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Abstract. In this paper, we investigate the behaviors of the Belief Propagation al-
gorithm considered as a dynamic system. In the context of LDPC (Low Density
Parity-Check) codes, we use the noise power of the transmission channel as a poten-
tiometer to evaluate the different motions that the BP can follow. The computations
of dynamic quantifiers as the bifurcation diagram, the Lyapunov exponent and the
reconstructed trajectory enable to bring out four main behaviors. In addition, we
propose a novel measure that is the hyperspheres method, which provides the knowl-
edge of the time evolution of the attractor size. The information collected from these
different quantifiers helps to better understand the BP evolution and to focus on the
noise power values for which the BP suffers from chaos.
Keywords: LDPC, iterative map, chaos, Lyapunov exponent, bifurcation diagram.

1 Introduction

The channel coding is a research field whose purpose is to protect an infor-
mation to transmit from environmental disturbances. The first step is the
encoding of the information, a procedure in which the information, modeled
as a sequence of k bits u1, . . . , uk, is mapped to a larger sequence of N bits
x1, . . . , xN . The map consists in artificial correlations called constraints or
parity-check equations. In [1] are introduced the Low-Density Parity-Check
(LDPC) codes which are a widespread technique to encode the information.
Such a code can be represented by a Tanner graph [2], a graphical represen-
tation which turns out to be very useful in the second step, the decoding. In
this part, the bits transmitted though a random noisy channel are iteratively
handled by a decoding algorithm to create an associated output sequence of
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N bits that verify the whole set of parity-check equations and that must be
as close as possible to the input sequence. One of the most famous decoding
algorithm is the Belief Propagation (BP) [3] used to solve inference in graphical
models. Extensively studied in [5,6], it is deemed to be the optimal message-
passing algorithm in the case the Tanner graph of the LDPC code is loopfree.
However, in most cases the Tanner graph is not loopfree [7] that involves that
the BP becomes suboptimal. Moreover, the BP presents some complex behav-
iors in terms of the noise power of the transmitted channel, as periodic and
chaotic motions [9]. Along the whole paper, we present some measures to bring
out these different behaviors. The paper is organized as follows: in the second
section are presented preliminaries about the LDPC codes and the BP, in the
third section we present the dynamic environment of the BP, the measures to
identify the behaviors and the associated results.

2 Preliminaries

2.1 Graphical Model – LDPC codes

We consider a set of N hidden binary random variables X = {X1, . . . , XN}
whose global state is denoted by x = [x1, . . . , xN ]. To each variable Xi is
associated an observation yi that provides a prior information on the state
of Xi given that the a posteriori distribution on Xi is proportional to the
likelihood:

p(xi|yi) ∝ p(yi|xi)

In the digital communications area, the hidden variables play the role of bits to
transmit through a noisy channel, the observations represent the data collected
at the output at the channel. These data are used to compute x̂ = [x̂1, . . . , x̂N ]
the estimate of the input sequence x, as it is shown on the figure 1.

xi

ni ∼ N (0, σ2)

⊕
yi D x̂i

Fig. 1. Digital communication pattern: the channel is an additive Gaussian channel
of power σ2, D is the esttimation block that provides x̂

To ensure reliable communications is included the use of an LDPC code. An
LDPC code is built by a set of M constraints C = {C1, . . . , CM} usually called
parity-check equations. The value of the constraint Cj is computed by the set
of variables mapped by Cj , namely its neighborhood Nj such that:

cj =
∑

Xi∈Nj

xi
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where the sum is computed over the Galois field GF(2). The variables and the
parity-check equations are respectiveley associated to the variable nodes and
the check nodes of the graphical representation of the LDPC code, called the
Tanner graph G = (X ∪C, {eij}). The check node Cj and the variable node
Xi are linked by an edge eij if Xi ∈ Nj . We define the neighborhood Ni of
the variable node Xi as the set of check nodes that map Xi. An example of a
Tanner graph is displayed on the figure 2.

X1

X2 X3

X4

X5 X6

X7

variable node

observation

check node

correlation
edge

Fig. 2. Tanner graph of the Hamming code (N = 7)

2.2 Message-passing

The BP is an algorithm that helps to solve inference in graphical models. More
accurately, it provides estimates {bi(xi)}i of the posterior marginal distribu-
tions of the variables, called beliefs. From these trial distributions can be
extracted an estimate of x such that:

x̂ =

N⋃
i=1

arg max
xi

bi(xi)

To obtain the beliefs, the BP passes messages iteratively between the variable
nodes and the check nodes, according to their neighborhood dependence. An
edge eij carries two different messages, each oriented in a specific way:

• the message from Cj to Xi is: n
(k)
ji (xi) = fji({m(k−1)

xy }(x,y))
• the message from Ci to Cj is: m

(k)
ij (xi) = gij({n(k)yx }(x,y), li(xi))

where fij and gji are update functions whose expressions are detailed in [2],
and li(xi) is the likelihood computed from the observation yi. To give an idea of
the analytic expressions of these functions, a message from a node A to a node
B, whatever their nature, is somehow the geometric average of the messages
incoming on A. The output of the BP is a set of beliefs that are computed from
the same principle [2]: bi(xi) is someway the geometric average of the messages
incoming on the variable node Xi in the state xi.
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2.3 Topological troubles

The BP has been introduced by Pearl [3] as an algorithm to solve inference on
trees and polytrees. For such graphical model, this algorithm is surely optimal.
Though, the most of the LDPC codes have basically non tree-like topology,
their Tanner graphs are full of loopy structures. This drawback is unavoidable
because the check nodes need to be interwoven to make the LDPC code robust
against the channel noise. Accordingly, the BP turns out to be suboptimal in
most cases. In [7] and [8] the BP is investigated to bring out some convergence
conditions depending on the topology of the Tanner graph, it was found that
short loops are the most harmful and that the convergence of the BP must
be unreachable if the LDPC code contains at least two loops. This conclusion
brings the fact that mots LDPC codes cannot been decoded perfectly by the
BP. As a result are shown on the figure 3 two Bit Error Rates (BER) according
to the Signal-to-Noise Ratio (SNR) on loopy codes of the same length N : one
contains only large loops and the other only short loops.
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E
R

short loop

large loop

Fig. 3. BER of the BP – Difference between short loops and large loops

The BER of the code with large loops is less damaged than the one wih short
loops, that confirms the previous conclusion. This can be easily understood
given that the BP is a message-passing algorithm: short loops have short term
effects because only a small number of iterations is necessary to develop their
harmful effect, contrary to the large loops.

Despite the practical interest of such an estimator, the BER does not bring
the whole information about the behavior of the BP in case of loopy LDPC
codes. On the figure 4 is displayed the evolution of the BER along the iterations
according to four SNR values given a particular noise realization on the Tanner
code [10] of length N = 155. It appears obvious that the BP suffers from great
divergence depending on the SNR. The rationale behind these results is that
the BP does not behave trivially as it could be wrongly thought given the BER.
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Fig. 4. BER of the BP on the Tanner code for four SNR values

In other terms, the SNR plays the role of a parameter that wields great influence
on the behavior of the BP. Therefore, it appears necessary to investigate the
BP as a dynamical system, a work presented in the next section.

3 Dynamics

In this section is presented an experimental study that brings out the dynam-
ics of the BP algorithm according to the evolution of the SNR. To this end
is introduced a toolbox including four estimators, each one carrying relevant
information on the system. For each of them is presented the computation
method, then a few results and finally the properties it reveals concerning the
BP. The goal is to get information about:

• the SNR values that correspond to blatant changes in the behavior of the
BP,

• the description of the different attractors the BP encounters,

• the size of these attractors.

Introducing the term attractor implies the definition of a state space. In the
current study, such a space is built in such a way that each message nji defines
a state variable. However, such a state space is of very high number of dimen-
sions, given that a Tanner graph in practice could contain tens of thousands
edges. Fortunately, experiments show that it is quite equivalent to consider the
beliefs as pseudo-state variables, reducing dramatically the number of dimen-
sions. Finally, in the following, all estimators are measured in the pseudo-state
space such that each state variable is associated to a unique belief.

3.1 Bifurcation diagram

First of all, it appears necessary to go a little more deeply in the study of the
figure 4. One would note that the BERs suffer from a threshold phenomenon,
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especially for SNR = 2.25 dB. This is actually an unfortunate consequence of
the decoding process D, see figure 1, that thresholds the beliefs such that:

∀Xi ∈ X, bi(xi) ∈ [0, 1] 7−→ x̂i ∈ {0, 1}

To extract relevant information concerning the BP, it is recommended to con-
sider estimators that faithfully render the conduct of the BP. To this end, it
appears well suited to replace the BER by a smoother function, namely the
mean square beliefs introduced in [9]:

∀k ∈ {1, . . . ,K}, E(k) =

√√√√ 1

N

N∑
i=1

(
b
(k)
i (xi)

)2
(1)

where the values {xi}i are assumed to be the right ones and K is an arbitrary
number of iterations. Its properties are partly equivalent to the BER ones in
the sense that:

• E(k) = 1: the BP has perfectly decoded,
• E(k) = 0.25: the BP does not provide any relevant knowledge on the

variables,
• E(k) = 0: the BP completely failed.

Experiments show that E(k) lives between the two first situations, furthermore
its evolution along the iterations is indeed softer than the BER, see figure 5.
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Fig. 5. Mean square beliefs of the BP on the Tanner code for four SNR values

On this figure appears the strong dependency of the BP dynamics on the SNR,
the algorithm does not converge for all values. It is either stuck in steady states
for SNR ∈ {1.00 dB, 3.20 dB} or divergent for SNR ∈ {2.25 dB, 2.92 dB}. To
draw an evolution of the mean square beliefs according to the SNR comes out
the use of the bifurcation diagram. Instead of displaying the whole evolution of
E(k) along the iterations we only pick up its final value E(K). Theoretically,
in [9], at K the BP is expected to have reached a steady state. In practice, as
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shown by the figure 5, it is absolutely not systematic. For computation time’s
sake, the steady state is redefined as the permanent evolution after an arbitrary
number of iterations. On the figure 6 are displayed the bfurcation diagrams of
the BP for four noise realizations that we call Error Events (EE).
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Fig. 6. Bifurcation diagrams of the BP

The bifurcation diagrams reveal critical SNR values that blatantly change the
BP conduct. It appears five particular behaviors of E(K):

• (B1) smooth increasing,
• (B2) oscillations,
• (B3) erratic evolution,
• (B4) convergence jumps,
• (B5) convergence.

At this point appears a clue about the chaotic behavior of the BP (B3), even
though are needed other observations to confirm it. Despite the order pattern
is common to the error events, the critical SNR values are not the same. Ac-
tually it is strongly possible that most noise realizations lead to quite similar
SNR critical values, the current difference we observe should correspond to the
variance of the estimator, given that the number of simulations is quite small.
A suited method to solve this problem would consist in average on a set of nu-
merous noise realizations to obtain a mean bifurcation diagram with relevant
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variance. However, it appears quite impossible to conduct such a process. The
reason comes out of the efficiency of the BP in terms of error correction, the
error events that lead to non trivial behaviors of the BP along the SNR corre-
sponds to rare events. Other regular error events imply very fast convergence
of the BP to the perfect estimate. On the figure 7 is displayed the BER of the
Tanner code decoded by the BP.

0 1 2 3 4
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E
R

Fig. 7. BER of the Tanner code decoded by the BP

This figure makes appear that around SNR = 2.50 dB, for example, only one
error event among a thousand will lead to wrong decoding by the BP, making
the average computation of the bifurcation diagram quite untractable. Despite
this drawback, a very important point raised up from extensive and numerous
experiments is that the order of the five behaviors brought out previously is
always the same, whatever the error event provided that it implies non trivial
behaviors, and whatever the LDPC code. Therfore it is also always possible
to extract four critical SNR values that share the whole range in five intervals
corresponding with the behaviors B1, B2, B3, B4 and B5.

3.2 Lyapunov exponents

Given the critical SNR values, the next step is to find out the kind of the
behaviors that were brought out, even though a few clues are given by the
bifurcation diagram. To this end, we investigate the sensitivity of the BP
to very small changes in the initial conditions, i.e. the likelihoods, by the
use of the famous Lyapunov exponent. The computation of this estimator is
made according to the method exposed in [12,11]. First of all we evaluate at
each iteration k ≤ K the Euclidean distance dk between two initially close
trajectories. Then we estimate the Lypaunov exponent λ as the slope of the
least square regression line of ln dk along the iterations. Actually this method
comes from the observation that for strongly divergent behavior, dk follows an
exponential law whose parameter is λ, as we can see on the figure 8.
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Fig. 8. Evolution of the log-distance between initially close trajectories for the BP,
SNR = 2.90 dB, EE1. The evolution is exponential in k ∈ [0, 200]. For k ≥ 200
appears a stair due to the compacity of the state space.

On the figure 9 are displayed the Lyapunov exponents averages around the
four error events introduced previously according to the Euclidean distance.
The sign of λ reveals the behavior of the system around the corresponding
initialization of the trajectories: λ ≥ 0 means the trajectories have moved
away one from the other, which is an evidence of a chaotic behavior,λ ≤ 0
means the trajectories have got closer, which is an evidence of a convergent
behavior to a small sized volume of the state space. This volume is reduced
to a fixed point if and only if λ → ∞. When λ crosses the x-axis the system
suffers from a bifurcation meaning that the algorithm has changed of conduct,
as it was observed about the bifurcation diagram. To each SNR interval we
obtain conclusions from λ:

• (B1) λ = 0: the trajectories are quite close but never merge
• (B2) λ = cst > 0: the trajectories are moving away at a constant rate
• (B3) λ > 0, λ 6= cst: erratic evolutions of the trajectories, evidence of chaos
• (B4) λ getting lower: the trajectories begin to move closer
• (B5) λ→ −∞: the trajectories merge

It is commonly accepted that the Lyapunov exponent provides a reliable signa-
ture of the behavior of any dynamical system. Therefore we can assert that the
BP encounters chaos in the SNR interval B3 that is not of neglectible length.
In addition, it appears that this chaos appears and disappears quite suddenly
in terms of the SNR, looking at the slope of λ. It means that practically we
can easily define a chaotic interval of the SNR for any LDPC code.

3.3 Reduced trajectory

The previous estimators revealed properties of the BP according to the SNR. A
convenient approach to enforce these observations is to visualize the dynamical
system in its state space.
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Fig. 9. Lyapunov exponents of the BP on the Tanner code

However, our human skills prevent us from directly observing a system whose
number of dimensions is several hundreds or even thousands, that is the case
currently. To circumvent this undesired problem, we define a reduced 3-dimensional
pseudo-state space and then a reduced pseudo-trajectory. To this end we make
use of the state space reconstruction [11]. It consists in constructing a state
space of arbitrary number of dimensions given a one dimensional map com-
puted from the state variables. In this investigation, a known map of such
property is the mean square beliefs. Firstly, the method aims to compute E(k)
at each iteration k to get a sequence E = [E(k)]0≤k≤K . Secondly we map this
one dimensional sequence to a three dimensional sequence:

E 7−→ Ẽ =

 E(0) E(1) E(2)
...

...
...

