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Abstract : We present an investigation of coupled nonlinear electromagnetic 

modes in an electron-positron plasma by using the well established technique of 

Poincaré surface of section plots. A variety of nonlinear solutions corresponding 

to interesting coupled electrostatic-electromagnetic modes sustainable in 

electron-positron plasmas  is shown on the Poincaré section. A special class of 

localized solitary wave solution is identified along a separatrix curve and its 

importance in the context of electromagnetic wave propagation in an electron-

positron plasma is discussed. 
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1.Introduction  
The method of Poincaré surface of section (SOS) plots has been very useful in 

analysing higher dimensional non-linear dynamical systems [1]. For a given n-

dimensional continuous dynamical system, the corresponding Poincaré SOS plot 

represents an equivalent discrete dynamical system with (n-1) dimensions and 

thus facilitates the analysis of possible periodic, quasi-periodic and chaotic 

modes, the original system can sustain. As non-linearity in plasmas is inherent 

they provide a perfect paradigm to study various non-linear processes ranging 

from coherent solitary waves to chaos and turbulence. In this respect, the subject 

of intense laser plasma interactions has ever received a great deal of attention. 

There has recently been a resurgence in this research area after the efficient 

production of very intense laser pulses (
218 /10 cmWI  ) has become a 

reality [2]. Laser pulses with such high intensities are called relativistically 

intense as the associated transverse electric fields are strong enough to drive the 

electrons to relativistic speeds. From theoretical point of view, these high 

intensity laser plasma interactions provide a favourable environment for a whole 

range of non-linear processes. Among them  the formation of electromagnetic 
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solitary wave is a topic of much fundamental interest particularly in theoretical 

plasma physics. There have been several theoretical investigations addressing 

the existence and stability of coupled electromagnetic solitary waves in plasmas 

[3].  

 

 On the other hand, the electron-positron plasmas are thought to be a 

constituent of various astrophysical environments e.g. in pulsar magneto-

spheres, in bi-polar flows in active galactic nuclei (AGN) and at the centre of 

our galaxy and are believed to be the first state of matter in the early stage of 

universe [4,5]. The coupling of electromagnetic waves to electron-positron 

plasmas is therefore an active area of theoretical research and has been 

addressed in few earlier works [5]. We present here a detailed Poincaré section 

based analysis of a class of possible coupled non-linear electromagnetic modes 

in an un-magnetized electron positron plasma with a particular emphasis on the 

coupled solitary waves solutions. This work is an extension of earlier works by 

Saxena et al. [7] and O. B. Shiryaev [6]. We adopt the same formalism as used 

by Kaw et al. [8] for an electron plasma with ions forming a neutralizing 

background.  

 

2.Mathematical Model 
The coupling of a relativistically intense electromagnetic wave with an electron-

positron plasma is described by the following set of coupled fluid-Maxwell 

equations. 
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Here indices e and p stand for electron and positron species respectively, A, Φ, 

ne/p, and pe/p respectively represent the electromagnetic vector potential, 

electrostatic potential, the electron/positron density and electron/positron 

longitudinal momentum. pe,γ Is the relativistic factor given by,  

 

               22
1 pe,pe, p+A+=γ    (5) 
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By performing a co-ordinate transformation defined as βtx=ξ  where 

cv=β ph / is the normalized phase velocity, one obtains following set of 

coupled non-linear ordinary differential equations. 
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Now making a change of variable defined by  
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we get following set of simplified equations, 
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Above coupled equations (8) and (9) admit following constant of motion: 
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This problem is similar to that of coupled oscillators in Hamiltonian mechanics 

with two degrees of freedom and we solve above set of equations (8-10) using 

Runge-Kutta 4
th

 order integration method to obtain coupled non-linear solutions.  
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3. Non-linear Solutions on Poincare Surface of Section 

We consider the case of 1>β and show the possible solutions on a Poincaré 

SOS plot defined by 00, >X=X  . We have investigated two interesting 

regimes 11 β and 11 β . The results are shown in Fig.1 and Fig.2 

respectively. It is worth noting that in the regime of phase velocities close to the 

speed of light, there exist a more varied class of solutions. The Poincaré plot in 

