state. 

 

 

state color image width  ∆h, Qz width  ∆h, Fz pain removal 

healthy subjects: 

before pain  0.59±0.05 0.48±0.05  

during pain achromatic 

grey 

0.32±0.03 0.26±0.03  

relaxation blue or green 0.55±0.05 0.62±0.05 yes, in 100% 

patients with thalamic disorders: 

during pain red or yellow 0.28±0.03 0.21±0.03  

relaxation red, orange or 

yellow 

0.35±0.03 0.32±0.03 no, in 30% 

relaxation blue 0.52±0.05 0.59±0.06 yes, in 70% 

patients with brain – stem disorders: 

during pain achromatic 

black 

1.22±0.11 1.15±0.11  

relaxation black, red or 

orange 

1.03±0.10 1.07±0.10 no, in 100% 

 

Table 1. Comparison of the mean values of the width of the singularity spectrum 

obtained by averaging over subjects in different physiological states. The data 

are given for the Qz and Fz sites.  
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Training such patients to concentrate their attention on the pain locus and to 

switch attention on color spots arising spontaneously during 20 repeated 

trainings did not allow to remove the pain symptoms completely.  

 

The averaged data represented in Table 1 illustrate that the pain removal is 

accompanied by the recovery of the Holder exponent values up to the values 

corresponding to the healthy subjects. Thus, there is the relationship between the 

change of the multifractal parameter and the improvement of the 

psychophysiological state during psychorelaxation for the patients suffering 

psychogenic pain.  

 

5      Conclusions 

The study demonstrates that power spectra of the patients with neural disorders 

do not always reflect variations of the psychorelaxation degree. Contrastingly, 

the changes in the multifractal parameter give a good ability to estimate changes 

in the healthy and pathological brain activity. Multifractality of the healthy brain 

is statistically stable as well as stable its neurodynamics. The both cases of 

unstability in two studied groups of the patients with anxious phobic disorders 

are connected with deviation (in different sides) of the multifractal parameter 

from the values specified for the healthy brain. The recovery of the values 

correlates to the improvement of the psychophysiological state of the patients 

during psychorelaxation trials. That is why the multifractal analysis can be 

applied for estimating the psychorelaxation efficiency of the human brain. 
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