E(K − 2) E(K − 1) E(K)


On the figure 10 are displayed a few reduced trajectories of the BP for typical
values of the SNR deduced from the previous bifurcation diagram. On the first
figure is exhibited at SNR = 2.10 dB a convergence of the trajectory toward a
small size attractor, as it was expected according to the corresponding λ.
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Fig. 10. Reduced trajectories for the BP on the Tanner code for the error event EE1

By increasing the SNR between 2.19 dB and 2.49 dB the trajectory transforms
to a limit cycle. The thickness of the trajectory along this limit cycle increases
as the SNR is getting greater up to 2.50 dB. At the same time this limit cycle
interleaves with other limit cycles, the BP encounters a sequence of period
doubling bifurcations, displayed on the figure 11 with two interleft cycles.
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Fig. 11. Reduced trajectory for the BP on the Tanner code with SNR = 2.40 dB

Such a phenomenon is a typical route to chaos [11], a behavior observable from
SNR = 2.51 dB. There is not any periodic evolution or fixed point convergence
anymore, as it is displayed for 2.70 dB. When the SNR reaches 2.99 dB the



14 J. C. Sibel, S. Reynal and D. Declercq

trajectory collapses to a single point, meaning that the BP has correctly con-
verged. Such behaviors are similar to the results of other experiments led on
other error events, that enforces the common dynamics between different noise
realizations.

3.4 Hyperspheres method

Telling an attractor is chaotic is not enough to describe the situation of the
BP. The assumed chaotic attractor can have different shapes and sizes. These
properties are really important because they are the signaure of the practical
unstability. A small chaotic attractor would be less troublesome than a large
one, because the corresponding beliefs would be less eventful. In other terms,
we need to reveal the chaos intensity of the BP, somehow given by the size of
an attractor in the pseudo-state space.

Computing such a quantity turns out to be a quite hard task because it de-
pends on the shape of the attractor. Assumed that we find this shape, nothing
ensures that it is part of our knowledge, contrary to the regular forms whose
analytic expressions of the volumes are known, as the spheres, the ellipsoids,
the hypercubes... To circumvent this problem, we establish a procedure that
provides the hypersphere circumbscribed to the pseudo-trajectory. Obviously
the whole trajectory is not taken into account partly because it is important
to get rid of the transcient.
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Fig. 12. Hyperspheres of radius Rk centered on Bk, the mean point of the pseudo-
trajectory {Tk−W

2
, . . . , Tk+W

2
}. The red points are inside the hypershere.

As shown on the figure 12, the method consists in:

• drag a temporal window IW (k) of arbitrary length W along the trajectory
according to the iteration k,

• for each k extracting Bk the mean point of the pseudo-trajectory in IW (k),
• searching for Tk the furthest point of Bk inside IW (k).

The vector
−−−→
BkTk is of length rk the radius of the hypersphere circumscribed

to the pseudo-trajectory inside IW (k). A part of the estimator is the evolution
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of rk along the iterations. The difficulty lies in the experimental search for
the length W such that the attractor is absorbed into the hypersphere. For
the moment, only numerous experimental attempts help to find the well suited
W . We present on figure 13 the evolution of rk for the BP subjected to strong
chaos according to the previous estimators.
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Fig. 13. Hypersphere radius Rk for chaotic attractors according to k

We see that the values of the radii are of the same magnitude, even though
they are not strictly equal. Nevertheless, in the current pseudo-state space
of N = 155 dimensions, the hypervolume of the hypersphere is proportionnal
to RN

k . Then even a small difference between two radii involves a non ne-
glectible difference, a fact that we will see later. Another observation is the
fact that these radii are not constant, meaning that the hyperspheres shake.
Due to this phenomenon the radius is often almost doubled as for EE2 about
k ∈ {209, 298}. This is a consequence of the BP unstability. To get a global
overview of the attractor size inside the state space we display on figure 14 the
average steady value R̂K for each error event according to the SNR. According
to the previous estimators, it appears that the maxima of the radii are reached
when the BP is trapped into chaotic attractors, and the minima are reached
as soon as the algorithm left these attractors. In addition, a quite interesting
observation is that R̂K is smoothly increased while the SNR lies within the
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limit cycle interval, meaning that these limit cycles are getting larger as the
SNR is increased.
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Fig. 14. Average hypersphere radius R̂K for chaotic attractors according to the SNR

In the mean time, the Lyapunov exponent highlighted the information that
initially close trajectories were moving away at a constant rate. Therefore
as the limit cycle is growing, the stability of the BP does not really change
provided the SNR is less than the critical values that leads to chaos. In other
terms the divergence speed of two initially close trajectories is not changed even
if the radius of the limit cycle increases, that is a quite surprising observation.

Finally it appear suitable to compare the values of the hyperspheres volumes
so as to highlight their difference. In the table 3.4 are given the ratios between
the maximum radii and the associated ratios between their corresponding hy-
pervolumes, given that :

• R1 , max R̂k(EE1) = 2.6561 reached at SNR = 2.75 dB,

• R2 , max R̂k(EE2) = 1.7139 reached at SNR = 1.08 dB,

• R3 , max R̂k(EE3) = 1.7954 reached at SNR = 1.65 dB,

• R4 , max R̂k(EE4) = 2.6684 reached at SNR = 1.03 dB.

These tables raise the dramatical difference between the size of the chaotic
attractors.
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EE4
V4

V1
= 2.0368

V4

V2
= 6.3156× 1029 V4

V3
= 4.6987× 1026 .

As an example, EE4 involves a radius only 1.5569 times larger than the radius
involved by EE2 but V4 ≈ 1029V2 which is a very large difference. On the
contrary error events whose radii are very close, as EE1 and EE4 do not
differenciate much in terms of their corresponding hypervolumes. Finally, it
appears a quite large diversity of chaotic attractors for the BP. This diversity
lies within the intensity of the chaos, represented by the hypervolumes. This
observation indicates that for example EE2 entails a less chaotic attractor than
EE4, and that EE1 implies a much more chaotic attractor than EE2. Such
comparisons provide somehow a reliability coefficient on the noise realizations,
that is of very important practical interest.

4 Conclusion

In this paper, we address the dynamics issue of the BP by the use of known and
new estimators from an experimental point of view. We brough out that the BP
follows a systematic pattern when the decoding is not trivial: convergence to a
small-sized attractor, locking in a limit cycle, chaos and convergence to a fixed-
point. Such a property turns out to be practically relevant because it is common
to all LDPC codes. In addition it provides the critical values of the SNR for
which the BP could present complex behaviors. We investigated the chaos by
the use of new estimators to highlight the diversity of the chaotic attractors that
the BP would encounter. By the use of the hyperspheres method we introduced
the notion of chaos intensity that highlighted a novel notion of reliability on
the channel noise realizations, and to some extent on the SNR values and the
LDPC codes. Finally we have introduced a quite efficient toolbox for the study
of the BP that can be adapted to any decoding algorithm provided its output
can be computed as probability distributions.
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Abstract. Finite element simulations have been performed along side normal mode
analysis on the linear stability that examined the development of volumetrically
heated flow patterns in a horizontal layer controlled by the Prandtl number, Pr,
and the Grashof number, Gr. The fluid was bounded by an isothermal plane above
an adiabatic plane. In the simulations performed here, a number of convective polyg-
onal planforms occurred, as Gr increased above the critical Grashof number, Grc at
Pr = 7, while roll structures were observed for Pr < 1 at 2Grc.
Keywords: Non-linear, bifurcation, stability, volumetric heating, asymmetric bound-
aries.

1 Introduction

This work is concerned with the numerical simulation of the early stage tran-
sition regime of an internally heated fluid layer situated between a conducting
upper boundary and an insulating lower boundary. The study described here
is motivated by earlier studies [4,6,8] and the importance such flow structures
have in the development of flows that are found in many engineering and geo-
physical applications.

Examples of volumetric heating cover thermal convection driven by the
radioactive decay of fluid components. Asfia and Dhir [2] who studied thermal
convection in a pool that mimicked the motion caused by fission product decay
in the molten fuel elements that collect in the lower head of a nuclear reactor
during a severe accident. Briant and Weinberg [3] devised the molten salt
nuclear reactor concept, where the fissile material is dissolved in the coolant
and thus provides volumetric heating to the fluid phase. Geophysical flows
in the Earth’s mantle are driven by radioactive decay [5,10,15,16]. Tritton
and Zarraga [20], Tasaka et al. [18], Takahashi et al. [17] have studied the
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phenomena experimentally using various approaches to generate fluid motion
and record the structures observed.

Several numerical studies of thermal convection driven by internal heating
have been performed using a variety of techniques to resolve the evolving circu-
lation cells via the application of mean field approximations ([14]), expansions
in orthogonal functions of finite amplitudes used in pseudospectral techniques
([8], [10], [15], [16], [9], [22], [19]) and finite volume or element approaches ([6],
[11]).

Cartland Glover and Generalis [6] (hereafter indicated as CCG) focussed on
domains with aspect ratios of

{
1 : 4
√

3 : 12
}

suggested by Ichikawa et al. [11].
Several types of circulation cells were observed by CGG [6], as the Grashof
number, Gr, was increased, which corresponded to observatiosn of Roberts [14]
at transition and to Tveiteried and Palm [22] at higher Gr. There were two
key factors that affected the development of the circulation cells in CGG [6].
These were how the internal heating conditions were defined and the influence
of the periodic conditions on the flow field. CGG [6] assumed an equivalent
constant temperature difference of the applied heating and varied the depth
between the parallel plates to control Gr and the internal heating supplied,
which is not consistent with experimentation [20,18,17].

Thus, the motivation for this new study is two-fold: we are interested in re-
ducing the error from the simulations in the wavenumber, which were observed
around the critical transition and we would like to compare the numerical re-
sults obtained with the experimental results [20,18,17]. Note that in the finite
element simulations performed here, the variation of the internal heating con-
dition was driven by the varying temperature difference rather than modifying
the depth between the parallel planes, the former of which is more consistent
with experimental methods of Tasaka et al. [18] and Takahashi et al. [17] for ex-
ample. To try to reduce the influence of the periodic boundary conditions and
the any effect that the domain aspect ratio has on the formation of structures,
the extent of the domain was also increased from

{
1 : 4
√

3 : 12
}

to {1 : 12 : 12}.

Fig. 1. Diagram of the homogeneous layer with an isothermal surface above an adi-
abatic surface. The coordinate axis is at the origin and the midplane surface is also
indicated by the coarse grid.
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2 Theory

We consider a volumetrically heated viscous incompressible fluid in a horizontal
layer of width L bounded by plates of infinite extent (Figure 1). The upper
plate is a conducting surface and the lower plate is an insulating surface. The
cartesian coordinate system is located on the midplane of the layer (Figure 1).
We start by following the Navier-Stokes equations for the velocity vector u
and the pressure, p, and a transport equation for the temperature, T , from the
environment

∇ · u = 0,

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u− gρβ (T − Tr) ,

ρ
∂T

∂t
+ ρ (u · ∇)T = ρk∇2T + Si,

where g is the acceleration due to gravity, k is the thermal conductivity, Si is
the volumetric heat source, Tr is the reference temperature of the fluid modelled
and β is the thermal expansion coefficient.

2.1 Conditions Applied

We apply L, L2/ν and ∆Ti =
(
Grµ2

)
/
(
gρ2β L3

)
, as the units of length, time

and temperature to non-dimensionalise the system. This gives υ, $ and θ as the
non-dimensionalised velocity vector, pressure and temperature, respectively.

We obtain two non-dimensional numbers, which control the volumetric heat-
ing supplied to the horizontal layer and the influence of the thermal diffusivity.
These are the Grashof number with the form Gr =

(
gρ2βSiL

5
)
/
(
2µ2k

)
and

the Prandtl number, Pr = (cpµ) /k. The fluid properties are defined by the
specific heat capacity at constant pressure, cp, dynamic viscosity, µ and the
density, ρ. Several Gr over the range 1 ≤ ε ≤ 12 were selected in order to
vary the temperature difference at Pr = 7 and therefore the heat flux applied,
where ε = Gr/Grc. Then Pr was varied to observe the influence of thermal
diffusion on the resolved flow states. The product of Grashof number and the
Prandtl number gives the Rayleigh number.

The boundary conditions are θ|x=1 = 0, ∂xθ|x=0 = 0, υ|x=0 = υ|x=1 =0
and the initial conditions are θ = 0 and υ =0. We assume the Boussinesq ap-
proximation applies to the definition of the fluid phases and the volumetrically
applied heating.

The treatment (described below) of the non-dimensional numbers and the
initial and boundary conditions differs between the numerical simulations by
means of the finite element method and the linear stability analysis.
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2.2 Linear stability analysis

To perform the linear stability analysis we start with the non-dimensional form
of the governing equations:

∇ · υ = 0,

∂υ

∂t
+ (υ · ∇)υ = −∇$ +∇2υ − g

g
θ,

∂θ

∂t
+ (υ · ∇) θ =

1

Pr

(
∇2θ + 2Gr

)
,

The basic field in the conduction state without macroscopic flow is due to a
static balance of the pressure with the buoyancy force. Under the imposed
boundary conditions the basic temperature, θ̄, is given by Gr(x2 + 2x − 3)/2
[14], where x is non-dimensionalised by L and t by L2/ν.

Let us denote the deviation of υ, $, and θ from the basic field by υ̂, $̂,
and θ̂. We linearize the governing equations for the disturbance, and assume
the normal mode such that υ̂$̂

θ̂

 ∝
Υ (x)
Π(x)
Θ(x)

 eσt+ı(αyy+αzz)

We substitute this expression into the linearized governing equations. The
resulting ODEs for the ‘amplitude functions of the normal mode’, Υ (x), Π(x),
andΘ(x), form a linear eigenvalue problem under non-slip boundary conditions,
Υ = 0 at x = 0 and 1 and the thermal boundary conditions Θ = 0 at x = 1
and Θ′ = 0 at x = 0.

At this stage, we introduced the toroidal-poloidal decomposition to elim-
inate Π(x). See [8,12] for details. We discretize the amplitude functions by
means of an expansion in Chebyshev polynomials. Applying the collocation
method together with tau method, we reduce the linear eigenvalue problem cor-
responding to two-point boundary value problem to an algebraic linear eigen-
value problem of the form Ax = σBx, which is solved numerically by means of
the QZ algorithm. Twenty polynomials are used to resolve the neutral curves
presented here.

At the end of this subsection, we note that since the basic field has Euclidean
symmetry E(2) on the yz-plane, there is no preferred direction there. This
implies that a wave vector (αy, αz) on two-dimensional wave plane does not

appear in the eigenvalue problem. Instead, the wavenumber α =
√
α2
y + α2

z is

involved.

2.3 Simulation method

As the solver used in the finite element method used dimensional equations
[1], it is necessary to specify Si = (2k∆Ti) /L

2 in terms of Gr (see below)
and L = 0.007 m, which was defined according to the experimental studies of
Tasaka et al. [18]. Periodic conditions are applied to the vertical surfaces of
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the domain Figure 1. Please refer to CGG [6] for a thorough description of
the specifications required to perform the finite element method simulations.
Key exceptions from CGG [6] are the domain used, which was a square layer
with an aspect ratio of {1 : 12 : 12} that had the respective node resolution of
{30 : 180 : 180} and the assumed physical time-scale, cpρL

2/k, to control the
rate of convergence.