Fig.1 is obtained for 101.001 =H;=β . The densely filled curves 

correspond to quasi periodic solutions with the ratio of the frequencies of two 

oscillators being a prime number. The centres of the left and right halves of the 

Poincaré plot represent the fixed points of zero measure and correspond to 

periodic orbits. The interesting island curves correspond to amplitude modulated 

quasi periodic modes whereas centres of these islands represent the fixed points 

of higher orders and correspond to periodic waves with an integer ratio of the 

two oscillator's frequencies.  We note that the separatrix curve is not quite 

periodic and therefore indicates a possibility of slightly chaotic solutions.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 : Poincaré section plot for parameters β=1.001, H=10. 
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Fig.2 : Poincaré section plot for parameters β=1.1, H=10. 
 

Now in the regime of 1  1β , we choose the parameters to be 

101.1 =H;=β . The Poincaré surface of section plot for this case is shown 

in Fig.2. In this case we observe that the small island curves cease to exist. 

Moreover, there exists a sharp separatrix curve. This separatrix curve 

corresponds to localized solitary wave solutions. We show this particular 

solution in Fig.3. 

 

Fig.3 : Solitary solution corresponding to the separatrix curve in Fig.2. 
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4. Conclusions 
To conclude, we have presented a class of coupled non-linear electromagnetic 

solutions for electromagnetic wave propagation in an electron-positron plasma 

by using Poincaré surface of section technique. A special class of solitary wave 

solutions has been identified along the separatrix curve in a parameter regime 

with phase velocities exceeding the speed of light by ~ 10% or more. These 

solitary modes play an important role in the energy localization in laser plasma 

interactions and therefore their stability needs to be understood which is an open 

area of research.  
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Abstract: Rotation – Expansion – Translation – Reflection chaotic models show despite 

of its simple generators complex structures that resemble in 2 dimensions - without 

referring to any material property - well known fluid/flux vortex flow patterns as recently 

shown by Skiadas. Here the model is generalized and extended to n > 2 dimensions with 

N = n (n − 1)/2 rotational degrees of freedom and the maximum of L = n (n − 1)(n − 2)/2 

singularity rotations on the sphere and hyper sphere with rotation matrix operations given 

by the orthogonal group O(n), special orthogonal group SO(n), or Lie spin group Spin(n) 

with hierarchical relations. The radial distance to the singularities located on the rotation 

axes leads to the Skiadas power law rotation parameterized by a power exponent and 

rotation strength. Patterns often show characteristic flux lines emitted from a chaotic core 

near to a singularity. The non-commutative permutations of the non-abelian rotation 

group elements are relevant for encryption purposes.  

 

Keywords: Chaotic modeling, Discrete map, Rotation-Translation, Rotation-Rotation, 

molecular interaction, v. Kármán Street, Dipole-dipole, Chaotic simulation, Chaotic 

encryption, Spin group.  

1. Introduction 

In quantum physics the spatial probability density and its symmetries are a basic 
concept to describe the evolution of observables obtained from stochastic 
(jump) processes in phase space. The Rotation – Expansion – Translation – 
Reflection pattern generation approach of Skiadas provides also for spatial 
density structures but from iterative difference equations generating more or less 
chaotic jumps [1, 2, 3]. The first results of Skiadas are very similar to v. Kármán 
Streets, see fig. 1, or even elliptic galaxies formations. Since a translation is a 
special case of a rotation with the rotation centre located at very large distances, 
applying subsequent rotations repeatedly around different rotation centres 
should also provide for interesting patterns, especially if the rotations are a 
function of a spatial distance with respect to one or more singularities, where 
rotations grow infinite due to a power law with negative exponent. We will 
focus in this paper onto the rotation-rotation chaotic phase jump processes on 
hyper-spherical loops with larger or smaller chaotic core regions, which depend 
on characteristic numbers and symmetries. Since the signal tp  jumps in hyper 
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space or on hyper spheres, the resulting patterns could be relevant to physics 
and quantum spin groups in higher dimensions [4]. First we will introduce the 
rotation-translation approach in two dimensions (2-D) with one or more 
singularities and then replace the translation by another rotation and generalize 
to n dimensions on (hyper) spherical surfaces. After generating some new 
chaotic jump pattern by extending the Skiadas algorithm and relating it to 
proper physics attributes, some new input came from discussions during and 
shortly after the conference, especially from some authors of references [1]-[6]. 

