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Abstract: In the paper we focused on a general model for the growth of a single-species 
population with non-overlapping generations. The data we have used correspond to 
Nicholson’s blow-flies population and lie in the chaotic regime. The population was 
divided in two groups. If these groups evolve in distinct locations, their behavior is 
chaotic and, after a few generations, the initial small difference in number of individuals 
becomes big enough and behaves randomly. The question I want to answer in the paper 
is: What happens with the two populations if the individuals can migrate in both 
directions within the time intervals between their reproduction and death? The effect of 
coupling the two groups consisted in a rich dynamic behavior depending on the coupling 
strength. It was found that there is a consistent region where the coupling brings out the 
full synchronization of the two chaotic systems, two transition regions where an 
intermittent behavior was observed and two peripheral regions where control of chaos is 
shown to coexist with quasi-periodic and chaotic regimes. 
Keywords: Single-species populations, Synchronization, Intermittent chaos, Control of 
chaos.  
 

1. Introduction 
According to May [1], models for population growth in a limited environment 
are based on two fundamental premises: a) the populations have the potential to 
increase exponentially; b) there is a density-dependent feedback that 
progressively reduces the actual rate of increase. By using a variety of data from 
field and laboratory populations, some researchers have proposed continuous or 
discrete models of population growth. The most known of these models is the 
logistic equation (Verhulst, 1838). Other simple models were introduced by 
May (1974), Li & Yorke (1975), May & Oster (1976), and Hassel et al (1976). 
Their models, which refer to single-species population with discrete, non-
overlapping generation, predict that most of the populations show monotonic 
damping back to an equilibrium following a disturbance, with some exceptions 
of oscillatory damping or some sort of low-order limit cycles. They concluded 
that high-order limit cycles and chaos appear to be relatively rare phenomena in 
naturally occurring single-species populations. Guckenheimer et al (1987) have 
found that more realistic models of population growth, such as these that include 
overlapping generations, are more likely to exhibit complex behaviors. If data 
from laboratory population are used, even for these simple models, it was found 
that some populations will not exhibit stable equilibrium points but stable cycles 
or chaotic behavior [2]. That is because the laboratory situation (homogeneous 
environment, constant food supply, no competitors, no predators) make possible 
an exaggerated non-linear behavior. In this paper we focused on a general model 
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for growth of a single-species population with non-overlapping generations, 
namely 

                       ( ) ( ) b

tttt NaNNfN
−

+ +== 11 λ                                  (1) 

where tN and 1+tN  are the populations in successive generations, λ is the finite 

rate of increase and a, b are constant defining the density-dependent feedback 
term. The values for parameters correspond to Nicholson’s blowflies and lie in 
the chaotic regime [3].  
The population of blowflies was divided in two groups. If these groups evolve 
in distinct locations their behavior is chaotic and, after a few generations, the 
initial small difference in number of individuals becomes big enough and 
behaves randomly. The question I want to answer in the paper is: What happens 
with the two populations if the individuals can migrate in both directions within 
the time intervals between their reproduction and death? 
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Fig. 1. Divergence of the two isolated populations versus time 

 

2. The Model of Two-coupled Single-species Populations 
To answer the above question let us hereafter turn our attention towards the 
following system of two-coupled single-species populations: 

   ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]tttttttt MfNfcMfMNfMfcNfN −+=−+= ++ 11 ,      (2) 

where the coupling parameter c can be thought as the fraction of the two 
populations which migrate to the neighboring location. Throughout the paper I 

used the fixed parameter values 003.0,60 == aλ  and .6=b The total 

population 3950=tN was divided in two unequal groups, 1950=tN and 

.2000=tM  If no change between the groups was permitted, the initial small 

difference in number of individuals, 50=∆ tN , increased quickly and behaved 

chaotically (see Figure 1). The effect of coupling consisted in a rich dynamic 
behavior having the main features as follows. 
 