3 Results

The resultant solutions for convection caused by volumetrically heating a hori-
zontal layer show the deviations from the conductive laminar state. At Pr = 7,
the transition from conductive to convective flow occurs at Grc= 198, which
corresponds to Rac = 1386 ([14], [11], [22]). The structures are indicated by
the change in characteristic parameters, which are plotted between Figure 2
and Figure 5. Figure 2 presents the neutral curves obtained by the linear anal-
ysis. Contour plots of the temperature and the vertical velocity component for
Pr = 7, where ε = 1, 2, 3, 6 and 12 are illustrated in Figure 3. The change
of velocity components and the temperature with ε are plotted in Figure 4.
Contour plots of the temperature and the vertical velocity component for Pr
= 0.005, 0.705, 0.883 and 8.933 are given in Figure 5.
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Pr = 0.705

Pr = 7.000

Pr = 8.933

Fig. 2. Neutral curves of stability (solid lines) obtained from the linear normal mode
analysis, where α is the wavenumber.

3.1 Fluids with Pr=7

The neutral curves obtained from the linear normal mode analysis are given
in Figure 2, where the curves indicate the highest value allowed by the linear
analysis for the basic state to retain its laminar form.



24 G. Cartland Glover, K. Fujimura and S. Generalis

∆Ts
∆Ti

A
uLcpρ

k

B

C

D

E

Fig. 3. Non-dimensional temperature (left) and vertical velocity (right) con-
tours on the midplane in Figure 1, for Pr=7 . Here ∆Ts/∆Ti = |T −
Tmin|s/

(
Grµ2

)
/
(
gρ2β L3

)
. A: ε = 1; B: ε = 2; C: ε = 3; D: ε = 6; E: ε = 12.
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At ε=1, Figure 3 already shows non-vanishing hexagonal pattern. This is
due to the fact that the solution branch of the down-hexagons bifurcates sub-
critically i.e. ε <1, as reported by Tveitereid and Palm [22]. Indeed, the branch
of stable down-hexagons ends up with a limit point (or saddle-node point) at
which the stable upper branch is connected with the lower branch of the trans-
critical bifurcation stemmed subcritically from the bifurcation point ε=1. The
stable down-hexagons are generated in the following sequence: hexagons true
to the y axis at ε = 1 (Figure 3A), hexagons perpendicular to the y axis (Fig-
ure 3B), hexagons aligned at ∼ 50o to y axis (Figure 3C), polygonal structures
(Figure 3D), hexagons with spokes (Figure 3E). Note that the change in the
alignment of the hexagons between Figure 3A and 3C indicates that there is
no preference in the orientation of the hexagons.

The structures depicted in Figure 3 are qualitatively comparable with the
experimental studies of Takahashi et al. [17] and Tasaka et al. [18], where
measurements of the temperature field [18] and the velocity field [17] were
made for ε ∈ (3, 6). These conditions correspond to cases C and D presented
in Figure 3. The increase in the size of the circulation cell is of a similar
magnitude in both the experiments and the simulation. The range of vertical
velocities observed in the simulations described are similar to those reported
by Takahashi et al. [17].
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Fig. 4. Profiles against ε obtained from the finite element code. a) The maxi-
mum and the minimum values of the velocity components; b) ∆Ts/∆Ti = Tmax −
Tmin/

(
Grµ2

)
/
(
gρ2β L3

)
, where s refers to the temperature extracted from the

solved flow field. f(T ) = 5.95(ε ∗ Rac)−0.23, an empirical profile given by Turcotte
et al. [21]; horizontal line: conduction condition; vertical line: transition between
conduction and convection.

In Figure 4 we show the change of key variables with ε for the simulations
using the finite element code. A significant increase in all the velocity com-
ponents at ε = 1 in Figure 4a. The increases in the velocity are associated
with the change in the state of the fluid layer at the critical transition, where
we conjecture that isotropic hexagons are formed. The patterns formed are
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considered to be isotropic as the minima and maxima of the v and w display
similar magnitudes.

The down-welling minimum velocity indicated in Figure 11 of Takahashi et
al. [17] gave vertical velocities, which were approximately one third less than
the vertical velocities in Figure 4a. This difference could be due to methods
used to assess the minimum vertical velocity or the influence of the heat flux
across the lower boundary used. The minimum vertical velocity of Takahashi
et al. [17] was determined from the planes defined by the laser sheets used for
their PIV measurements, while the velocities in Figure 4a are the minimum
and maximum values for the whole of the simulated domain.

The effect of the transition from conductive to convective flow is also shown
by the change in the temperature difference relative to the initial or conduc-
tive temperature difference (Figure 4b). At higher heat fluxes the temperature
difference caused by convection drops below the conductive temperature dif-
ference. This is due to the influence that cellular convection has on the layer
as energy from the volumetric heat source is used to drive the fluids across
the layer [5]. A portion of the internal heating supplied is also lost from the
system through the top isothermal boundary [20]. An empirical relation of
the decrease in the temperature difference due to convection is also plotted in
Figure 4 [21].

3.2 Other fluids

To confirm the secondary flows predicted by the finite element code soon af-
ter Grc show behaviour consistent with literature, fluids of different Pr were
tested for ε = 2 (Figure 5). For Pr < 1, the circulation cells take the form of
steady (0.5 < Pr < 1) or unsteady (Pr < 0.1) two-dimensional rolls. While a
mix of polygonal structures occur for Pr = 8.933. For Pr ' 0.70 dislocations
in the roll structures are also observed, which may disappear in time-averaged
plots obtained from a time-marching solution. For Pr ' 0.85, where supercrit-
ical or high pressure fluids were considered within CFX, large variations in the
fluid density can occur for small changes in the temperature [13]. Therefore,
in the limit of the Boussinesq approximation (i.e. constant density), the heat-
ing condition we applied resulted in small non-measureable differences in the
temperature. This lead to the formation of sharply defined differences in the
temperature.

4 Conclusions

The main interest in the present work is the hierarchical transition from con-
ductive flow to convective flow and on to the turbulent regime in an asymmetric
horizontal layer. We have concentrated on the stability boundary of the basic
state in order to compare states found numerically with those observed in ex-
periments ([18],[17]). The present study used both finite element simulations
and linear stability analysis to indicate that hexagonal cells are the preferred
mode for the evolution of homogeneous systems at around the critical point for
Pr = 7.
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∆Ts
∆Ti

A uLρ
2µ

B

C

D

Fig. 5. Non-dimensional temperature (left) and vertical velocity (right) contours
on the midplane in Figure 1, for different Pr at ε = 2. Here ∆Ts/∆Ti =
|T − Tmin|/

(
Grµ2

)
/
(
gρ2β L3

)
. A: Pr = 0.005; B: Pr = 0.705; C: Pr = 0.883;

D: Pr = 8.933.
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Beyond ε = 6 at Pr = 7, the finite element code predicts that the sec-
ondary structures deform resulting in different possibly rectangular states that
are qualitatively comparable with the experimental studies of the Takeda group
([18],[17]). Between ε = 1 and ε = 3 the changes in orientation of the structures
indicates that there is no preference in their orientation. Further non-linear
analyses are being performed to explore the stability of the flow patterns ob-
served at the transition to convective flow for a homogeneously heated layer
with asymmetric boundary conditions.

Acknowledgements

The work presented here was funded by a Marie-Curie Intra-European Fellow-
ship (Project No. 274367) for the European Commission and by the Royal
Academy of Engineering Distinguished Visiting Fellowship Scheme. We wish
to thank the Institute for Safety Research at the Helmholtz-Zentrum Dresden-
Rossendorf for kindly allowing access to the computational cluster upon which
the computational fluid dynamic calculations were performed.

Nomenclature

cp specific heat capacity at constant pressure, J kg−1 K−1

Gr Grashof number, Gr = gβρ2SiL
5/2µ2k

Grc critical Grashof number, Grc
g vector of the acceleration due to gravity, m s−2

g acceleration due to gravity, m s−2

k thermal conductivity, W m−1 K−1

L characteristic length, 0.007 m
Pr Prandtl number, Pr = cp/µk
p pressure, kg m−1 s−2

Ra Rayleigh number Ra = GrPr
Rac critical Rayleigh number Rac = 1386
Si volumetric heat source Si = 2k∆Ti/L

2, kg m−1 s−3

S momentum source terms, kg m−1 s3

T temperature, K
Tr reference temperature, K
∆Ti initial temperature difference, ∆Ti =

(
Grµ2

)
/
(
gρ2β L3

)
, K

∆Ts temperature difference of the solved flow, K
t time, s
u velocity vector, m s−1

u, v, w velocity vector components, m s−1

x, y, z direction vector components, m

Greek symbols
α wavenumber
β expansion coefficient, 1/K
ε reduced Grashof number = Gr/Grc
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θ non-dimensional temperature
µ dynamic viscosity, kg m−1 s−1

$ non-dimensional pressure
ρ density, kg m−3

σ eigenvalue
υ non-dimensional velocity vector
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Abstract. The notion of dynamical traps is proposed to allow for effect caused by
the bounded capacity of human cognition in ordering events or actions according to
their preference. As a result, in the vicinity of an optimal behavior a decision-maker
has no stimulus to change his current behavior. By way of example, one dimensional
system of coupled oscillators with dynamical traps is studied numerically. The model
assumes the dynamical traps to form a “low” dimensional region in the correspond-
ing phase space where the system motion is stagnated. It is demonstrated that the
dynamical traps and possible noise individually can cause the given system to exhibit
complex dynamics and to undergo various phase transitions.
Keywords: Human behavior, Fuzzy rationality, Dynamical traps, Complex dynam-
ics, Phase transitions.

1 Introduction

During the last decades there has been considerable progress in describing so-
cial systems based on physical formalism developed in statistical physics and
applied mathematics (for a review see articles in Encyclopedia [1]). In parti-
cle, the notion of energy and the based on it master equation were employed
to simulate opinion dynamics, the dynamics of culture and languages (e.g.,
[2–4]); the social force model inheriting the basic concepts from Newtonian
mechanics was used to simulate traffic flow, pedestrian motion, the motion of
bird flocks, fish schools, swarms of social insects (e.g., [2,5–7]). Continuing the
list of examples, we note the application of the Lotka-Volterra model and the
related reaction-diffusion systems to stock market, income distribution, popu-
lation dynamics [8]. The replicator equations developed initially in the theory
of species evolution were applied to the moral dynamics [9]. The notion of a
fixed-point attractor as a stable equilibrium point in the system dynamics that
corresponds to some local minimum in a certain potential relief, the collection
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of point type attractors forming a basin, the notion of latent attractors, pe-
riodic attractors representing limit cycles, and deterministic chaos are widely
met in social psychology [10]. In addition, the concept of synchronization of
interacting oscillators was used to model social coordination [11].

In spite of these achievements we have to note that the mathematical theory
of social systems is currently at its initial stage of development. Indeed, animate
beings and objects of the inanimate world are highly different in their basic
features, in particular, such notions as willingness, learning, prediction, motives
for action, moral norms, personal and cultural values are just inapplicable to
inanimate objects. This enables us to pose a question as to what individual
physical notions and mathematical formalism should be developed to describe
social systems in addition to the available ones inherited from modern physics.

The present paper discusses one of such notions, namely, the fuzzy rational-
ity [12] introduced here to describe the bounded capacity of human cognition
in evaluating events, actions, etc. according to their preference. When, for
example, two actions are close to each other in quality from the standpoint
of a person making a decision their choice may be random because he ought
to consider them equivalent. The notion of dynamical traps accounts for this
feature. In particular, dealing with a dynamical system its stationary point
rst being initially stable is replaced by a certain neighborhood Qtr called the
dynamical trap region such that when the system goes into Qtr its dynamics
is stagnated. This mimics vain actions of an operator in directing the system
motion towards the point rst precisely. Indeed, when the system under the
operator control gets any point in Qtr the operator may consider the current
situation perfect because he just does not “see” rst and until the system leaves
Qtr he has no reason to keep the control active. The goal of the present work
is to demonstrate that the fuzzy rationality can be responsible for complex
emergent phenomena in such systems.

2 Lazy bead model

The following model captures the basic features of such human behavior. Let
us consider a chain of N “lazy” beads (Fig. 1). Each of these beads can move
in the vertical direction and its dynamics is described in terms of the deviation
xi(t) from the equilibrium position and the motion velocity vi(t) = dxi/dt
depending on time t, here the bead index i runs from 1 to N . The equilibrium
position xi = 0 is specified assuming the formal initial (i = 0) and terminal
(i = N + 1) beads to be fixed. Each bead i “wishes” to get the “optimal”
middle position with respect to its nearest neighbors. So one of the stimuli for
it to accelerate or decelerate is the difference

ηi = xi −
1

2
(xi−1 + xi+1)

provided its relative velocity

ϑi = vi −
1

2
(vi−1 + vi+1)
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equilibrium
position

Fig. 1. The chain of N beads under consideration and the structure of their individual
phase space Ri = {xi, vi} (i = 1, 2, . . . , N). The formal initial i = 0 and terminal
i = N + 1 beads are assumed to be fixed, specifying the equilibrium bead position.

with respect to the pair of the nearest beads is sufficiently low. Otherwise,
especially if bead i is currently located near the optimal position, it has to
eliminate the relative velocity ϑi, representing the other stimulus for bead i to
change its state of motion. The model to be formulated below combines both
of these stimuli within one cumulative impetus ∝ (ηi + σϑi), where σ is the
relative weight of the second stimulus.

When, however, the relative velocity ϑi becomes less then a threshold θ, i.e.,
|ϑi| . θ, bead i is not able to recognize its motion with respect to the nearest
neighbors. Since a bead cannot “predict” the dynamics of its neighbors, it has
to regard them as moving uniformly with the current velocities. So from its
standpoint, under such conditions the current situation cannot become worse,
at least, rather fast. In this case bead i just “allows” itself to do nothing, i.e.,
not to change the state of motion and to retard the correction of its relative
position. This feature is the reason why such beads are called “lazy”. Below we
will use dimensionless units in which, in particular, the perception threshold is
equal to unity θ = 1.

Under these conditions the equation governing the system dynamics is writ-
ten in the following form

dvi
dt

= −Ω(ϑi)[ηi + σϑi + σ0vi] + εξi(t) . (1)

If the cofactor Ω(ϑi) were equal to unity, the given system would be no more
then a chain of beads connected by elastic springs characterized by the friction
coefficient σ. The term σ0vi with the coefficient σ0 � 1 that can be treated as a
certain viscous friction of the beads moving via a medium into which the given
system is embedded has been introduced to prevent the beads from attaining
extremely high velocities. The factor Ω(ϑi) is due to the effect of dynamical
traps and the ansatz

Ω(ϑ) =
∆+ ϑ2

1 + ϑ2
, (2)

is used, where the parameter ∆ ∈ [0, 1] quantifies the intensity of dynamical
traps. If 4 = 1, the dynamical traps do not exist at all, in the opposite case,
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4 � 1, their influence is pronounced inside the neighborhood Qi
tr of the axis

vi = (vi−1 + vi+1)/2 (the trap region) whose thickness is about unity (Fig. 1).
Model (1) allows for random factors in terms of white noise ξi(t) affecting the
motion of bead i with intensity ε so that

〈ξi(t)〉 = 0 and 〈ξi(t)ξi′(t′)〉 = δii′δ(t− t′) . (3)

For the terminal fixed beads, i = 0 and i = N + 1, we set

x0(t) = 0 , xN+1(t) = 0 , (4)

which play the role of the “boundary” conditions for equation (1).
It should be noted that the emergent phenomena in a similar system mim-

icking car following dynamics were considered for the first time in Refs [13,14].
In addition, the first experimental evidence of the dynamical traps caused by
the human fuzzy rationality seems to be obtained in hybrid human-computer
experiments of balancing a damped virtual stick [15].