2. The 3-D Expansion/Rotations/Translation Model 

In 3-D Euclidian space we can map the Skiadas model onto the sphere with 2 or 

3 rotations. A vector coordinate 
tp  will describe the signal location at a time t 

and after one jump time interval   at t p , where the signal starts at 
0p . First 

we apply a expansion/reflection matrix E , then apply N = 3 different rotation in 

planes 
iP , 0,1,.., 1i N  , each containing 0,1,.., 1il m   singularities 

,i ls  

defining the rotation centre. At this location the axes ,i lX  intersect 
iP  

orthogonally. The rotation angles ,i l  are given by the Skiadas power-law [1]  

2

,

,

2i l i

t i l

c


 
 
 
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 

v

p s
, (1) 

with distance between signal and singularity coordinates ,t i lp s , power 

exponent value usually in the range 1-3, and coupling constants ic . We have 

chosen a form producing patterns linearly scaling with the jump distance v  

while preserving shape. For one singularity per dimension 1im   the three 

rotations with angles i  are computed by the rotation matrices iR  applied in a 

given permutation sequence. We take a proper coordinate system diagonalizing 

E  with pure diagonal expansion/reflection components 0ije   for i j  and  

0xx yy zze e e   . For this case we will use the short notation 

ED( , , )xx yy zze e eE , a negative sign shows a so-called reflection in the 

corresponding coordinate. These components and boundary conditions provide 

for the basic 3-D recurrent algorithm and difference equation as a simple 

extension to [1, 2, 3] generating one jump with distance v  after the 

interval . If we assume orthogonal rotation axes with rotation matrices iR  

elements of the SO(3) rotation group, we have a common rotation centre located 

at r  as the intersection of the rotation axes with one singularity from every 

dimension ( 1im  ) and orthogonal axes 0,0 1,0 2,0 X X X ,  where the chaotic 

map given by  

  2 1 0t t 
         

p v R R R E p r r . (2) 



Chaotic Modeling and Simulation (CMSIM)  1:  89-106, 2013    91 
 

To get pure rotations, the straight translation shift v  in eqs. (2) and (1) could 

be approximated by constant orbital rotations in one dimension with label j and  

2j j  r v  leading to the Skiadas rotations coupling 

,
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2
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i ld

j j
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p s
, in 3-D we usually take 2jd  , (3) 

where the coupling factor 
ic  can be varied in a wide range. Spin is given by an 

orbital rotation with label i j  that has one singularity at the centre 

,0 (0,0,0)j s , where   
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, for 1jd   simply t j jcp r . (4) 

The iterative 3-D difference equation (2) for one start point or delta distribution 

0 0tp p  with 3 singularities and 3 orthogonal rotations is now  

 
2 1 0t t   
        

p R R R E p r r . (5) 

To obtain interesting patterns on the spherical surface we set 3,1 R R  as the 

constant longitude or orbital advance, and 1,2 R R  for the altitude. Both 

rotations rotate around singularities given by  

 3,1 1m  , one longitude rotation 3,1 R R  rotating around 3,1,1 (0,0,0)s  

with power law exponent 3,1,1 0d   and rotation/coupling strength 
1

3,1,1 2c jM  ,  

 1,2 1m  , one latitude rotation 1,2 R R  rotating around 1,2,1 (0,0,1)s  with 

power law exponent 1,2,1 2d   and rotation/coupling strength 
2 2

1,2,1 2c k M   . 