2.1. Complete synchronization 
If two or more chaotic systems are couple, it is possible that the attractive effect 
of a suitable coupling to counterbalance the trend of the trajectories to separate 
due to chaotic dynamics. Synchronization of chaotic systems can be explained 
by the suppression of expanding dynamics in the state space transversal to the 

synchronization manifold (here tt NM = ). It is natural then to ask for which 
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values of coupling strength c the two systems will oscillate in a coherent and 
synchronized way. 
Laureano et al [4] have demonstrated that, for this kind of coupling, the range of 
synchronization (in the linear approximation) is given by  

                      ( ) ( ))exp(_15.0)exp(15.0 uu c λλ −<<−−                             (3) 

where uλ is the Lyapunov exponent for the uncoupled map f. For our data it 

was found that 35.0≅uλ , so ( ) Sc =∈ 85.0;15.0 .As an example, let consider 

16.0=c . The synchronization takes place after 200 generations (see figure 2). 
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Fig. 2. Evolution to synchronous state for 16.0=c  

 

Each of the systems shows chaos and their states are identical at each moment in 
time (full synchronization). To verify that the synchronous state is chaotic, a 
Lyapunov exponent versus coupling strength diagram was considered (see 
Figure 3. 
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Fig. 3. Lyapunov exponent versus coupling strength 

  

If c is chosen deep inside the interval S, the synchronous state is reached after 
only few steps (see Figure 4). Otherwise, if c is chosen near the borders of S the 
synchronization is hard to obtain, a lot of steps being necessary (e.g. 2000 steps 

for 15.0=c . 
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Fig. 4. Evolution to synchronous state for 25.0=c  

 

2.2. Intermittent chaos 
If the coupling strength c falls short of the critical value 15.0=critc the 

synchronized state tt NM = becomes unstable and an intermittent dynamics is 

observed.  Figure 5 shows the time evolution of the transverse coordinate 

ttt MNDN −= for 1467.0=c . The time periods of synchronicity are 

interrupted by aperiodic chaotic bursts.  

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-600

-400

-200

0

200

400

600

800

t

D
N

t

Synchronization in time

 
Fig. 5. Time periods of synchronicity interrupted by aperiodic chaotic bursts 

( 1467.0=c ) 
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Fig. 6. A completely erratic state for 14.0=c  
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The basic intermittency mechanism comes from the competition between the 
trajectory instability of chaotic elements and the synchronization tendency due 
to the diffusion-type coupling [8]. For 14.0=c  the chaotic bursts were already 
merged so the synchronization started to dissolve into a completely erratic state 
(see Figure 6). 

 

2.3. Stabilization to an ordered state 
Outside the interval of synchronization the dynamics is quite complicated. For 

very small values of c (weak coupling) the system behaves chaotically, the tN  
values being distributed over an entire interval. By increasing c the chaotic 

distribution of tN  comes undone in strips, thinner and thinner (see Figure 7). 
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Fig. 7. A part of the bifurcation diagram )(cNN tt=  

 

At 007.0≅c the system entered a periodic regime, and was subjected to a 

sequence of changes from a n2 - period cycle to a 12 −n - period cycle.  A 8-

period cycle was obtained for ( )0080.0;0072.0∈c (see Figure 8). 

Then, a quasi-periodic regime with two strips appeared (Figure 9) which, in its 

turn, was changed by a 2-period cycle for ( )11.0;013.0∈c . This periodic 

regime is interrupted by windows corresponding to a 4-period cycle or even to 
thin windows of chaotic regime. 
Beginning with 1.0≅c the number of steps required for stabilization to the 2-
period cycle became bigger and bigger so, finally, the chaotic regime was 

reached. An analogous discussion can be done for ( )1;85.0∈c . 
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Fig. 8. Time evolution of tt MN ,  for 0079.0=c (8-period cycle) 
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Fig. 9. Time evolution of tN for 99.0=c (quasi-period regime) 

 

3. Conclusions 
The dynamics for many biological populations, which breed seasonally and 
have non-overlapping generations, are described by a density-dependent relation 

of the form ( ) ( ) b
tttt NaNNfN
−

+ +== 11 λ  . If data from laboratory tests are 

used it was found that populations can exhibit even a chaotic behavior. Two 
almost identical populations, living in distinct locations, evolved so that the 
initial small difference in number of individuals became big enough and 
behaved randomly. If the individuals representing the two populations could 
migrate in both directions within the time intervals between their reproduction 
and death then a rich dynamic behavior depending on the coupling strength was 
observed. It was found that there is a consistent region where the coupling 
brings out the full synchronization of the two chaotic systems, two transition 
regions where an intermittent behavior was observed and two peripheral regions 
where control of chaos is shown to coexist with quasi-periodic and chaotic 
regimes. 
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