3 Results of simulation

The dynamics of the given system was studied numerically. Initially all the
beads were located at the equilibrium positions {xi|t=0 = 0} and perturbations
were introduced into the system via ascribing random independent values to
their velocities. Equation (1) was integrated using the E2 high order stochastic
Runge-Kutta method [16]. The integration time step of 0.001 was used; the
obtained results were checked to be stable with respect to decreasing the inte-
gration time step tenfold. The integration time was equal to 105–106, which
enabled us to deal with the steady state dynamics. The other parameters used
in simulation were taken equal to ∆ = 10−3 and σ0 = 0.01. Besides, to simply
the data visualization the bead coordinates are shown with some individual
shifts, namely, xi → xi + 50 · i.

In order to analyze the dynamical trap effect on its own the noise absence
case was studied first. The system dynamics was found to depend on the in-
tensity of “dissipation” quantified by the parameter σ. We remind that the
parameter σ specifies the relative weight of the stimuli to take the middle “op-
timal” position and to eliminate the relative velocity; the larger the parameter
σ, the more significant the latter stimulus. When the parameter σ is not too
small the system tends to get the regime of regular dynamics represented by
a collection of limit cycles of individual bead motion. It should be noted that
these limit cycles could be of complex form when the number of beads is not
too large, namely, N . 10 [17]. Nevertheless for systems with large number
of beads the resulting phase portrait takes a rather universal form shown in
Fig. 2(left frame). However, the “time to formation” TN , i.e. the mean time
required for a given bead chain to get the steady state regular dynamics grows
exponentially as the number of beads increases. For example, for beads with
σ = 1 this time can be approximated by the function

TN ≈ Tc · exp {N/Nc} with Tc ∼ 60 and Nc ∼ 13 (5)
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Fig. 2. The characteristic phase portrait of the steady state dynamics exhibited by
systems without noise and not too weak “dissipation” (left frame). The chain of 30
beads with σ = 1 was used in constructing the shown pattern where the limit cycles
of each second bead are visualized. The right frame depicts the characteristic time
TN required for such a system to get the steady state dynamics vs the number N of
beads. The scatted points are the data obtained for each value of N on three trials,
σ = 1 was used in simulation.

(see Fig. 2(right frame)). On one hand, this strong dependence explains that
for chains of oscillators with not too weak “dissipation” only chaotic motion
was found when the number of beads becomes sufficiently large, N & 100 [17].
On the other hand, it enables us to pose a question about regarding the chaotic
dynamics of such systems for N →∞ as a certain phase state.

In the case of weak “dissipation” the system dynamics exhibits sharp transi-
tion to a stable chaotic regime as the coefficient σ decreases. It is demonstrated
in Fig. 3 showing the transition from the regular dynamics for σ = 0.1 to a
chaotic motion when σ = 0.09. As seen in Fig. 3 the chaotic portrait can be
conceived of as a highly chaotic kernel surrounded by fragments of the regular
limit cycle destroyed by instability.

Noise forces these systems to undergo two phase transitions as its intensity
ε increases. The first one can be categorized as the transition from the regular
bead motion to a cooperative chaotic bead motion. The latter means that
the beads correlate substantially with one another in motion but individual
trajectories are rather irregular and the magnitude of this irregularity cannot
be due to the present noise only. The second transition is determined by the
formation of highly irregular mutually independent oscillations in the bead
position. To illustrate the first phase transition Figure 4 depicts two phase
portraits of the middle bead motion for different values of ε. As seen, for
ε = 0.01 the phase portrait looks like a regular limit cycle disturbed by small
noise. In contrast, when the noise intensity increases by two times, i.e., ε =
0.02, the corresponding phase portrait becomes rather complex in form and
the volume of the phase space layer containing the shown trajectory as a whole
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Fig. 3. The phase portraits of the middle bead motion of the 5-bead chain for the
“dissipation” parameter σ taking the values 0.1 (left frame) and 0.09 (right frame).
The period of the shown limit cycle is about 200; the chaotic phase portrait was
obtained by visualizing the system motion within time interval about 5× 105.

sharply grows. Exactly the two features has enabled us to classify the found
effect as a phase transitions. It should be noted, that this phase transition
from regular motion to stochastic chaos, in contrast to the second transition to
highly irregular motion, does not manifest itself in the one-particle distributions
of all the variables x, v, η, ϑ ascribed to the beads individually, so, it could be
categorized as a “weak” phase transition.

4 Conclusion

The notion of dynamical traps was introduced to describe possible effects
caused by the bounded capacity of human cognition in ordering events or ac-
tions according to their preference. Its particular implementation is that human
beings as active elements of a certain system cannot individually control all the
governing parameters within the accuracy required for stabilizing the system
dynamics perfectly. Therefore one chooses a few crucial parameters and mainly
focuses attention on them. When the equilibrium with respect to these crucial
parameters is attained the human activity slows down, retarding in turn the
system dynamics as a whole.

By way of example, we considered emergent phenomena in chains of coupled
oscillators with dynamical traps. The motion of oscillating particles (beads) in
the phase space {xi, vi = ẋi} is assumed to be governed by their interaction via
effective elastic springs with viscous friction outside the dynamical trap region
Qtr. For a given bead i the dynamical trap effect is reduced to depressing its
interaction with the nearest neighbors i − 1 and i + 1 as the relative velocity
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Fig. 4. The phase portraits of the middle bead motion of the 30-bead chain with
σ = 1 for two values of the noise intensity ε = 0.01 and 0.02. In plotting these
portraits bead trajectories of motion during time interval about 2× 104 were used.

ϑi = vi − (vi−1 + vi+1)/2 becomes small in comparison with some threshold.
The introduction of additive white noise of intensity ε allows for possible un-
controllable factors also affecting the bead motion.

This system was studied numerically. As demonstrated, without noise the
system dynamics tends to the regime of regular bead motion if the friction co-
efficient is not too small. However, the characteristic time required for a given
system to get this regime grows exponentially with the number N of beads. It
enables us to pose a question about regarding the chaotic transient processes
as a certain phase state in the limit N →∞. When the friction coefficient be-
comes sufficiently small the steady state dynamics of such systems can undergo
transition to chaotic bead motion even for chains with small number of beads.
Depending on its intensity noise can induce the formation of three characteris-
tic phases, highly irregular individual oscillations of the beads, the cooperative
chaotic bead motion, and the synchronized regular bead motion. It should
be noted that the transition between the regimes of regular and cooperative
chaotic bead motion manifests itself only the sharp growth of the volume of the
phase space layer containing the bead trajectories, whereas all the one-particle
distribution functions does not change their forms remarkably.
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Abstract. Binomial, Poisson and Negative Binomial are the basic count models
whose probability mass function satisfies a simple recursive relation. This has been
used by Panjer [8] to iteratively compute the density of randomly stopped sums,
namely in the context of making provision for claims in insurance. Pestana and
Velosa [9] used probability generating functions of randomly stopped sums whose
subordinator is a member of Panjer’s family to discuss more involved recursive rela-
tions, leading to refinements of infinite divisibility and self-decomposability in count
models. After discussing multifractal measures generated by the geometric and by the
Poisson laws, as guidelines to define multifractals generated by general count measures
with denumerably infinite support, the complex recursivity of Pestana and Velosa [9]
classes of randomly stopped sums is exhibited, hinting that randomness can bring in
deeper meaning to multifractality, that, as Mandelbrot argues, is a vague concept that
remains without an agreed mathematical definition. A simple random extension of
binomial and multinomial multifractals, considering that each multiplier of a cascade
is the outcome of some stochastic count model, is also discussed in depth.
Keywords: Count models, probability generating functions, multifractal measures,
random multipliers.

1 Introduction

Simple introductory texts on multifractals, v.g. Ervertsz and Mandelbrot [2],
use binary splitting and multiplicative cascades generating binomial measures
as a straightforward and intuitive example. Mandelbrot [6] (p. 83–84 and 89–
91) also uses the binomial measure to exhibit the complications that arise
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when self-similarity and self-affinity are applied to measures rather than to
sets, restricting the probability p to take values in the interval [0, 12 ].1

Ervertsz and Mandelbrot [2], under the heading “Beyond Multinomial Mea-
sure” (p. 937–938), briefly mention multifractal measures generated by a count-
ably infinite support probability mass function. In Section 2 we detail the
construction of such measures starting either from a geometric distribution or
from a Poisson distribution.

On the other hand, Mandelbrot [6] (p. 14) states that “the terms fractal
and multifractal remain without an agreed mathematical definition”, although
the fact that self-similarity, self-affinity and the ensuing mild or wild variability
play an essential role in their theory. Binomial, negative binomial and Poisson
count measures probability mass functions satisfy some sort of self-similarity, in
the sense that pn+1 = (a+ b

n+1 ) pn, n = 0, 1, . . . , a recursive expression that has
been successfully used by Panjer [8] to iteratively compute densities of randomly
stopped sums whose subordinator is one of the above mentioned count models,
and our first choice has been to exploit implications and extensions of this
extended kind of self-similarity. Observe that the simplest cases are N _
Poisson(b) for a = 0 and N _ Geometric(1 − a) for b = 0, leading to simple
forms of extended self-similarity, and that for this reason are the topic of Section
2.

In Section 3 we briefly mention the basic count models whose probability
mass function satisfies some sort of mitigated self-similarity, extending Panjer’s
[8] class, and we use probability generating functions investigated in [9] to
discuss multiple self-similarity, extending results in [1].

In Section 4 we discuss other pathways to multifractality, extending the
construction of binomial/multinomial measures to accommodate the case of
countably infinite support discrete generators, using randomness as a device to
operate this alternative extension of multifractality.

1In fact, for p = 1/2 the procedure leads to the uniform measure in (0,1), a straight-
forward consequence of the binary representation of real numbers in the interval (0,1)

∞∑
k=1

Xk

2k
, Xk _ Bernoulli

(
1

2

)
, independent

and of Borel’s pioneering construction of continuous probability. As Mandelbrot [6] (p.
45) states, “The definition of multifractality used in this book and almost everywhere
else in the literature [. . . ] is limited to singular non-negative measures constructed
using continuous non-decreasing generators.”

Feller [3] (p. 141–142), on the same issue, denoting Fp the distribution of

Yp =

∞∑
k=1

Xk

2k
, where Xk _ Bernoulli(p), independent,

observes that Y 1
2

is the standard uniform random variable, and that Yp is a singular

random variable for each p 6= 1/2. He further comments that “A little reflection [. . . ]
reveals that a decision [on the fairness of a coin] after finitely many trials is due to
the fact that Fp is singular with respect to F 1

2
(provided p 6= 1/2). The existence of

singular distributions is therefore essential to statistical practice.”
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2 Geometric and Poisson generated measures

Let X _ Exponential (1/δ), and define the countably discrete random variable

N =

{
k = 0, 1, . . .
pk = P[N = k] = P[k ≤ X < k + 1] = (1− e−δ)(e−δ)k

i.e., N = bXc_ Geometric(1− e−δ) (bxc denotes the integer part of x).
On the other hand, from the probability integral transform,

1− e−δX
d
= e−δX

d
=U _ Uniform[0, 1].

Thus, starting from the interval [0,1], in the first step [0,1] is splitted in
countably many subintervals,

[0, 1] =

∞⋃
k=0

(
e−(k+1), e−k

]
=

∞⋃
k=0

Ik(1)

to which we attach probabilities mk = (1− e−δ)(e−δ)k, k = 0, 1, . . . .
In step 2, each Ik is treated as a reduction of the original [0,1] interval, i.e.,

using self-explaining standard notations for the translation and scaling of sets,

Ik(1) =

∞⋃
j=0

{
e−(k+1) +

(
e−k − e−(k+1)

)(
e−(j+1), e−j

]}
=

∞⋃
j=0

Ij
k
(2),

so that [0, 1] =

∞⋃
k=0

( ∞⋃
j=0

Ij
k
(2)

)
, and to each interval Ij

k
(2) we attach the

probability mkmj .
In step 3, the subintervals Ij

k
(2) are treated as the Ik intervals in step 2, and

similarly in the countably infinite steps that follow to build up a multifractal
generated by a Geometric initial measure. Notations soon become cumbersome,
but the principles used in the build up of the multiplicative cascade mk1mk2 · · ·
are simple. In Figure 1 we show the initial four steps of the construction of the
geometric measure with the parameter 1− e−1.

The procedure described above is intuitive in view of the geometric dis-
cretization of the exponential measure, but it can in fact be used with an
initial generator whose support is N, namely N _ Poisson(λ).

NG _ Geometric(p) may be looked at as the “unit” of the class of Negative
Binomial(r, p) random variables, in the same sense that NB _ Bernoulli(p)
is the unit of Binomial(n, p) random variables. On the other hand the sum of
independent Poisson random variables is Poisson, and hence we may consider
that NP _ Poisson(1) is the unit of the class of Poisson(λ) random variables.
Observe also that the Poisson is a yardstick in the perspective of dispersion,
since its dispersion index Var[NP ]/E[NP ] = 1, while Binomial(n, p) random
variables are underdispersed and NegativeBinomal(r, p) random variables are
overdispersed.
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Fig. 1. Construction of the geometric measure with parameter 1− a = 0.63 (i.e.
δ = 1) — the initial four steps
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Observe also that Binomials, Poissons and NegativeBinomials are the only
discrete classes of natural exponential families whose variance is at most a
quadratic function of the mean value (Morris [7]), who writes “Much theory is
unified for these [...] natural exponential families by appeal to their quadratic
variance property, including [...] large deviations”, one of the tools routinely
used to investigate dimensionality issues in multifractals. Without pursuing the
matter further herein, we remark that a differential simile of Panjer’s difference
iteration is f ′/f = a+ b/x, where f denotes the density function of a positive
absolutely continuous random variable, and hence f must be the density of a
Gamma(b+1,− 1

a ) random variable, for b > −1 and a < 0. The gamma random
variables are the sole Morris continuous random variables with positive support.
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3 Extended self-similarity of basic count models

Let

N =

k = 0, 1, 2, . . .

pk = P[N = k]

be a count random variable. Panjer [8] made an important breakthrough in
insurance theory by showing that the only non-degenerate random variables
whose probability mass function satisfies the recurrence relation

pn+1 = pn

(
α+

β

n+ 1

)
, n = 0, 1, . . .

are the Poissons, the Binomals and the Negative Binomials, and that the above
recurrence relation can be used to deduce an iterative procedure to compute
the density of randomly stopped sums

N∑
k=0

Xk, Xk independent random variables, independent of N,

often used as models for aggregate claims, cf. [5] or [10]. Further generalizations
may be constructed relaxing the iterative expression to hold for n ≥ k0, see
Hess et al. [4] construction of what they call basic count models.