As an example, a two-angle rotation and signal position tp  subject to rotation in 

3-D spherical coordinates ,   and singularity rotations 0  ,  1  , is 

given by 
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With one singularity located at 0 (0,0,1)s  with d = 2 and one at the centre 

1 (0,0,0)s  with d = 0 we get the two scalar rotations in spherical coordinates 
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3. Hyper-Sphere Expansion-Reflection-Rotations Map   

The extension to the n-D signal map 
t t p p  with rotations embedded in n-D 

Euclidean space for 3n   is straight forward. The matrix operations are based 

on the orthogonal group O(n), or the Lie spin group Spin(n) as the double cover 

of the special orthogonal group SO(n) defining the n n  rotation matrices 
,a bR . 

The number of rotational degrees of freedom and number of orthogonal rotation 

planes 
,a bP   is 
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One plane can have orthogonal axes 
lX  intersecting the plane at the singularity 

locations 
, ,a b ls , l labels all orthogonal axes with ,l a l b  . We rotate on this 

plane if the rotation plane has at least one orthogonal intersection , 0a bm   at the 

singularity locations. The maximum number of singularities per dimension is 

, ( 2)a bm n  , if , 0a bm   there are no singularities and no rotations in ,a bP . So 

the total number of possible orthogonal axis intersections for all planes and the 

maximum number of singularities is ( 2) ( 1)( 2) / 2L n N n n n     . There is 

a set of N orthogonal matrices 1
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the special orthogonal group SO(n) given according to [4] by  
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with trace , ,2 1 cos( )a b ln      and angles , ,a b l , ,l a l b  . The signal is 

located on the hyper-spheres. The sequence of orthogonal matrices rotating a 

vector tx  in Euclidean space must be ordered   

   , ... , ...... ...A B t a b t
          

R x R R R x , (9) 

covering all possible rotations or a subset as a permutation. Building the chaotic 

map with an n-D expansion/reflection E  then applying the rotation sequence 

,A BR  we have  
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 ,t A B t
    p R E p r r . (10) 

We are left to specify the generalized rotation angles 
, ,a b l , the matrix 

coefficients for a rotation 
, , ,( )a b a b lR , the number of singularities per dimension 

,a bm , and the temporal order of rotations. The angles 
, ,a b l  corresponding to 

, ,a b ls  will have with strength 
, ,a b lc  , metric distance 

, ,t a b lp s , and power 

exponent 
, , 0a b ld   a form given by 

, ,

, , , ,

, ,

2
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a b l a b l

t a b l

c


 
 
 
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 

v

p s
.  (11) 

To systematically generate meaningful setup values in higher dimensions 

providing for interesting patterns for n > 2 with physical relevance, we 

recommend for simplicity to take a Gauss-type classical coupling field gradient 

power exponent  

, , 1a b ld n  ,   (12) 

where the gradient power exponent is the Gauss’ law field strength exponent 

plus 1 (for 3-D we have , , 2a b ld  , see below). But of course, as Skiadas has 

shown there are several exponents that can lead to nice patterns. The power law 

coupling strength is scaling with the field gradient power exponent and coupling 

number k 

, ,

, ,
a b ld

a b lc k


 .  (13) 

The temporal order of rotations ,a bR  part of the global sequence ,A BR as a 

permutation sequence must be given in order to setup the map and reproduce 

results. For the purposes of this paper we let run a in an outer loop from 0 to 

1n  , then b in the next inner loop from 1a   to 1n   covering the 

( 1) / 2N n n   orthogonal rotation planes ,a bP  with orthogonal matrices ,a bR , 

and finally l in the most inner loop from 0 to 1n   with ,l a l b  , since every 

plane has 2n   orthogonal axes intersecting at the singularities providing for 

the total number of singularities rotations ( 1)( 2) / 2L n n n   .   
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4. Results  

4.a Four basic 2-D rotation-translation types with radial power -3 

 

         
 

Fig. 1. Left (Skiadas [1]): EC = (1,-1). Right EC = (-1,1) , randomized starts. 

 

          
 

Fig. 2. Left (Skiadas [3]): EC = (1, 1). Right EC = (-1,-1), randomized starts. 

