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Abstract. We consider a system of interacting elements that mimic certain proper-
ties of human perception, namely, the bounded capacity of ordering events, actions,
etc. according to their preference. Previously this feature was described by the no-
tion of dynamical traps, which is modified in the present work in order to take into
account the imperfectness of human perception of their own actions. Numerically we
demonstrate that the considered system under the presence of dynamical traps of a
new type exhibits complex dynamics, including highly irregular motion.
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1 Introduction

The employment of various physical models in social sciences could be observed
during last decades. Among the models that are used widely in studying coop-
erative phenomena in social systems are multi-particle dynamical models (see,
e.g., Helbing and Mólnar[1], Ohnishi[2]). Advances in this field, though, face
the fact that human beings indeed differ in their basic properties from the ob-
jects of the inanimate world described by Newtonian mechanics. This fact may
lead one to the problem of development of new physical notions that should be
introduced in addition to the well-studied ones of the modern physics in order
to reflect the essential aspects of human behavior in social systems.

Mathematical notion of equilibrium points is one of the cornerstones of
the modern physics; it is also widely used in social psychology (see, e.g., Val-
lacher[3]). However, human as a key acting element of the dynamical systems
is often not capable to clearly recognize the desired equilibrium position among
a certain set of its neighboring points in the corresponding phase space. This
feature of human cognition is referred to as bounded or fuzzy rationality (Dom-
pere[4]). The application of the dynamical traps notion as a mathematical
formalism for describing human fuzzy rationality was investigated by Luba-
shevsky[5]. To briefly review this concept, let us appeal to the car following
theory and consider hypothetical dynamical system controlled by an operator
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whose purpose is to maintain the system near the equilibrium point set to the
origin. The system of equations describing the system dynamics under the
control of the operator take the following form

ẋ = v,

v̇ = Ω(x, v)F (x, v, aopt(x, v)).
(1)

Here x and v are the system coordinate and velocity, respectively; aopt is opti-
mal in some sense control strategy chosen by the operator. The cofactor Ω(x, v)
equals unity for all values of (x, v) that are far enough from the equilibrium
point and Ω(x, v) � 1 in a certain neighborhood Qtr of the equilibrium point.
In order to explain the meaning of the cofactor Ω(x, v) we consider the behavior
of the operator who is approaching desired phase space position (x = 0, v = 0).
Let us assume that if the current position is far from the origin, the operator
perfectly follows the optimal control strategy. If the current position is recog-
nized by the operator as “good enough” ((x, y) ∈ Qtr) (though it may be not
strictly optimal) due to her fuzzy rationality, she halts active control over the
system so that the system dynamics is stagnated in a certain vicinity of the
desired position (in case of stable equilibrium). Therefore, Qtr is called the
area of dynamical traps.

Previous studies on the dynamical trap effect in chains of particles governed
by equations of form (1) have shown that it may cause complex cooperative
phenomena to arise in the systems under the presence of white noise (Luba-
shevsky et al.[6]), as well as in the systems without the influence of stochastic
factors (Lubashevsky[5]). However, it should be taken into account that in the
real world the operator cannot usually affect the system velocity directly as
prescribed by equations (1), e.g., in the car following the operator is not able
to directly affect the speed of the car and in fact controls only the acceleration
(Lubashevsky[7]).

It should also be noted that the operator perception of her own actions is
not perfect, and could also be described in terms of fuzzy rationality. Namely,
the value of the actual control effort could be treated as an acceptable by
the operator if its deviation from the optimal strategy is of low magnitude.
Therefore, in order to take into account the issues discussed above, in present
work we introduce the dynamical trap model of a new type. While previously
the dynamical trap region was referred to as two-dimensional region in the
“coordinate-velocity” phase space, we propose the concept of the dynamical
trap in the “space” of behavior strategies as a certain neighborhood of the
optimal one.

The purpose of the current paper is to demonstrate that bounded rationality
of human cognition in perceiving their own actions could be responsible for
intrinsic cooperative phenomena in the systems of interacting elements under
the control of human operators.

