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Long ago it was stated [7,5] that quantum vortices in superfluid helium can
be studied either as open lines with their ends terminating on free surfaces of
walls of the container or as closed curves. Nowadays the closed vortices are
treated as topological objects equivalent to circles. The existence of structures
such as knotted and linked vertex lines in the turbulent phase is almost obvi-
ous [12] and has forced researchers to develop new mathematical tools for their
detailed investigation. In this proposed direction Z. Peradzyński [8] proved a
new version of the Helicity theorem, based on differential-geometric methods
applied to the description of the collective motion in the incompressible su-
perfluid. The Peradzyński helicity theorem describes in a unique way, both
the superfluid equations and the related helicity invariants, which are, in the
conservative case, very important for studying the topological structure of vor-
tices.

By reanalyzing the Peradzyński helicity theorem within the modern sym-
plectic theory of differential-geometric structures on manifolds, we propose a
new unified proof and give a magneto-hydrodynamic generalization of this the-
orem for the case of an incompressible superfluid flow. As a by-product, in
the conservative case we construct a sequence of nontrivial helicity type con-
servation laws, which play a crucial role in studying the stability problem of a
superfluid under suitable boundary conditions.

1 Symplectic and symmetry analysis

We consider a quasi-neutral superfluid contained in a domain M ⊂ R3 and
interacting with a “frozen” magnetic field B : M −→ E3, where E3 := (R3, <
., . >) is the standard three-dimensional Euclidean vector space with the scalar
< ., . > and vector “×” products. The magnetic field is considered to be
source-less and to satisfy the condition B = ∇ × A, where A : M −→ E3 is
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some magnetic field potential. The corresponding electric field E : M −→ E3,
related with the magnetic potential, satisfies the necessary superconductivity
conditions

E + u×B = 0, ∂E/∂t = ∇×B, (1)

where u : M −→ T (M) is the superfluid velocity.
Let ∂M denote the boundary of the domain M . The boundary conditions

〈n, u〉|∂M = 0 and 〈n,B〉|∂M = 0 are imposed on the superfluid flow, where
n ∈ T ∗(M) is the vector normal to the boundary ∂M , considered to be almost
everywhere smooth.

Then adiabatic magneto-hydrodynamics (MHD) quasi-neutral superfluid
motion can be described, using (1), by the following system of evolution equa-
tions:

∂u/∂t = −〈u,∇〉u− ρ−1∇P + ρ−1(∇×B)×B,

∂ρ/∂t = −〈∇, ρu〉, ∂η/∂t = −〈u,∇η〉, ∂B/∂t = ∇× (u×B),
(2)

where ρ : M −→ R+ is the superfluid density, P : M −→ E3 is the internal
pressure and η : M −→ R is the specific superfluid entropy. The latter is
related to the internal MHD superfluid specific energy function e = e(ρ, η)
owing to the first law of thermodynamics:

T dη = de(ρ, η)− Pρ−2dρ, (3)

where T = T (ρ, η) is the internal absolute temperature in the superfluid. The
system of evolution equations (2) conserves the total energy

H :=

∫
M

[
1

2ρ
|µ|2 + ρe(ρ, η) +

1

2
|B|2

]
d3x, (4)

called the Hamiltonian, since the dynamical system (2) is a Hamiltonian system
on the functional manifold M := C∞(M ;T ∗(M) ×R2 × E3) with respect to
the following [4] Poisson bracket:

{f, g} :=
∫
M

{
〈µ, [ δfδµ ,

δg
δµ ]

c
〉+ ρ

(
〈 δgδµ ,∇

δf
δρ 〉 − 〈

δf
δµ ,∇

δg
δρ 〉
)

+η〈∇, ( δgδµ
δf
δη −

δf
δµ

δg
δη )〉+ 〈B, [ δgδµ ,

δf
δB ]c〉

+〈 δfδB , 〈B,∇〉
δg
δµ 〉 − 〈

δg
δB , 〈B,∇〉

δf
δµ 〉
}
dx,

(5)

where we denoted by µ := ρu ∈ T ∗(M) the specific momentum of the superfluid
motion and by [., .]c the canonical Lie bracket of variational gradient vector
fields:

[
δf

δµ
,
δg

δµ
]
c

:= 〈δf
δµ
,∇〉 δg

δµ
− 〈 δg

δµ
,∇〉δf

δµ
(6)

for any smooth functionals f, g ∈ D(M) on the functional spaceM. Moreover,
as was shown in [4], the Poisson bracket (5) is, in reality, the canonical Lie–
Poisson bracket on the dual space to the Lie algebra G of the semidirect product
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of vector fields on M and the direct sum of functions, densities and differential
one-forms on M . Namely, the specific momentum µ = ρu ∈ T ∗(M) is dual
to vector fields, ρ is dual to functions, η is dual to densities and B is dual to
the space of two-forms on M . Thus, the set of evolution equations (2) can be
equivalently recast as follows:

∂u/∂t = {H,u}, ∂ρ/∂t = {H, ρ},

∂η/∂t = {H, η}, ∂B/∂t = {H,B}.
(7)

The Poisson bracket (5) can be rewritten for any f, g ∈ D(M) as

{f, g} = (Df, ϑ Dg), (8)

with Df :=
(
δf
δµ ,

δf
δρ ,

δf
δη ,

δf
δB

)
∈ T ∗(M) and ϑ : T ∗(M) −→ T (M), being the

corresponding (modulo the Casimir functionals of bracket (5)) invertible [3]
co-symplectic operator, satisfying the standard [10,2] properties

ϑ∗ = −ϑ, δ(δw,∧ ϑ−1δw) = 0, (9)

where the differential variation complex condition δ2 = 0 is assumed, the dif-
ferential variation vector δw := (δµ, δρ, δη, δB) ∈ T ∗(M) and the symbol “∗”
denotes the conjugate mapping with respect to the standard bilinear convolu-
tion (., .) of the spaces T ∗(M) and T (M). Note here that the second condition
of (9) is equivalent [2,10] to the fact that the Poisson bracket (5) satisfies the
Jacobi commutation condition. Thus, one can define the closed generalized
variational differential two-form on M

ω(2) := (δw,∧ϑ−1 δw), (10)

which provides the symplectic structure on the functional factor manifold M
(modulo the Casimir functionals of bracket (5)). Owing now to the commuta-
tion property

[∂/∂t+ Lu, Lv] = 0, (11)

equivalent to the subgroup Dt and Dτ commuting for any suitable t, τ ∈ R,
from the invariance condition

∂ρ/∂τ = 0, (12)

we deduce that the quantities

γn := Lnvγ (13)

for all n ∈ Z+ are invariants of the MHD superfluid flow (2) if the density
γ ∈ Λ3(M) is also an invariant on M .

We construct the following new functionals on the functional manifold M

H̃n :=

∫
M

γ̃n d
3x =

∫
M

ρLnv (ρ−1〈B,A〉) d3x (14)
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for all n ∈ Z+, which are invariants of our MHD superfluid dynamical system
(2). In particular, when n = 0 we obtain the well-known [4] magnetic helicity
invariant

H̃0 =

∫
M

〈A,∇×A〉 d3x, (15)

which exists independently of boundary conditions, imposed on the MHD su-
perfluid flow equations (2).

The result obtained above can be formulated as the following theorem.

Theorem 1. The functionals (14), where the Lie derivative Lv is taken along
the magnetic vector field v = ρ−1B, are global invariants of the system of
compressible MHD superfluid and superconductive equations (2).

Below we proceed to a symmetry analysis of the incompressible superfluid
dynamical system and construct the related local and global new helicity in-
variants. The case of superfluid hydrodynamical flows [9] is of great interest
for many applications owing to the very nontrivial dynamical properties of
so-called vorticity structures appearing in the motion.