 

4.b Periodic boundary (at 0 16d  )  in 2-D at power -3 

 

 
 

Fig. 3. EC = (1, 1), if distance x > d0  then x  x - 2-D0, y  y, slightly random. 

 

 
 

Fig. 4. The periodic Skiadas pattern, same parameter like fig.3 but EC = (1, -1). 

 

 
Fig. 5. Parity change for EC = (1, -1): if distance x > d0 , then x  -x  y  y. 
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4.c Helical twist and 2-D rotation in 3-D  

 
Fig. 6. 3-D cyclic within 

0 16d  , power -3, with extra double-helix rotation 

05 /x d   proportional to distance x, EC = (1, -1), randomized starts. 

 

4.d. Multi-singularity and multi-expansion in 2-D, overlapping patterns 

  
Fig. 7. Two equal singularities: positive at (0,0) and negative located at (0, 2j),  j 

= 1,2,3,4,5, power -3, EC = (1, 1). Right: enlarged j = 1 with one positive (blue) 

and one negative (red) singularity.  

  

 

 
 

Fig. 8. Three singularities at different locations, power -3, multi expansion, 3 

different EC: (1, 1) and (1, -1) and (-1, -1), randomized starts. 
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4.e Rotation-Rotation in 3-D, rotation centre at (0,0,0), singularity at (0,0,1) 

 

 
Fig. 9. Dipole ring, power -2, M = 7, EC = (1,-1, 1), k = 8, slightly random. 

Flow directions are indicated by blue arrows.  

 

 
 

Fig. 10. Rings deformed to a wave, power -2, M = 113, EC = (1, 1, 1), k = 20, 

2

0,s ( , 1 ,1)i i ix x  , / /10, 1,2,...,10ix i M i  , j =1. 

 

  
 

Fig. 11. Similar to fig. 10 but chaotic core with k = 2, power -2, M = 13, EC = 

(1, 1, 1), 
2

0,s ( , 1 ,1)i i ix x  , / /10, 1,2,...,10ix i M i  , j =1. 
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Fig. 12. Left: dipole patterns from random starts, power -2, M = 3, EC = (1,-1, 

1), k = 4,  j =1. Right: ( )t t   with EC = (1, 1, 1), chaotic core, power -2, M = 13. 

 

 

 
 

Fig. 13. Dipole pattern mapped to the rectangular phase space, power -2, M = 3, 

EC = (1,-1, 1), k = 3,  j =1 after 32000 steps. Red are some jump path lines. 
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Fig. 14. M = 128, k = 1, EC = (1, -1, 1), radial variation, d = (2,0)    

 

 
 

Fig. 15. M = 20 , k = 2.3, EC = (1, 1, 1), radial variation, d = (2,0)         

 

4.f  Higher-Dimensional Rotated-Rotations  

 

 
 

Fig. 16. n = 3,  k = 2, EC = (1, -1, 1), angular variation, d = (2,2,2)     
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Fig. 17. n = 4, 3-D Projection, k = 1, EC = (1, -1, 1,-1)     

 

 

 
 

Fig. 18. n = 4 , 3-D Projection, k = 12, EC = (1, -1, 1,-1), d = (3,0,3,0)       
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Fig. 19. n = 5, 3-D Projection, k = 1, EC = (1, -1, 1,-1,1), d = (4,0,4,0,4)           

 

 

 
 

Fig. 20. n = 6, 3-D Projection, k = 6, EC = (1, -1, 1,-1, 1,-1), d = (5,0,5,0,5,0,5)   
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Fig. 21. n = 10, 3-D Projection, k = 12, EC = (1,1,1,1,1,1,1,1,1,1),  

d = (9,9,9,9,9,9,9,9,9,9)             

 