2 Model

Let us consider the chain of N motivated particles (Fig. 1) moving along parallel
vertical axes; the motion of each particle is characterized by its coordinate xi,
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Fig. 1. The chain of N motivated particles moving along parallel axes. Terminal
particles i = 0 and i = N + 1 are fixed at x = 0. Dotted arrows indicate the
interaction between neighboring particles.

velocity vi and acceleration ai. Each particle tends to minimize the absolute
values of its relative coordinate and velocity with rescept to its neighbors,
namely, ηi = xi − 1

2 (xi−1 + xi+1) and ϑi = vi − 1
2 (vi−1 + vi+1). Two terminal

particles are assumed to be fixed: x0(t) ≡ xN+1(t) ≡ 0. The dynamics of such
system could be described by the following equations

ẋi = vi,

v̇i = ai,

ȧi = Ωa(ai, aopt
(
ηi, ϑi, vi)

)(
aopt(ηi, ϑi, vi)− ai

)
,

(2)

for i = 1, N . Here

aopt(η, ϑ, v) = −Ωϑ(ϑ)(η + σϑ+ σ0v) (3)

is the optimal strategy of the operator behavior which is considered to depend
mainly on the current values of the relative position η and velocity ϑ. σ could
be treated as a relative weight of the velocity variations as a stimulus causing
operator actions (with respect to the first stimulus ηi); σ0vi stands for the
friction force which characterizes the physical properties of the environment
where the system is placed (σ0 � 1). The dynamical trap effect in system (2),
(3) is modelled by cofactors Ωϑ and Ωa defined as follows

Ωϑ(ϑ) =
∆ϑ + ϑ2

1 + ϑ2
,

Ωa(a, aopt) =
∆a + (aopt − a)2

1 + (aopt − a)2
,

(4)

where parameters 0 ≤ ∆ϑ,∆a ≤ 1 determine the intensity of dynamical traps:
the less these parameters, the stronger the effect of corresponding dynamical
traps.

It should be pointed out that we assume the former dynamical trap cofactor
Ωϑ not to depend on particle coordinate; it could be explained in such a manner
that the control over system relative velocity ϑ is of prior importance for the
operator comparing to the control over position η. Thus, if the relative velocity
becomes sufficiently small, the operator prefers to retard the correction of the
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coordinate in order not to make the velocity variations take undesirably large
values (Lubashevsky[5]).

The cofactor Ωa in (2) stands for the dynamical trap effect of a new type
which was not studied previously. Assuming Ωa = 1, one could easily see that
the last equation in (2) in fact implies the equality ai = aopt(). However, we
consider that the operator, first, is hardly able to precisely implement the strat-
egy aopt defined by (3), and, second, cannot distinguish between the strategies
that are close in some sense to the optimal one. Therefore, one may think
of a certain neighborhood of the optimal strategy in the space of all possible
strategies, such that each strategy from this region is treated as the optimal
one by the operator. So in case the operator feels that current control regime
is optimal, she just keeps maintaining the current value of the control effort
constant so that ȧ ≈ 0. When the operator realizes that the current strategy
is far from the optimal one, she starts adjusting it to the desired value which
means that ȧ ∼ (aopt − a).

These speculations led us to the system (2)–(4) as a model that may reflect
some of mentioned properties of human bounded rationality. The rest of the
paper is devoted to the analysis of anomalous cooperative phenomena that
could be observed in such system for various values of system parameters.

3 Numerical simulation

In the current work we present the results of the preliminary analysis of system
(2)–(4). The scope of the future work should comprise certain extensions of
the proposed model; to be specific, the characteristic time scale of the system
dynamics should be taken into account, as well as the thresholds of the velocity
and acceleration perception. Here we consider all these parameters to take
values equal to unity.

We analyze numerically the collective behavior of the particle chain by solv-
ing equations (2)–(4) using the standard (4, 5)-Runge-Kutta algorithm. Due to
the fact that the behavior of the studied system significantly varies depending
on the number of interacting particles, the below analysis is divided into three
parts according to the cases 1)N = 1, 2; 2)N = 3; 3)N ≥ 4. We should specify
that all of the following results were obtained for small values of parameters
∆ϑ and ∆a, namely 0.001, which correspond to the strong effect of dynami-
cal trap. Below all phase space portraits depict projections of 3-dimensional
phase trajectories on the “coordinate-velocity” plane generated by the system
motion during the time interval of T = 104 given small randomly assigned
initial disturbances. In case of multi-particle chains the middle particles tra-
jectories are represented; particle motion structure is similar for all particles in
the given ensemble, however, particles in the center of the chain have slightly
larger fluctuations amplitude.