A further generalization can be developed as follows:
Consider discrete random variables Nα, β, γ whose probability mass func-

tions (p.m.f.)
{
pn = fNα, β, γ(n)

}
n∈N satisfy the relation

fNα, β, γ(n+ 1)

fNα, β, γ(n)
= α+ β

E(Un0 )

E(Unγ )
= α+

β∑n
k=0 γ

k
, α, β ∈ R, n = 0, 1, . . .

where Uγ _ Uniform(γ, 1), γ ∈ (−1, 1). As

E(Unγ ) =
1

n+ 1

1− γn+1

1− γ
−→
γ→1

1,

Panjer’s class corresponds to the degenerate limit case, letting γ−→ 1 so that

Uγ −→
γ→1

U1, the degenerate random variable with unit mass at 1.

The probability generating function Gα, β, γ(s) =

∞∑
n=0

fNα, β, γ(n) sn must then

satisfy

Gα, β, γ(s) = Gα, β, γ(γn+1s)

n∏
k=0

1− αγk+1s

1− [α+ β(1− γ)]γks
.

Observing that

Gα, β, γ(s)

Gα, β, γ(1)
=
Gα, β, γ(γn+1s)

Gα, β, γ(γn+1)

n∏
k=0

1−αγk+1s
1−[α+β(1−γ)]γks

1−αγk+1

1−[α+β(1−γ)]γk
,
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and letting n→∞,

Gα, β, γ(s) =

∞∏
k=0

1− αγk+1s

1− αγk+1

1− [α+ β(1− γ)]γk

1− [α+ β(1− γ)]γks
. (1)

If γ ∈ [0, 1), α < 0 and β ∈
{
− α

1−γ ,
1−α
1−γ

}
, we recognize in (1) the probabi-

lity generating function of an infinite sum of independent random variables,
the k-th summand being the result of randomly adding 1, with probability
αγk+1/

(
αγk+1− 1

)
, to an independent Geometric(1− [α+ β(1− γ)]γk) ran-

dom variable. Each summand exhibits its own scale of extended self-similarity,
a characteristic feature observed, in what concerns self-similarity and self-
affinity, in strict sense (in Madelbrot’s perspective) multifractals.

The limiting case γ = 1 may be approached as follows: observing that

Gα, β, γ(s)− Gα, β, γ(γs)

αs[Gα, β, γ(s)− Gα, β, γ(γs)] + (1− γ)s[βGα, β, γ(s) + αGα, β, γ(γs)]
= 1,

dividing the numerator and the denominator by (1− γ)s and letting γ→1, we
get

G′α, β, 1(s)

αsG′α, β, 1(s) + βGα, β, 1(s) + αGα, β, 1(s)
= 1⇐⇒

G′α, β, 1(s)

Gα, β, 1(s)
=

α+ β

1− αs
,

the expression we obtain working out the probability generating function in
Panjer’s iterative expression

pα, β(n+ 1) =

(
α+

β

n+ 1

)
pα, β(n), α, β ∈ R, n = 0, 1, . . . .

So, while Panjer’s recurrence relation and Hess et al. extension for the basic
count models exhibit a single scaling, (1) exhibits multi-scaling as typical of
multifractals.

4 A simple generalization of the binomial/multinomial
measure

There are many pathways to expand the notion of a multiplicative cascade. One
is to consider that each multiplier is the outcome of some stochastic rule. These
kind of multiplicative iterative schemes are usually called random multiplicative
cascades.

In Section 2 we introduced the geometric and Poisson generated measures.
In this section we shall expand differently the notion of random multiplicative
cascades by allowing the number of subdivisions that each interval undergoes,
at each step of the measure construction, to be determined by the outcome of
a discrete random variable N , where P[N ≥ 2] = 1. This procedure has some
similar aspects with the binomial and multinomial measures. However, at step
k, k = 1, 2, . . . , the outcome of N will dictate the number of subdivisions that
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each interval suffers. In this new scenario the multipliers used at each step will

also depend on the outcome of N , i.e., mi = m
(N)
i .

Starting with the interval [0,1], having uniformly distributed unit mass, the
new measure is formally constructed as follows:

Step 1: Generate an observation n1 from the random variable N . Split the
interval [0,1] into the n1 equally length subintervals

[in−11 , (i+ 1)n−11 ] , i = 0, 1, . . . , n1 − 1, (2)

with uniformly distributed masses m
(n1)
i , i = 0, 1, . . . , n1 − 1, respectively;

Step 2: Generate a second observation n2 from N , independent from n1. Split
each interval in (2) into n2 equally length subintervals and use the multipli-

ers m
(n2)
i , i = 0, 1, . . . , n2 − 1, to uniformly distribute the parent interval’s

mass by these subintervals. After this step is completed the subintervals
formed are [i(n1n2)−1, (i+ 1)(n1n2)−1], i = 0, 1, . . . , n1n2 − 1;

Step k: Generate an observation nk from N , independent from the previous
k− 1 observations of N . Split each interval from the previous step into nk
subintervals of equal length and use the multipliers m

(nk)
i , i = 0, 1, . . . , nk−

1, to uniformly distribute the parent interval’s mass by these subinter-
vals. The subintervals formed after this step are [i(n1n2 . . . nk)−1, (i +
1)(n1n2 . . . nk)−1], i = 0, 1, . . . , n1n2 . . . nk − 1.

The new measure µ results from applying the previous procedure infinitely.

An example of a family of multipliers that can be used in this type of
measure construction is

m
(n)
i =

2(i+ 1)

n(n+ 1)
i = 0, 1, . . . , n− 1 , (3)

when N = n. (Note that with the multipliers defined in (3) we do not get
m0 = m1 = 1/2 if N = 2 is observed.)

In order to illustrate how the measure is obtained we give a simple exam-
ple. Suppose that the random variable N has support on {2, 3} with p.m.f.
P[N = 2] = 1/4 and P[N = 3] = 3/4. Let us further assume that we observe
for the first two steps of the measure’s construction the sequence of divisors
(N1, N2) = (3, 2), where N1 and N2 are independent replicas of N . Using the
multipliers defined in (3), we get

m
(2)
0 =

1

3
and m

(2)
1 =

2

3
,

and

m
(3)
0 =

1

6
, m

(3)
1 =

1

3
and m

(3)
2 =

1

2
.

At step one we obtain the subintervals [0, 13 ], [ 13 ,
2
3 ] and [ 23 , 1], with masses 1/6,

1/3 and 1/2, respectively, and after step two the subintervals [0, 16 ], [ 16 ,
1
3 ], [ 13 ,

1
2 ],

[ 12 ,
2
3 ], [ 23 ,

5
6 ] and [56 , 1], with masses 1/18, 1/9, 1/9, 2/9, 1/6 and 1/3, respec-

tively. We should point out that when a measure of this type is being formed,
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one actually does not know which generator sequence of divisors (N1, N2, . . . )
is being used in the construction, and consequently which multipliers are being
used at each step.

In Figure 2 we show the measure obtained after 10 steps for two different
generator sequences, when working with the above random variable N . The
patterns clearly reveal that the first divisor was 2 in the left plot and 3 in the
right plot. In Figure 3 we show the effect of some permutations of a sequence of
divisors of length 10 on the measure’s construction (note that in this case there
are a total of 210 = 1024 possible permutations for the sequence of digits). As
we can see all four plots have different patterns.

Fig. 2. The measure obtained after 10 steps for two different generator sequences

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(2,3,3,3,3,2,2,3,3,2)

0 0.25 0.5 0.75 1

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(3,3,2,3,3,3,3,3,3,2)

0 0.25 0.5 0.75 1

In the binomial and multinomial measures the multipliers used throughout
all steps are fixed in value and in number. In this new scenario each multiplier
should be regarded as a random variable, since the magnitude and number of
the multipliers used are directly determined by the distribution of N .

Let us go back to the example to see how this is the case. For the multipliers
defined in (3) we can have m0 = 1/3 or m0 = 1/6, with probability 1/4 and
3/4, respectively, and for this example there are 3 random multipliers that need
to be defined. If Mi denotes the random variable that represents the value of
the i-th random multiplier,

M0 =

{
1
3

1
6

1
4

3
4

, M1 =

{
2
3

1
3

1
4

3
4

and M2 =

{
0 1

2
1
4

3
4

. (4)

The expected values for the multipliers given in (4) are E[M0] = 5/24, E[M1] =
5/12 and E[M2] = 3/8. For an arbitrarily random variable N , the number of
random multipliers Mi will depend on the number of points where N has non
null mass.
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Fig. 3. The measure obtained after 10 steps for four different permutations of a
generator sequence
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In each step of this new multiplicative cascade we can also attach an ad-
dress (location) to each interval generated, as is done in the binomial and
multinomial measures (for more details on this subject see e.g. Ervertsz and
Mandelbrot [2]). However, given the way the measure is constructed, we can
have different intervals for the same address. In order to illustrate this situation
we indicate in Table 1 the intervals and corresponding addresses and masses
for the first two steps of all possible cases for (N1, N2) (in brackets we indicate
the probability of observing each sequence of length 2).

From Table 1 we observe that there is no one-to-one correspondence be-
tween address and interval, contrarily to what happens with the binomial and
multinomial measures. We also observe that intervals with the same address
do not have necessarily the same mass. Thus the definitions of coarse and local
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Table 1. Intervals, addresses and masses for all possible sequences (N1, N2)

(N1, N2) = (2, 2) ( 1
16 )

Interval [0, 14 ] [ 14 ,
1
2 ] [ 12 ,

3
4 ] [ 34 , 1]

Address 0.00 0.01 0.10 0.11

µ 1/9 2/9 2/9 4/9

(N1, N2) = (2, 3) ( 3
16 )

Interval [0, 16 ] [ 16 ,
1
3 ] [13 ,

1
2 ] [ 12 ,

2
3 ] [ 23 ,

5
6 ] [ 56 , 1]

Address 0.00 0.01 0.02 0.10 0.11 0.12

µ 1/18 1/9 1/6 1/9 2/9 1/3

(N1, N2) = (3, 2) ( 3
16 )

Interval [0, 16 ] [ 16 ,
1
3 ] [13 ,

1
2 ] [ 12 ,

2
3 ] [ 23 ,

5
6 ] [ 56 , 1]

Address 0.00 0.01 0.10 0.11 0.20 0.21

µ 1/18 1/9 1/9 2/9 1/6 1/3

(N1, N2) = (3, 3) ( 9
16 )

Interval [0, 19 ] [ 19 ,
2
9 ] [ 29 ,

1
3 ] [ 13 ,

4
9 ] [ 49 ,

5
9 ] [59 ,

2
3 ] [ 23 ,

7
9 ] [ 79 ,

8
9 ] [ 89 , 1]

Address 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 0.22

µ 1/36 1/18 1/12 1/18 1/9 1/6 1/12 1/6 1/4

Hölder exponents given in the literature can not be applied directly to this type
of measure.

We recall that the coarse Hölder exponent is defined as

αk(x) =
log(µ(I0.β1β2...βk))

log ε
, k = 1, 2, . . . , (5)

where µ(I0.β1β2...βk) indicates the measure of the interval x = I0.β1β2...βk having
address 0.β1β2 . . . βk and size (length) ε, with βi = 0, 1, . . . , b − 1 and b ≥ 2.
On the other hand, the local Hölder exponent is defined as

α(x) = lim
k→∞

αk(x) (6)

(i.e. for ε→ 0), if the limit exists.
However, expressions (5) and (6) can be generalized to accommodate this

new measure. All we have to do is to consider that the measure associated
with an address is the mean value of the masses of the intervals which can
have the address. This becomes clearer by examining Table 2 for the working
example. It is also clear from Table 2 that addresses that are permutations of
one another have the same mean mass (this remains true at any step).

The question now is how to determine the measure of a particular ad-
dress 0.β1β2 . . . βk, βi = 0, 1, . . . , i = 1, 2, . . . , k, which can have a multitude
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Table 2. Masses for all possible addresses obtained after 2 steps

Address (2,2) (2,3) (3,2) (3,3) Mean mass

0.00 1/9 1/18 1/18 1/36 25/576

0.01 2/9 1/9 1/9 1/18 25/288

0.10 2/9 1/9 1/9 1/18 25/288

0.11 4/9 2/9 2/9 1/9 25/144

0.02 0 1/6 0 1/12 5/64

0.20 0 0 1/6 1/12 5/64

0.12 0 1/3 0 1/6 5/32

0.21 0 0 1/3 1/6 5/32

0.22 0 0 0 1/4 9/64

of intervals attached to it, if one does not know which generator sequence
(N1, N2, . . . , Nk) was used? As Table 2 suggests, we use the random multi-
pliers expectations. We can prove that the address 0.β1β2 . . . βk has expected
measure

µE(0.β1β2 . . . βk) = E(Mβ1
)E(Mβ2

) . . .E(Mβk),

which does not depend on the generator sequence. We remark that the only
kind of dependence that exists between the generator sequence and the expected
measure is through the influence of N on the random multipliers Mi. For
example, both addresses 0.01 and 0.10 have expected measure E(M0)E(M1) =
25/288.

The generalization of the definitions (5) and (6) to this new measure is now
straightforward. For the generalized coarse Hölder exponent we have

αk(0.β1β2 . . . βk) =
log(µE(0.β1β2 . . . βk))

log

(
E
[(∏k

i=1Ni

)−1]) ≈ − log(µE(0.β1β2 . . . βk))

k log(E[N ])

and for the generalized local Hölder exponent,

α = lim
k→∞

αk(0.β1β2 . . . βk) ≈ − lim
k→∞

log(µE(0.β1β2 . . . βk))

k log(E[N ])
,

if the limit exists. Note that
(∏k

i=1Ni

)−1
represents the (random) length of

the intervals at step k.

On the other hand, if at step k we randomly select an address 0.β1β2 . . . βk,

P[βi = j|N = n] =
1

n
, j = 0, 1, . . . , n− 1,
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and from applying the law of total probability, it follows that

P[βi = j] =

∞∑
n=2

P[βi = j|N = n]P[N = n], j = 0, 1, . . . . (7)

Therefore, randomly selecting an address in this case corresponds to generat-
ing a sequence β1β2 . . . βk, where the βi’s satisfy (7). Considering again the
example, we get P[βi = 0] = P[βi = 1] = 3/8 and P[βi = 2] = 1/4.
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Abstract. We seek the possibility of using multifractal spectrum as a diagnostic tool
to differentiate between healthy and pathological time series. The data sets used for
the analysis consist of EEG and Heart Rate Variability (HRV) time seres downloaded
from Physio Bank archives. We use the automated algorithmic scheme recently pro-
posed by us to compute the multifractal spectrum, which provides a set of parameters
to compare different data sets. We show that the set of parameters characterising
the multifractal spectrum can distinguish between healthy and pathological states in
both EEG and HRV.
Keywords: Time Series Analysis, Physiological Chaos, Multifractal Spectrum.

1 Introduction

Recently, many authors [1,2] have stressed the importance of multifractality in
the study of heart rate variability and suggested that it could provide a new
observational window into the complexity mechanism of heart rate control. The
study also highlights the need for evaluating new nonlinear parameters for a
better physiologcal investigation and for finding new clinical applications. The
main issues regarding the characterisation of complex physiological signals are
discussed in a recent review [3].