2 The incompressible superfluid: symmetry analysis and
conservation laws

The helicity theorem result of [8], where the kinematic helicity invariant

H0 :=

∫
M

〈u,∇× u〉 d3x (16)

was derived, employed differential-geometric tools in Minkowski space in the
case of an incompressible superfluid in the absence of a magnetic field (B = 0).
We shall now describe its general dynamical symmetry nature. The governing
equations are

∂u/∂t = −〈u,∇〉u+ ρ−1∇P, ∂ρ/∂t+ 〈u,∇ρ〉 = 0, 〈∇, u〉 = 0, (17)

where the density conservation properties

(∂/∂t+ Lu)ρ = 0, (∂/∂t+ Lu)d3x = 0 (18)

hold for all suitable t ∈ R. Define now the vorticity vector ξ := ∇×u and find
from (17) that it satisfies the vorticity flow equation

∂ξ/∂t = ∇× (u× ξ). (19)

Actually, the first equation of (17) can be rewritten as

∂u/∂t = u× (∇× u)− ρ−1∇P − 1

2
∇|u|2. (20)

Then, applying the operation “∇× · ” to (20), one easily obtains the vorticity
equation (19). Moreover, equation (19) can be recast in the equivalent form

∂ξ/∂t+ 〈u,∇〉ξ = 〈ξ,∇〉u, (21)
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which allows a new dynamical symmetry interpretation. Now, define β(1) ∈
Λ1(M) as the one–form

β(1) := 〈u, dx〉 (22)

and readily conclude that

(∂/∂t+ Lu)β(1) = −ρ−1dP +
1

2
d|u|2 = d(ρ−1P +

1

2
|u|2). (23)

We have shown that the following generalized functionals

Hn :=

∫
M

ρLnv (u× ξ) d3x (24)

for all n ∈ Z+are new helicity invariants for (17). Notice here that all of the
constraints imposed above on the vorticity vector ξ = ∇× u are automatically
satisfied if the condition supp ξ ∩ ∂M = ∅ holds. The result obtained can be
summarized as follows.

Theorem 2. Assume that an incompressible superfluid, governed by the set of
equations (17) in a domain M ⊂ E3, possesses the vorticity vector ξ = ∇× u,
which satisfies the boundary constraints Lnρ−1ξξ|∂M for all n ∈ Z+. Then all of

the functionals (24) are generalized helicity invariants of (17).

The results obtained above allow some interesting modifications. To present
them in detail, observe that equality (23) can be rewritten as

(∂/∂t+ Lu)β(1) − dh = (∂/∂t+ Lu)β̃(1) = 0, (25)

where, by definition,

h := ρ−1P +
1

2
|u|2, β̃(1) := 〈u−∇ϕ, dx〉, (26)

and the scalar function ϕ : M −→ R is chosen in such a way that

(∂/∂t+ Lu)ϕ = ∇h. (27)

Then, obviously, one obtains the additional equation

(∂/∂t+ Lu)dβ̃(1) = 0, (28)

following from the commutation property [d, ∂/∂t+Lu] = 0. Then, we see that
the density λ̃ := β̃(1) ∧ dβ̃(1) ∈ Λ3(M) satisfies the condition

(∂/∂t+ Lu)µ̃ = 0, (29)

for all t ∈ R. A similar result holds for densities λ̃n := Lnv λ̃ ∈ Λ3(M), n ∈ Z+;
namely,

(∂/∂t+ Lu)λ̃n = 0, (30)
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owing to the commutation property (11). Therefore, the following functionals
on the corresponding functional manifold M are invariants of the superfluid
flow (2):

Υn :=

∫
M

λ̃n =

∫
Dt

ρLnρ−1ξ〈(u−∇ϕ), ξ〉 d3x (31)

for all n ∈ Z+ and an arbitrary domain Dt ⊂ M , independent of boundary
conditions, imposed on the vorticity vector ξ = ∇ × u on ∂M . Notice here
that only the invariants (31) strongly depend on the function ϕ : M −→ R,
implicitly depending on the velocity vector u ∈ T (M). It should be mentioned
here that the practical importance of the constructed invariants (31) remains
to be fully clarified.

3 Conclusions

The symplectic and symmetry analysis of compressible MHD super-fluids de-
veloped above, appears to be an effective approach for constructing the related
helicity type conservation laws, which are generally important for practical ap-
plications. In particular, these conserved quantities play a decisive role [4,1]
when studying the stability of MHD superfluid flows under special boundary
conditions. Some of the results in this direction can also be obtained mak-
ing use of group-theoretical and topological tools developed in [1,13,11], where
the importance of the basic group of diffeomorphisms Diff(M) of a manifold
M ⊂ R3 and its differential-geometric characteristics were shown in consider-
able detail.
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