The numerical simulation of the single particle oscillating between its two
fixed neighbors (N = 1) figures out that the combination of two dynamical
traps causes the limit cycle to arise in the system phase space, while without
the dynamical trap effect the system has single stable fixed point (x = 0, v =
0, a = 0). Also it is notable that the previous studies discovered the stable
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behavior of the single oscillator under the presence of the single dynamical
trap characterizing the fuzzy rationality in perceiving the velocity variations
(Lubashevsky[5]).

First let us consider the case of the single particle oscillating between two
fixed neighbors. The phase portrait and phase variables distributions of the
system motion are depicted on Fig.2a-c. The chain of two interacting parti-
cles exhibits the similar behavior patterns (see Fig.2d-i), except for the phase
trajectories assymetry caused by the introduction of the second oscillator. In
both cases the structure of the limit cycles is stable with respect to variations
of the system parameters. Namely, the found pattern remains for the following
values of system parameters: σ = 1, 3; σ0 = 0, 0.01, 0.1.

a b c

d e f

Fig. 2. The phase trajectory projections of system (2)–(4) for N = 1 (a) and N = 2
(d) on the “coordinate-velocity” plane. The right four frames show corresponding
phase variables distributions. On figures (d)–(f) thin and thick lines are introduced
in order for one to distinguish between two moving particles. Parameters used for
simulation are σ = 1, σ0 = 0.01.

From Fig.2 it could be seen that the dynamical trap effect causes the in-
stability of the single particle motion; the limit cycle emerges. The similar
phenomena could be observed in almost the same form for each particle in
the pair of coupled oscillators. The situation dramatically changes when the
ensemble of three particle is taken into consideration. Adding just one more os-
cillator to the system causes the anomalous cooperative phenomena to emerge,
particularly, complex 3-dimensional attractor arises in the system phase space
(see Fig.3a-c).

Notably, unlike the previous cases (N = 1, 2), introducing the external
friction force (σ0 6= 0) causes the attractor to become significantly blurred (see
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Fig. 3. The phase trajectory projections of the middle particle from the ensemble (2)–
(4) and corresponding phase variables distributions for N = 3. Frames a-c illustrate
the case σ = 1, σ0 = 0, frames d-f depict the case σ = 1, σ0 = 0.01, frames g-i are for
the values of parameters σ = 3, σ0 = 0

Fig.3d-f ), while increasing the relative weight of the particle velocity as the
stimulus for the operator actions makes the particle dynamics to take form of
chaotic oscillations (Fig.3g-i).

In case of the relatively large number of interacting elements the system
dynamics becomes highly irregular. The chain of four particles demonstrate
the oscillatory behavior as could be seen on Fig.4a-c. It is worth underlining
that the well-defined attractor (Fig.3a) could be destructed just by adding one
particle to the ensemble (Fig.4a) without changing any of the system parame-
ters.
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Fig. 4. The phase trajectory projections and phase variables distributions of the
middle particle from the chain (2)–(4) for N = 4 (figures a-c) and N = 15 (figures
d-f ). Parameters used for simulation are σ = 1, σ0 = 0.

The system motion trajectories for N = 15 (Fig.4d-e) are of even greater
irregularity due to the increased number of particles and corresponding coop-
erative effect. For larger N the system motion exhibits the patterns of similar
structure, but the amplitude of the fluctuations increases with N).

4 Conclusion

In the present paper we discuss the new type of the dynamical trap – a model de-
scribing human bounded rationality. The standard “coordinate-velocity” phase
space inherited from the Newtonian mechanics is proposed to be extended by
the acceleration variable. By analyzing the behavior of the motivated particles
chain governed by bounded rationality we demonstrate that the multi-particle
system under the presence of the dynamical trap of a new type exhibits intrinsic
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cooperative behavior. The various complex patterns of the system motion are
shown to arise depending on the system parameters. First, it is demonstrated
that the dynamical trap effect of a new type can cause the instability in the
single oscillator dynamics which was not observed in the previous studies on
the dynamical traps model. Second, the system dynamics patterns are shown
to take the complex 3-dimensional structure in case of three-particle ensem-
ble. Third, we demonstrate that with the increasing number of elements the
system motion becomes significantly irregular, for large N exhibiting chaotic
oscillations. The obtained results confirm that the system under consideration
could exhibit anomalous behavior; however, the proposed model require more
detailed analysis.
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