Out of the large number of studies done on physiological data, the focus
has mainly been on the analysis of EEG and ECG time series data, with the
purpose of characterisation and prediction from a dynamical systems point of
view. The analysis of EEG data from healthy persons and epiletic patients has
lead to a better understanding of various aspects of epileptic seizure activities
and the corresponding brain states [4,5], but the question of whether the seizure
can be predicted in advance is still an open one [6].

There have been a multitude of studies on ECG data sets recorded from
healthy persons as well as during some pathological cases, such as, congestive
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heart disorders and ventricular fibrillation [7–9]. Most of these studies have
searched for deterministic nonlinearity in the time series from cardiac system
[10,11], and the reliability of these results have also been questioned [12–14] due
to various reasons, such as, insufficient data, presence of noise, the subjective
nature of the computational techniques and so on.

In this paper, we present some preliminary results for the analysis of phys-
iological data, by computing the f(α) spectrum from the time series using an
automated algorithmic scheme. The details of the scheme are presented and
tested in the next section and it is applied to physiological data in §3. The
conclusions are drawn in §4.
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Fig. 1. The Dq spectrum (points) and its best fit curve (continuous line) for the
Rossler attractor computed from 10000 data points are shown in the upper panel.
The lower panel shows the f(α) spectrum computed from the best fit curve using our
scheme.

2 Computing the Multifractal Spectrum

Here we discuss only the salient features of the algorithmic scheme and more
mathematical details are presented elsewhere [15], [16]. The scheme provides us
with a set of parameters characterising the spectrum which are good quantifiers
to compare the changes in the multifractal character as reflected in the time
series.
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As the first step, the spectrum of generalised dimensions Dq is computed
from the time series using the equation

Dq ≡
1

q − 1
lim
R→0

log Cq(R)

log R
(1)

where Cq(R) are the generalised correlation sum. This is done by choosing the
scaling region algorithmically as discussed earlier [16]. We make the conditions
for Rmax and Rmin fixed by the algorithm itself so that the comparison between
data sets becomes nonsubjective.

We then use an entirely different algorithmic approach for the computation
of the smooth profile of the f(α) spectrum. The f(α) function is a single
valued function between αmax and αmin and also has to satisfy several other
conditions, such as, it has a single maximum and f(αmax) = f(αmin) = 0. A
simple function that can satisfy all the necessary conditions is

f(α) = A(α− αmin)γ1(αmax − α)γ2 (2)

where A, γ1, γ2, αmin and αmax are a set of parameters characterising a par-
ticular f(α) curve. It can be shown [16] that only four of these parameters
are independent and any general f(α) curve can be fixed by four independent
parameters. Moreover, by imposing the conditions on the f(α) curve, it can
also be shown that

0 < γ1, γ2 < 1 (3)

The scheme first takes α1(≡ D1), αmin(≡ D∞) and αmax(≡ D−∞) as input
parameters from the computed Dq values and choosing an initial value for γ1 in
the range [0, 1], the parameters γ2 and A are calculated. The f(α) curve is then
computed in the range [αmin, αmax]. From this, a smooth Dq versus q curve
can be obtained by inverting using the Legendre transformation equations,
which is then fitted to the Dq spectrum derived from the time series. The
parameter values are changed continuously until the Dq curve matches with
the Dq spectrum from the time series and the statistically best fit Dq curve is
chosen. From this, the final f(α) curve can be evaluated. An important aspect
of the scheme is that it also provides a set of parameters that can completely
characterise a given f(α) curve. The parameters can play an important role in
the nonsubjective comparison of the multifractal properties of the same system
under different conditions, such as, the changes in the chaotic attractor due to
parameter variation, changes in the physiological conditions etc.

To illustrate our scheme, we choose the time series from a standard chaotic
attractor, namely the Rossler attractor with parameter values a = 0.2, b = 0.2
and c = 7.8. We use 10000 data points generated with a time step ∆t = 0.1.
The Dq spectrum is first computed with embedding dimension M = 3, for q
values in the range [−20,+20], taking a step width of ∆q = 0.1. Choosing
D−20, D1 and D20 as the input values for the f(α) function Eq. (2), the
parameters γ1 and γ2 are scanned in the range [0, 1] and the statistically best
fit Dq curve is chosen. The complete f(α) spectrum is then computed from
the best fit Dq curve. The Dq spectrum and the best fit Dq curve are shown
in Fig. 1 (top panel). The complete f(α) profile computed from the best fit
Dq curve is also shown in Fig. 1 (bottom panel).
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Fig. 2. The top panel shows the Dq spectrum computed using our scheme from rep-
resentative EEG time series for healthy persons (continuous line) and during epileptic
seizure (dashed line). The bottom panel shows the corresponding f(α) spectrum.

3 Application to Physiological Data

Physiological systems are, in general, complex where several nonlinearities are
involved. We use physiological data commonly used for this kind of analysis,
namely, EEG and HRV. In the case of EEG, we analyse signals from normal
state and during epileptic seizure. Four data sets each from both cases are
used for the analysis. In the case of HRV, we use three catagories of time
series. The first one is from normal healthy persons, while the second and
third corresponding to different pathological conditions of the heart, namely,
congestive heart failure (CHF) and atrial fibrillation (AF). Four data sets for
each of the above mentioned classes of HRV are analysed.

The EEG data were downloaded from the website of the Department of
Epileptology, University of Bonn while the ECG data were obtained from
http://www.physionet.org/physiobank/archives. The EEG data sets consist
of continuous data streams of about 24 secs long and with approximately 5000
data points. The HRV data sets for different catagories consist of continuous
data streams of approximately 5400 data points with a time step of 0.04 secs.
All computations are done for an embedding dimension M = 3 and we show
results for representative time series from each class.
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The Dq and f(α) spectra for the two classes of EEG signals computed
by our scheme are shown in Fig. 2. Similarly, the Dq and f(α) spectra for
the three different classes of HRV time series are shown in Fig.3 and Fig. 4
respectively. One result which is clear from the figures is that all these signals
show multifractal character. Some earlier studies had suggested that there
could be a loss of multfractality for HRV in some pathological states. But we
find that there is only a change in the multifractal character from healthy to
pathological states.
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Fig. 3. Typical Dq spectra for HRV signals computed from healthy persons (contin-
uous line), persons with CHF (dotted line) and those with AF (dashed line).

Of course, the difference between healthy and pathological time series is
evident even visually, with the healthy signals appearing much like random
fluctuations and the pathological ones do have some spiky nature. So we ex-
pect that these differences are also reflected in their Dq and f(α) spectra. The
question is whether these qualitative changes can be quantified using our al-
gorithmic scheme. It is quite evident from the figures that the nature of the
f(α) profile is different for healthy and pathological states, in the case of both
EEG and HRV. There is significant change in the profile of the spectrum and
the parameter values between healthy and pathological states, for both EEG
and HRV.

The range of α values, |αmax−αmin|, generally tend to change from healthy
to pathological states in all cases. But the changes in the other three parameter
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Fig. 4. The f(α) spectrum corresponding to the three cases of HRV signals shown in
the previous figure.

values seems to be more significant. The values of γ1 and γ2 appear to be
more sensitive to the changes in the multifractal character of the time series,
especially since the range of γ1 and γ2 is limited (0 < γ1, γ2 < 1). For example,
for the healthy data sets, the values of γ1 and γ2 are very close and always
γ1, γ2 > 0.8. But in the case of pathological states, their values are generally
found to be much less, with the difference |γ1 − γ2| increasing. This, in turn,
increases the asymmetry between the two branches of the f(α) profile.

Thus our results clearly indicates the importance of computing the mul-
tifractal spectrum using an algorithmic scheme and the utility of the associ-
ated parameters in differentiating signals from different physiological condi-
tions. But we have used only limited number of data sets for the analysis.
Whether all the trends shown by the parameters as discussed above are gen-
uine and whether they can be used as diagnostic tools from a practical point of
view will have to be confirmed by a much more comprehensive data analysis.

4 Conclusion

In this paper, we analyse an ensemble of physiological signals generated from
different physiological conditions and try to distinguish them based on their
multifractal properties. We use the automated algorithmic scheme recently
proposed by us to compute the f(α) spectrum from the time series. The scheme



Chaotic Modeling and Simulation (CMSIM) 1: 51–57, 2013 57

provides a set of parameters to characterise a given f(α) spectrum. The scheme
is first tested and illustrated using synthetic time series from standard chaotic
systems. It is then applied to two catagories of physiological data, namely, EEG
and HRV. The signals from healthy and pathological states in both catagories
are analysed. Our analysis indicates that the set of parameters characterising
the f(α) spectrum show systematic difference between healthy and pathological
states in both catagories. Thus, we find that measures based on multifractal
structure can be effectively employed for differentiating signals from healthy
and pathological states.

The authors thank the Department of Epileptology, University of Bonn, for
making the human brain EEG data available on their website.
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Abstract. We consider a system of interacting elements that mimic certain proper-
ties of human perception, namely, the bounded capacity of ordering events, actions,
etc. according to their preference. Previously this feature was described by the no-
tion of dynamical traps, which is modified in the present work in order to take into
account the imperfectness of human perception of their own actions. Numerically we
demonstrate that the considered system under the presence of dynamical traps of a
new type exhibits complex dynamics, including highly irregular motion.
Keywords: Complex dynamics, multiparticle systems, dynamical traps.

1 Introduction

The employment of various physical models in social sciences could be observed
during last decades. Among the models that are used widely in studying coop-
erative phenomena in social systems are multi-particle dynamical models (see,
e.g., Helbing and Mólnar[1], Ohnishi[2]). Advances in this field, though, face
the fact that human beings indeed differ in their basic properties from the ob-
jects of the inanimate world described by Newtonian mechanics. This fact may
lead one to the problem of development of new physical notions that should be
introduced in addition to the well-studied ones of the modern physics in order
to reflect the essential aspects of human behavior in social systems.

Mathematical notion of equilibrium points is one of the cornerstones of
the modern physics; it is also widely used in social psychology (see, e.g., Val-
lacher[3]). However, human as a key acting element of the dynamical systems
is often not capable to clearly recognize the desired equilibrium position among
a certain set of its neighboring points in the corresponding phase space. This
feature of human cognition is referred to as bounded or fuzzy rationality (Dom-
pere[4]). The application of the dynamical traps notion as a mathematical
formalism for describing human fuzzy rationality was investigated by Luba-
shevsky[5]. To briefly review this concept, let us appeal to the car following
theory and consider hypothetical dynamical system controlled by an operator
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© 2013 CMSIM ISSN 2241-0503
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whose purpose is to maintain the system near the equilibrium point set to the
origin. The system of equations describing the system dynamics under the
control of the operator take the following form

ẋ = v,

v̇ = Ω(x, v)F (x, v, aopt(x, v)).
(1)

Here x and v are the system coordinate and velocity, respectively; aopt is opti-
mal in some sense control strategy chosen by the operator. The cofactor Ω(x, v)
equals unity for all values of (x, v) that are far enough from the equilibrium
point and Ω(x, v) � 1 in a certain neighborhood Qtr of the equilibrium point.
In order to explain the meaning of the cofactor Ω(x, v) we consider the behavior
of the operator who is approaching desired phase space position (x = 0, v = 0).
Let us assume that if the current position is far from the origin, the operator
perfectly follows the optimal control strategy. If the current position is recog-
nized by the operator as “good enough” ((x, y) ∈ Qtr) (though it may be not
strictly optimal) due to her fuzzy rationality, she halts active control over the
system so that the system dynamics is stagnated in a certain vicinity of the
desired position (in case of stable equilibrium). Therefore, Qtr is called the
area of dynamical traps.

Previous studies on the dynamical trap effect in chains of particles governed
by equations of form (1) have shown that it may cause complex cooperative
phenomena to arise in the systems under the presence of white noise (Luba-
shevsky et al.[6]), as well as in the systems without the influence of stochastic
factors (Lubashevsky[5]). However, it should be taken into account that in the
real world the operator cannot usually affect the system velocity directly as
prescribed by equations (1), e.g., in the car following the operator is not able
to directly affect the speed of the car and in fact controls only the acceleration
(Lubashevsky[7]).

It should also be noted that the operator perception of her own actions is
not perfect, and could also be described in terms of fuzzy rationality. Namely,
the value of the actual control effort could be treated as an acceptable by
the operator if its deviation from the optimal strategy is of low magnitude.
Therefore, in order to take into account the issues discussed above, in present
work we introduce the dynamical trap model of a new type. While previously
the dynamical trap region was referred to as two-dimensional region in the
“coordinate-velocity” phase space, we propose the concept of the dynamical
trap in the “space” of behavior strategies as a certain neighborhood of the
optimal one.

The purpose of the current paper is to demonstrate that bounded rationality
of human cognition in perceiving their own actions could be responsible for
intrinsic cooperative phenomena in the systems of interacting elements under
the control of human operators.

2 Model

Let us consider the chain of N motivated particles (Fig. 1) moving along parallel
vertical axes; the motion of each particle is characterized by its coordinate xi,
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Fig. 1. The chain of N motivated particles moving along parallel axes. Terminal
particles i = 0 and i = N + 1 are fixed at x = 0. Dotted arrows indicate the
interaction between neighboring particles.

velocity vi and acceleration ai. Each particle tends to minimize the absolute
values of its relative coordinate and velocity with rescept to its neighbors,
namely, ηi = xi − 1

2 (xi−1 + xi+1) and ϑi = vi − 1
2 (vi−1 + vi+1). Two terminal

particles are assumed to be fixed: x0(t) ≡ xN+1(t) ≡ 0. The dynamics of such
system could be described by the following equations

ẋi = vi,

v̇i = ai,

ȧi = Ωa(ai, aopt
(
ηi, ϑi, vi)

)(
aopt(ηi, ϑi, vi)− ai

)
,

(2)

for i = 1, N . Here

aopt(η, ϑ, v) = −Ωϑ(ϑ)(η + σϑ+ σ0v) (3)

is the optimal strategy of the operator behavior which is considered to depend
mainly on the current values of the relative position η and velocity ϑ. σ could
be treated as a relative weight of the velocity variations as a stimulus causing
operator actions (with respect to the first stimulus ηi); σ0vi stands for the
friction force which characterizes the physical properties of the environment
where the system is placed (σ0 � 1). The dynamical trap effect in system (2),
(3) is modelled by cofactors Ωϑ and Ωa defined as follows

Ωϑ(ϑ) =
∆ϑ + ϑ2

1 + ϑ2
,

Ωa(a, aopt) =
∆a + (aopt − a)2

1 + (aopt − a)2
,

(4)

where parameters 0 ≤ ∆ϑ,∆a ≤ 1 determine the intensity of dynamical traps:
the less these parameters, the stronger the effect of corresponding dynamical
traps.

It should be pointed out that we assume the former dynamical trap cofactor
Ωϑ not to depend on particle coordinate; it could be explained in such a manner
that the control over system relative velocity ϑ is of prior importance for the
operator comparing to the control over position η. Thus, if the relative velocity
becomes sufficiently small, the operator prefers to retard the correction of the
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coordinate in order not to make the velocity variations take undesirably large
values (Lubashevsky[5]).