5. Measure of Chaos/Exponents     
Since the map can be extended to an arbitrary number of dimensions n and 

singularities, we can have a higher-dimensional chaos located in or on hyper-

spheres with rotation axes defined by hyper-planes, so it could be called hyper-

chaos [5,6] or hyper-sphere chaos. As a measure of chaos we have computed the 

mean space trajectory separation exponent in n-D between two nearby vectors 

1, 2,,t tp p  for one complete n-D iteration step during the time   averaging 

0 i I   successive steps with t i  

 

 
Fig. 22. The 1-step exponent E  for n = 3,4,…,10 dimensions and I = 500 
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which is a cheap estimate of the Lyapunov exponent. This exponent is highly 

stable and increases with the number of dimensions n and with the 

amplitude/strength factor k of rotation, see fig 24. In our simulation the 1-step 

exponent E  was in our case limited to about 35 due to the double precision 

limit of the floating point computing unit. It starts to increase strongly near to 

the control parameter value k = 0.5, see eq.(12). There the pattern becomes 

"randomized" and chaotic especially at higher hyper sphere rotation dimensions. 

At higher exponents we find that the map is a good pseudo-random number 

generator in any dimension n > 2. Fig. 22 was obtained without expansion or 

compression EC = (1,1,1, ...) like all of shown patterns in all figures. With 

compression-reflection coefficients smaller 1 like EC = (0.99,0.99,0.99, ...) we 

get negative exponents for 0.5k   and in-spiralling towards the centre. 

6. Cryptography with Hyper-Chaos on the Hyper-Sphere   

The rotations 
,a bR  part of the global sequence ,A BR  do not commute, so the 

time ordering is crucial. The non-commutative permutations of the non-abelian 

group elements are relevant for encryption purposes. If the permutation is a 

sequence with a selection of K elements out of L  = N(n-2) = n(n-1)(n-2)/2 

rotations that contains each element once, the number of combinations is given 

by !/ ( )!C L L K  . Knowing the rotation angles , ,a b l  and the global sequence 

,A BR , the rotation can only be reversed by applying the rotations and 

expansion/reflections part of ,A BR  in reversed order. This is an encryption given 

by a rotation permutation from a series of linked non-commuting mathematical 

operations, where decryption is done by simply reversing the process applied to 

signal packages containing some bits of information. The key complexity 

defining the variations in the rotation sequence would be given by the 

permutation of combinations. In addition there is the freedom to choose the 

rotation angles, the initial condition in the signal 0 ( 0)t t p p , and the 

singularity locations , ,a b ls  with given precision. Secret key sharing could be 

done by hiding the initial conditions 0 ( 0)t t p p , the singularity locations 

, ,a b ls , and eventually some rotation axes bX  with Blakley's scheme from the 

intersection of distributed planes P  [7], where any of the N nonparallel 2-

dimensional hyperplanes intersect at a specific point or axis, and each 

participant is given enough information to define one of the hyper-planes P . Of 

course, key-shifting during the sequence could also be introduced, which could 

be done by mobile singularities providing for extreme confusion and diffusion 

properties. Thus reversibility is practically limited to a small number of 

encryption/decryption operations due to a limited calculation precision and the 

high exponential divergence and pseudo-randomness, see fig. 24.  

7. Mobile Singularities Exchanging Momentum Quanta 

Up to now the simulated singularities had a static location. But a physical 

situation usually requires mobile singularities.  
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Fig. 23: Two massive mobile singularities generating and absorbing yellow and 

pink signals carrying momentum and providing for a vector-field. 

An important extension would be given by mobile singularities 

, , , , , , ,( )a c l a c l t a c lt s s s  or mobile rotation axes carrying momentum like 

spinning particles with spin – orbit coupling. In the real world the emission or 

absorption of a rotation-translation or rotation-rotation signal would transfer a 

linear or angular momentum quantum to and from the singularity if it has a 

nonzero angular momentum. In addition to the various possibilities to introduce 

local rotations and accelerations from distance-dependent interactions between 

singularities is to provide for an extra rotational interaction dynamics between 

two mobile singularities , , ,t a c ls  and , , ,t b c ls , there could be a common rotation 

, ,( )t c t cR  with common axis cX  (length is the rotation angle) performing the 

interaction of singularities. Here are two possibilities: 

(1) parallel to one of the rotation axes ||c aX X  or ||c bX X  or  

(2) orthogonal to the interacting singularities rotation axis c a b X X X , 

c a b X X X  having SO(3) symmetry with new interaction singularity 

located on the intersection of the three axes.  