The cofactor Ωa in (2) stands for the dynamical trap effect of a new type
which was not studied previously. Assuming Ωa = 1, one could easily see that
the last equation in (2) in fact implies the equality ai = aopt(). However, we
consider that the operator, first, is hardly able to precisely implement the strat-
egy aopt defined by (3), and, second, cannot distinguish between the strategies
that are close in some sense to the optimal one. Therefore, one may think
of a certain neighborhood of the optimal strategy in the space of all possible
strategies, such that each strategy from this region is treated as the optimal
one by the operator. So in case the operator feels that current control regime
is optimal, she just keeps maintaining the current value of the control effort
constant so that ȧ ≈ 0. When the operator realizes that the current strategy
is far from the optimal one, she starts adjusting it to the desired value which
means that ȧ ∼ (aopt − a).

These speculations led us to the system (2)–(4) as a model that may reflect
some of mentioned properties of human bounded rationality. The rest of the
paper is devoted to the analysis of anomalous cooperative phenomena that
could be observed in such system for various values of system parameters.

3 Numerical simulation

In the current work we present the results of the preliminary analysis of system
(2)–(4). The scope of the future work should comprise certain extensions of
the proposed model; to be specific, the characteristic time scale of the system
dynamics should be taken into account, as well as the thresholds of the velocity
and acceleration perception. Here we consider all these parameters to take
values equal to unity.

We analyze numerically the collective behavior of the particle chain by solv-
ing equations (2)–(4) using the standard (4, 5)-Runge-Kutta algorithm. Due to
the fact that the behavior of the studied system significantly varies depending
on the number of interacting particles, the below analysis is divided into three
parts according to the cases 1)N = 1, 2; 2)N = 3; 3)N ≥ 4. We should specify
that all of the following results were obtained for small values of parameters
∆ϑ and ∆a, namely 0.001, which correspond to the strong effect of dynami-
cal trap. Below all phase space portraits depict projections of 3-dimensional
phase trajectories on the “coordinate-velocity” plane generated by the system
motion during the time interval of T = 104 given small randomly assigned
initial disturbances. In case of multi-particle chains the middle particles tra-
jectories are represented; particle motion structure is similar for all particles in
the given ensemble, however, particles in the center of the chain have slightly
larger fluctuations amplitude.

The numerical simulation of the single particle oscillating between its two
fixed neighbors (N = 1) figures out that the combination of two dynamical
traps causes the limit cycle to arise in the system phase space, while without
the dynamical trap effect the system has single stable fixed point (x = 0, v =
0, a = 0). Also it is notable that the previous studies discovered the stable
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behavior of the single oscillator under the presence of the single dynamical
trap characterizing the fuzzy rationality in perceiving the velocity variations
(Lubashevsky[5]).

First let us consider the case of the single particle oscillating between two
fixed neighbors. The phase portrait and phase variables distributions of the
system motion are depicted on Fig.2a-c. The chain of two interacting parti-
cles exhibits the similar behavior patterns (see Fig.2d-i), except for the phase
trajectories assymetry caused by the introduction of the second oscillator. In
both cases the structure of the limit cycles is stable with respect to variations
of the system parameters. Namely, the found pattern remains for the following
values of system parameters: σ = 1, 3; σ0 = 0, 0.01, 0.1.

a b c

d e f

Fig. 2. The phase trajectory projections of system (2)–(4) for N = 1 (a) and N = 2
(d) on the “coordinate-velocity” plane. The right four frames show corresponding
phase variables distributions. On figures (d)–(f) thin and thick lines are introduced
in order for one to distinguish between two moving particles. Parameters used for
simulation are σ = 1, σ0 = 0.01.

From Fig.2 it could be seen that the dynamical trap effect causes the in-
stability of the single particle motion; the limit cycle emerges. The similar
phenomena could be observed in almost the same form for each particle in
the pair of coupled oscillators. The situation dramatically changes when the
ensemble of three particle is taken into consideration. Adding just one more os-
cillator to the system causes the anomalous cooperative phenomena to emerge,
particularly, complex 3-dimensional attractor arises in the system phase space
(see Fig.3a-c).

Notably, unlike the previous cases (N = 1, 2), introducing the external
friction force (σ0 6= 0) causes the attractor to become significantly blurred (see
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a b

d e

g h

Fig. 3. The phase trajectory projections of the middle particle from the ensemble (2)–
(4) and corresponding phase variables distributions for N = 3. Frames a-c illustrate
the case σ = 1, σ0 = 0, frames d-f depict the case σ = 1, σ0 = 0.01, frames g-i are for
the values of parameters σ = 3, σ0 = 0

Fig.3d-f ), while increasing the relative weight of the particle velocity as the
stimulus for the operator actions makes the particle dynamics to take form of
chaotic oscillations (Fig.3g-i).

In case of the relatively large number of interacting elements the system
dynamics becomes highly irregular. The chain of four particles demonstrate
the oscillatory behavior as could be seen on Fig.4a-c. It is worth underlining
that the well-defined attractor (Fig.3a) could be destructed just by adding one
particle to the ensemble (Fig.4a) without changing any of the system parame-
ters.
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a b

c

d e

f

Fig. 4. The phase trajectory projections and phase variables distributions of the
middle particle from the chain (2)–(4) for N = 4 (figures a-c) and N = 15 (figures
d-f ). Parameters used for simulation are σ = 1, σ0 = 0.

The system motion trajectories for N = 15 (Fig.4d-e) are of even greater
irregularity due to the increased number of particles and corresponding coop-
erative effect. For larger N the system motion exhibits the patterns of similar
structure, but the amplitude of the fluctuations increases with N).

4 Conclusion

In the present paper we discuss the new type of the dynamical trap – a model de-
scribing human bounded rationality. The standard “coordinate-velocity” phase
space inherited from the Newtonian mechanics is proposed to be extended by
the acceleration variable. By analyzing the behavior of the motivated particles
chain governed by bounded rationality we demonstrate that the multi-particle
system under the presence of the dynamical trap of a new type exhibits intrinsic
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cooperative behavior. The various complex patterns of the system motion are
shown to arise depending on the system parameters. First, it is demonstrated
that the dynamical trap effect of a new type can cause the instability in the
single oscillator dynamics which was not observed in the previous studies on
the dynamical traps model. Second, the system dynamics patterns are shown
to take the complex 3-dimensional structure in case of three-particle ensem-
ble. Third, we demonstrate that with the increasing number of elements the
system motion becomes significantly irregular, for large N exhibiting chaotic
oscillations. The obtained results confirm that the system under consideration
could exhibit anomalous behavior; however, the proposed model require more
detailed analysis.

Acknoledgements: The work was supported in part by the JSPS “Grants-
in-Aid for Scientific Research” Program, Grant �245404100001.
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Abstract: Expansion of orbs of application (appendix) of automatic control has caused 

development of intellectualization of control systems. One of the important directions are 
intelligent self-organizing system of automatic-control (ISSAC). They are capable to 

supply required capabilities of the purpose of control with change of environments and/or 

their parameters). It is attained by automatic synthesis of the law of control, the most 

adequate a current situation. For this purpose the intelligent system of synthesis is used. 
The planning subsystem creates (in the elementary case selects from already known) the 

most adequate procedure of synthesis. However existing approaches to planning actions 

have no property of mass parallelism. It do not allow to apply them in control systems 

owing to the big costs of time for a solution of task. It is offered to use planning artificial 
neural networks (PANN) within the planning subsystem of tasks solver. Features of 

planning of tasks solvings with use PANN are considered. Outcomes of simulation of 

control by a population of plants with use ISSAC are represented. 

Keywords: planning artificial neural networks, simulation of intellectual control 
systems. 

 

1. Introduction 
Increasing thickening of objects of control in a combination with toughening 

requests to accuracy and quality of control has reduced to an inconsistency with 

traditional approaches to construction of control systems. Modern control 

systems, as a rule, are working (function) in interacting with other systems 

which can influence on their behavior. The problem is complicated that, those 

conditions of functioning of control systems are changing during their work. It 

concerns not only the change of controlled plants and environments of their 

functioning, but also and the purposes of control. Necessity of organization of 

interacting of a set of the control systems a population of probably 

interconnected controlled plants essentially complicates a task of control. 

 

2. Intelligent self-organizing control systems 
It is expedient to apply the approach based on usage of intellectual systems of 

synthesis of the law of control to a solution of the indicated problem [1]. Such 

systems for a solution of a specific task of synthesis of the law of control in the 
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beginning create a program of a solution of the task as ordered population of 

elementary operations and executing them make the required law of control. 

The amount of the elementary operations used for task solving of synthesis of 

the law of control, is not big, as they represent procedural definition of concepts 

of the theory of automatic control (TAC) [2]. Creating of the program a solution 

of the task is carried out based on knowledge of methods of task solving of the 

theory of automatic control. For this purpose are traditionally used a tools of 

automatic theorem proving. It is known, that tasks of scheduling of operations 

or automatic theorem proving are difficultly for deciding and them referred to 

category of NP-challenge. For such tasks of an expenditure of resources by 

searching of a solution will increase under the exponential law with growth of 

complexity of the task. Thus the most perspective are multilevel systems in 

which at the expense of introduction of hierarchically interconnected spaces are 

narrowed down of area for searching a solution of the task. Intelligent self-

organizing control systems are understood as systems of automatic control, 

capable to self-organizing by means of a modification of the law of the control, 

using methods of an artificial intelligence [3]. 

Structure of an intelligent self-organizing system of automatic control (see fig. 

1): the measuring subsystem, the executive mechanisms, the calculator of 

control action, the subsystem of identification of models of plant of control and 

environment based on the data of a measuring subsystem, the block of shaping 

of the purpose of control on the basis of the own purposes of behavior and an 

emotional state of an intelligent self-organizing control system, the intellectual 

subsystem of synthesis of the law of control, the block of a self-estimation 

realizing an evaluation of a quantitative equivalent of quality estimate 

("emotion") of behavior of this intellectual self-organizing system of automatic 

control, formed on the basis of a self-estimation and the estimations obtained 

from higher hierarchy levels of control systems. 
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Fig. 1. Structure of an intelligent self-organizing system of automatic control 
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Setting of the task of synthesis of the new law of control includes exposition of 

known components of a control system, an environment and the purpose of 

control, not specifying of a method (procedure) of a solution of the task, i.e.  

none procedurally. The set of methods of synthesis and the analysis of control 

systems are more not very important yet. More important becomes are 

availability of capabilities of tools by automatically definition are methods, 

relevant to the current task. 

The problem of an automatic solution non procedural tasks in view demands 

engaging intelligent tools, understanding under a word "intelligent" ability to 

decide new tasks [4]. Therefore, the subsystem of automatic synthesis of the law 

of control of a self-organizing control system should represent the intelligent 

system of automatic synthesis using methods of an artificial intelligence for 

preliminary construction of the schedule of a solution of a specific target of 

synthesis. The new law of control is formed as a result of execution of the 

constructed plan of action. Thus, most a gorge is the mechanism of scheduling 

of operations. It is stipulated by that methods used now have no property of 

mass parallelism, and, therefore, «the damnation of dimension» is inherent in 

them, not permitting to solve tasks of practical complexity. 

The complex solution of the indicated problems is known on the basis of the 

methodology of automatic problem solving the theory of automatic control 

including [2], [3]: 1) formalizing knowledge of methods of problem solving of 

synthesis and analysis control systems as multilevel model of a set of formalized 

tasks (MMSFT) TAC [2]; 2) construction of a planning subsystem as the system 

of automatic theorem proving representing the application system of calculus of 

sequent [4], [5] and called as the multilevel axiomatic theory of automatic 

solutions of formalized tasks (MATASFT) TAC [2], [3]; 3) usage of planning 

artificial neural networks (PANN) [2], [3], [6] as a search engine of output in 

formal axiomatic systems; 4) Result of the planning (schedule) of a solution of the 

task is the program on the problem oriented language "Instrument - OP", which 

supporting a paradigm «rules IF-THEN» [2]; 5) construction of the executive 

subsystem as the application package controlled by the interpreter of the language 

"Instrument - OP". 

Multilevel model of a set of formalized tasks of TAC is  ОДПМО ,, ,  

were  iiiiii QΨHPП ,,,п|п{ , },,, ПQΨHP iiii   – 

set of the formalized generalizations of control system components called as 

subjects and possessing: properties   falsetruePp ij ||   ; 

characteristics  ij Hh = },|{ NC  k

n

kk nk , С, N – sets complex 

and natural numbers accordingly; forms of mathematical models 

},...,{ 1  ijm ; components ПQq ij  ; 

 OД ii  :д|д  – set of operations for 

processing attributes of subjects;   falsetrueooO ii |:|   

– set of the predicates defined on attributes of subjects. Actions 
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Дgrdc iiiii  ,,,д  and relations Odco iii  ,  are uniquely 

identified by the attributes Oci   – conditions of applicability, 

id  – source data, Ori   – results of an action, 

Ogi   – requirements to results of an action. With a view of a raise of 

effectiveness multilevel representation of knowledge as a three-rank system of 

submodels is used, each of which has three-level representation of knowledge: 
321 ,, MMMM  , 

11

1

1 ,..., mMMM  , 
22

1

2 ,..., nMMM  , 

3

1

3 MM  , 
r

i

r

i

r

i

r

i MMMM ,2,1,0 ,, , 
r

ik

r

ik

r

ik

r

ik ОДПM ,,,, ,, , were 

rM  - model of r-th rank; 
r

iM  - i-th submodel of r-th rang; 
r

ikМ ,  - i-th 

submodel of k-th level of r-th rank; 
r

ikП ,  – set of subjects, 
r

ikД ,  – set of 

actions, 
r

ikО ,  – set of relations of submodel 
r

ikМ , . The multilevel model of M is 

created by the scientists on the basis of model МО by means of multistep 

generalizations of knowledge [2], [4]. The planning subsystem is the formal 

logical system representing the application system of calculus of sequents [4], 

[5], called as the multilevel axiomatic theory of automatic solutions of 

formalized tasks (MATASFT) TAC [2]: 
3
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i TTTTTT ,2,21,1,10,0 ,,,, , were 
r

iT  – i-th three-level theory of solutions 

r-th rank; 
r

i

r

i

r

i TTT ,2,1,0 ,,  – i-th single-level theories of solutions 0-th, 1-th, 2-th 

levels r-th rank; 
r

i

r

i TT ,21,10 ,  – the translational theories linking 1-th and 0-th, 2-th 

and 1-th levels of r-th rank. Theory Т is automatically generated [4] on the basis 

of multilevel model of M under the following scheme: subjects of models 
r

ik,М  

will be converted to variable theories of solutions 
r

ik,T , actions – in axioms, 

a sheaf between subjects – in axioms of translational theories 
r

i1,-kkT . 

Specificity of data domain TAU has stipulated presence in theories of solutions 
r

ik,T  of the own axioms with source data, a required results, conditions for 

applicability, but also the requirements to results. Therefore production rules of 

theories of solutions
r

ik,T , in addition to rules systems G4 [2], include the special 

production rules, which making (playing) a main role during scheduling of 

solving of task [3]. 

Scheduling of problem solving of synthesis of control system is complicated 

that at a stage of scheduling the values of many parameters of models of 

components of control system are unknown, they will defined only during 

executing of the scheduled program of a solution of the task. Therefore the 
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developed schedule should include all alternate paths of a solution, choice of the 

most approaching from which is carried out immediately already at executing of 

the scheduled program of a solution of the task. Therefore, for example, it is 

obvious, that before realization of any operation having conditions of 

applicability, values of appropriate logical expressions should be checked. On 

the other hand, after realization of operations with requirements to outcome it is 

necessary to check realization of the indicated requirements. Therefore, in the 

schedule of a solution of the task, in addition to the operations forming required 

outcome, should switch on as well the operations computing values of 

appropriate relations. Thus if requirements to required outcome appear 

outstanding then actions for elimination of a discordance should be undertaken. 

A common guideline on this score does not exist, as specificity of problem area 

here should be taken into account. In our case it reduces in include (appearance) 

in theories of solutions of axioms for which in conditions of applicability are 

indicated negation of requirements to outcome. Thus, the operation that was 

defined by such axiom should be applied to support of realization of 

requirements to outcome if it became known, that these requirements are not 

fulfilled. Bypass of "the damnation of dimension" can realize the planning 

artificial neural networks (PANN) [2], [3], [6] which possessing property of 

mass parallelism. Structurally PANN consist of resolving artificial neural 

networks (RANN) and archive artificial neural networks (AANN). The device 

of synchronization (see fig. 2) coordinates their operation. RANN is 

representing a three-layer network. She fulfills an inverse method of search of a 

solution of the task in a formalism of used fragment MATASFT TAC. The 

constructed schedule of a solution of the task is saved in AANN. RANN is a 

dynamic artificial neural network. Values on the output are varying with the 

constant signals on inputs. The initial state of all neurons RANN is not active.  
 

 

 

 

 

 

 
 

RANN AANN 

The device of synchronization 

Start 

 purpose is 

empty 

Task Operations 

The 

schedule 

of a 

solution 

of the task 

 
Figure 2. Structure of a planning artificial neural web, where: RANN -resolvelly 

artificial neural network (ANN), AANN - an archival artificial neural network 
 

For the tasks having a solution, the separate neurons of an outputs layer of 

RANN short-term are going to an active (excited) state, which then is 

remembered in AANN for the subsequent inclusion in the schedule of a solution 

of the task. Values of outputs of neurons of one of interior layers of neurons of 

RANN is interpreted as values of the searching’s purposes of a solution of the 

current task. Passage of these neurons in a non-active state reduces to 

appearance (generation) of signal, «the purpose is empty». It means that the 

solution of a task was obtained. Otherwise, on expiration of the solution time 

assigned on searching (an amount of pitches), the refusal to search a solution 

will be made. PANN allows solving simultaneously all subtasks of the source 
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task, forming a united plan of a solution. On paths of usage of neural networks 

always, it is necessary to solve two problems: preliminary tutoring of a web and 

interpretation of the obtained outcomes. In PANN both problems are solved by 

virtue of design features. Basic difference of the given approach is automatic 

generation MATASFT TAC, and after her and PANN on the basis of assigned 

MMSFT TAC. Instead of traditional tutoring of the neural network, the 

procedure of automatic creation (result) of the PANN is used based on the 

appropriate fragment MATASFT TAC, which is called as the single-level 

theory of solutions. The main idea of the procedure of creation of the PANN 

consists in shaping a neural network which stratums are compared with units of 

the single-level theory of solutions. Implementation on basis PANN of a 

planning subsystem of an intellectual system of automatic task solving of TAC 

was called as Naturally - Intellectual Solver (NI-solver) of tasks of TAC [2]. 

 

3. Research of intellectual self-organizing systems of automatic 

control 
The offered concept of automatic task solving of TAC based on planning 

artificial neural networks has served as methodological base for creation of a 

system of simulation of intellectual self-organizing systems of automatic 

control. The task of simulation of intelligent self-organizing systems of 

automatic control refer to category rather complicated, because includes not 

only immediate control of the set plant, but also simulation of the intelligent 

behavior used for the purposes of self-organizing. Therefore, usage of universal 

software for simulation of such systems in full appeared unacceptable. 

Such specialized resource is MISACS - a system of Modeling of Intelligent 

Self-organizing Automatic Control Systems [3]. MISACS it is intended for 

research of processes of control by a population probably interconnected and 

cooperating plants, controlled by the intelligent self-organizing systems of 

automatic control (ISSAC) organized in hierarchically connected structure. 

MISACS gives the user the following possibilities in a graphics interactive 

regime: 1) To set an amount of levels of hierarchy of population ISSAC, an 

amount of plants of control and ISSAC in each level; 2) To install connections 

between plants of control and assigned for them ISSAC; 3) To set criteria of a 

self-estimation of behavior ISSAC (engineering, analytical); 4) To define 

MATASFT TAC for everyone ISSAC separately. 

We research possibilities ISSAC for control of non-stationary plant (see fig. 3). 

Let the plant of control is described by the following equations: 
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were 40 t  – the moment of the beginning of a modification of model of plant 

of control;   – frequency of a modification of model of plant of control; 

0,10 f  – magnitude of stepping component exterior perturbation; 25,0mf  

– amplitude of sine waves of the exterior perturbation; f  – frequency of sine 

wave of the exterior perturbation; 5st  – the moment of inclusion of sine wave 

of the exterior perturbation; n]0[  – zero matrix nn . 

 
Fig. 3. Attributes of the project of simulation 

 

The purpose of control is set as requirements on the statically errors of 

controlled variables: 

 001,,  NRNx  , 
 R

ii
 уст

*

уст

*

устуст ,, , 

5,0*

уст1
  at presence of stepping exterior perturbations 5,00 f . 

The initial law of control was synthesized counting upon stepping exterior 

perturbation 5,00 f . Therefore with perturbation 0,10 f  of the 

requirement to exactitude of regulating at the disconnected self-organizing are 

not fulfilled even for stationary plant (a curve 1 on fig. 4). Inclusion of self-

organizing in an instant 0,10ct  with periodicity in 1 second and with a 

velocity of self-organizing 0,17 eliminates a problem, ensuring a required 

exactitude of regulating (a curve 2 on fig. 4). The transient for non-stationary 

plant of control at the disconnected self-organizing is mirrored with a curve 3 on 

fig. 4. Inclusion of self-organizing with the same parameters ensures a required 

exactitude of regulating and for non-stationary plant (a curve 4 on fig. 4). 
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Fig. 4. Control of non-stationary plant 

 

3. Conclusions 
Tools of self-organizing ISSAC successfully compensate modifications of plant 

of control and an environment by means of use of new more exact law of 

control with the help of an intellectual system of automatic synthesis of the law 

of the control, based on (having) used neural computing organization based on 

planning artificial neural networks. 
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Abstract: In this study, the International market gold prices over the last 31 years were 

analyzed for trends by five different methods, linear trend analysis, ARMA analysis, 

Rescaled range analysis, attractor reconstruction and maximal Lyapunov Exponent, 
detrended fluctuation analysis. Unfortunately not all methods give consistent results. The 

linear analysis reveals three regions with different trends. This is not supported by the 

rescaled range or detrended fluctuation analysis results. The maximal Lyapunov 

exponent calculation reveals chaotic behavior. The detrended fluctuation analysis reveals 
behavior close to brown noise. This is not corroborated by the rescaled range analysis, 

which indicates anti persistent behavior. The ARMA model implies first differencing that 

indicates a strong underlying linear trend. 

Combining these results, one probable explanation is that the strong linear trend, (also 
corroborated by ARMA analysis) affects the rescaled range calculation, because of its 

dependence on extreme values. The detrended fluctuation analysis removes this trend and 

reveals brown noise. This is consistent with a maximal positive Lyapunov exponent. 

Hence, we have a linear trend plus brown noise and neither of these two effects is 
dominant.     

 

Keywords: Dynamical systems, Gold Markets, Lyapunov exponents, Nonlinear Time 

Series Analysis.  

 

1. Introduction 
The goal of this paper is to provide a practical and accessible example for linear 

and nonlinear time series modeling. As a case study Gold prices in International 

markets between January 2, 1973 and March 31, 2011 is chosen. This field of 

study has been chosen for two main reasons. First, up-to-date data are available 

and it is free to download from international agencies. Second, Gold prices had 
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important effects on international monetary system which is explained in 

Section two. In section three, time series definition and its key features are 

explained such as trend, seasonality. In section four, one dimensional time series 

analysis of ARIMA and its components are explained. Section five is arranged 

for non linear time series analysis methods and linear and non linear time series 

analysis results are given. Gold has been the foundation of monetary systems for 

centuries. To illustrate the importance of Gold in monetary systems over the last 

century, one could start with the end of the British Gold Standard in 1914 to 

permit inflationary financing of World War I. As with all monetary inflations, it 

resulted in a buildup of debt as the public borrowed in order to spend money 

before loss of its purchasing power, with a view to repaying borrowings with 

currency after relative loss of its purchasing power. The end of monetary 

inflation in 1921 brought a return to stability for the UK and US. In 1929, 

collapse of overpriced equity markets resulted in deflation of consumer demand 

and depression. The cure for this came in 1935  by devaluing the paper money 

thus raising the paper money price of Gold. To restore stability and to avoid 

giving a message in favor of possible further inflation of the World Monetary 

Base, Foreign Exchange Rates were then fixed against Gold and the US Dollar 

was made convertible into Gold at a set price. The 1935 was ratified at Bretton 

Woods in 1944. Integrity of the US Dollar was guaranteed by the right of non-

US Central Banks to convert their US Dollars to Gold if they feared that the 

purchasing power of the Dollar could be devalued through excess creation of 

money. However, in 1968 this arrangement was informally, and in 1971 

formally, ended. The World Monetary system came off the US Gold Standard to 

permit inflationary financing which led directly to the Great Inflation of the 

1970’s and which, as usual, touched off a resurgence in debt. The 1970’s Great 

Inflation of money ended in 1981, resulting in falling interest rates and 

strengthening bond and equity prices[1,2]. 

 

2. Nonlinear Time Series Analysis 
Chaos occurs from the nonlinear evolution of systems. Chaotic dynamical 

systems are ubiquitous in nature such as the tornado, stock market, turbulence, 

and weather. Firstly, phase space reconstruction is necessary to understand that 

whether time series has chaotic behaviors or not[3,4,5]. 

The most striking feature of chaos is the limit of unpredictability of its future. 

This feature is usually called as the “sensitive dependence on initial conditions” 

or referring to the Lorenz models behavior, “butterfly effect. In this section, we 

will look at the details of nonlinear time series analysis by using mutual 

information, embedding dimension, maximal Lyapunov exponents, detrended 

fluctuation analysis and rescaled range analysis[6,7].  
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Fig. 1. Mutual Information of Overall Data 

 
Fig. 2. Autocorrelation function of Gold prices (ACF vs. Lag) 

 
Fig. 3. Mutual Information of Each Region and Overall Data 
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In order to reconstruct phase space delay time should be found and to find delay 

time there are basically two methods which are mutual information and 

autocorrelation function. 

As implied in Figure delay time of overall data is nearly 1500. Delay time is 

expected to be small as far as possible. As second method the calculation of 

autocorrelation functions were made with R Project statistics package program 

and also figures were drawn with this program. Figure shows autocorrelation 

ACF vs. lag and in this figure from first value to nearly 1000th value the ACF 

rapidly decreases and reaches zero. According to this figure delay time is nearly 

1000. After that value it fluctuates between -0.2 and 0.2.The lags do not fall 

within their standard errors for this reason it is not white noise[8,9].  

In each method delay times are too high to evaluate data as a whole. For this 

reason each region’s mutual information was drawn one by one. Delay time 

chosen from average mutual information is more reliable because it also takes 

into account possible nonlinearity. For this reason as shown in Figure delay time 

of each region are calculated and plotted with mutual information method only. 

Moreover, they are found different from each other. First region’s delay time is 

100. For second delay time is calculated as 300 and for third region 60. 

 
Fig. 4.  FNN vs. Embedding Dimension of Each Region and Overall Data 

After determining delay times embedding dimensions should be found. To find 

a satisfactory value for the embedding dimension, false nearest neighbors’ 

method provides a good estimate. After finding delay time for overall data and 

for each region the fraction of false nearest neighbors are calculated. In 

Figure14 and the fraction of false nearest neighbors versus embedding 

dimension are plotted. 

Although each regions delay times and trend behaviors’ are different from each 

other, their embedding dimensions are nearly same. All regions embedding 

dimension graphs’ are stabilizing after 8 dimensions. 
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Fig. 6. Lyapunov exponents of Overall Data   

The Lyapunov exponents are invariants of the dynamics. The maximal 

Lyapunov exponents are estimated with the use of TISEAN package and coded 

as the lyap_k routine. With the fit function of Gnuplot each region’s slopes are 

calculated.1st region’s Lyapunov exponent is 0.0308149, in 2nd  is  0.0308149, 

in  3rd is 0.0255495 and Lyapunov exponent of overall data is 0.0175337.As a 

conclusion a positive Lyapunov exponent is indicated from Gold prices. All 

Lyapunov exponents are positive on this account they are not stable fixed points 

.Moreover, they are not equal to ∞. Consequently,  they do not indicate random 

noise. However, they are positive and this shows that this time series is chaotic 

with a predictibility horizon of approximately 30. 

 

 
Fig. 7. R/S Analysis of Overall Data and Three Regions 

In order to calculate Hurst exponent for each region and overall data Gnuplot 

and its fit function were used. For each region the Hurst exponent is calculated 
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and the exponents are found to be very close to each other. In the graph below, 

1st region’s R/S slope is 0.315411 and for 2nd region is 0.285779, for 3rd is 

0.285779 and for overall data is 0.305127. If R/S slope was 0.5 it will be 

random series but it is positive and less than 0.5. Therefore, we consistently 

observe anti persistent behavior. There is a linear overall trend, as indicated by 

the first differencing plus noise. The positive Lyapunov exponent indicates that 

the noise is broadband. 

 
Fig. 8. Log n of Overall Data and Three Regions  

 

As shown in Figure each regions’ DFA behavior is very similar to the others 

.Slopes are calculated with Gnuplot’ s fit function and they are found as that 1st 

region is  1.3136, for 2nd region is 1.45522,  3rd region is 1.46538 and for 

overall data is 1.4911. As explained in chapter 5 if the slope of DFA is 1.5 it is 

shows random walk model. All regions especially DFA slope of overall data is 

nearly 1.5 and it shows random walk model. 

 

3. Conclusions 
 

In this study, the International market gold prices over the last 31 years were 

analyzed for trends by five different methods, linear trend analysis, ARMA 

analysis, Rescaled range analysis, attractor reconstruction and maximal 

Lyapunov Exponent, Detrended fluctuation analysis. Unfortunately not all 

methods give consistent results. The linear analysis reveals three regions with 

different trends. This is not supported by the rescaled range or detrended 

fluctuation analysis results. The maximal Lyapunov exponent calculation 

reveals chaotic behavior. The detrended fluctuation analysis reveals behavior 

close to brown noise. This is not corroborated by the rescaled range analysis, 
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which indicates anti persistent behavior. The ARMA model implies first 

differencing. 

Combining these results, one probable explanation is the strong linear trend, 

(also corroborated by ARMA analysis) which affects the rescaled range 

calculation, because of its dependence on extreme values. The detrended 

fluctuation analysis removes this trend and reveals brown noise. This is 

consistent with a maximal positive Lyapunov exponent. Hence, we have a linear 

trend plus brown noise and neither of these two effects is dominant[7,8,9].     
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