To get something like a mass or providing for inertia and angular momentum a 

density of visited points after many jumps at time t or spatial sampling function 

dependent on the initial conditions 0t   could be defined by  

1

0

1
( ) ( )
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t I i

iI
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




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With the expanded density by  t t  E ,  1

t t  E  we get the difference 

operator equation    1

,A B t t  

R E . Equilibrium is approached for 

t t   .  

8. Discussion 

How do patterns emerge from eq.10? At the present stage we just start to 

explore the very rich system of pattern formation from map parameter and 

initial value customization. Without systematic approach this task is hard to do. 

A basic pattern property at lower dimensions can be assigned to the sign of the 

reflection exponent, a negative sign leads to an up/down oscillatory behaviour in 

the jumps shaping the pattern in the altitude, see fig. 13. In the other direction 

the orbital loops with , 2 /j M j M   around axes at coupling exponent d = 0 

can provide at any radius M/j orbital jump position that are only slightly shifted 

after every loop, see figs 9-16. At higher dimensions even at high k-values (see 

figs 19, 21, and 23) the patterns look often more random than the nice structures 

and symmetries that can be easily obtained at lower dimensions, see figs 1-16. 

In 4, 5, and 6 dimensions we found interesting structures just by trial, see 17-20. 

The Skiadas singularity rotation varies with radial distance to the singularity and 

coupling factor or rotation strength 1/k as an important tuning parameter to 

obtain the pattern structures, see figs. 12-15 and 22. The smaller k, the higher 

the extra rotation providing for a more nonlinear behaviour and chaotic or even 

pseudo-random stochastic structure in the pattern, especially near the equatorial 

location of the singularity, see fig. 12 right. Subject to periodic boundaries and 

closed loop/orbits our chaotic jump functions show especially at higher k values 

in the non-chaotic regime ( 1k  ) a small chaotic core at the centre. At strong 

rotations the divergence and exponents can grow unbounded, see fig 22, leading 

to pseudo-random patterns. Due to the singularity on the orbit there is no perfect 

rotational M-gonal symmetry, the angular parts are slightly different, most 

different is the orbital part where the singularity is located, see fig. 13, where 

every dipole has a slightly different shape, especially the chaotic core is 

different.. Smaller shifts produce traces and linear flows with basic symmetries 

known from other fields. At special values of j, k, and initial conditions we get 

almost M-independent regular structures like rings and waves or dipole type 

flows, see figs 9-15.  

It can be found that the path and singularity determines the shift, which is 

typical for geometric shifts or phases. In physics this extra shift is known as a 

geometric phase emerging on curved surfaces. In [8] we have presented a 

strange attractor involving geometric phases from three rotations on the sphere, 

where a linear rotation – translation coupling (rolling or helical paths) provides 

for simplifications with very interesting holonomic attractor singularities from 

iterations. We think that the geometric phase interpretation and correspondent 

phase shift concepts are also valid here, but near to the singularities or 

“monopole charges” the geometric phase extra rotation is small compared to the 
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singularity rotation. Since sum of the rotations given by the rotation vector field 

provides for a vector potential it is not surprising that the patterns at small 

coupling strengths and far away from singularities look like iso-potential lines 

for inverse power interaction laws, in fig.9 for a magnetic dipole chain and in 

fig.10 for a shear flow or pendulum chain. For smaller couplings 1/k we get the 

some rather linear physical properties: 

- monopoles and dipoles (dipole see fig. 1b and chain in fig. 9), 

- twistorial spin (vortex structures, see fig. 1 and 20, helical twist fig. 6), 

- parity properties and even/odd symmetries (see figs. 3-5), 

- j and M could be interpreted as spin and orbital number, respectively,  

- inbuilt constant propagation velocity in the translation or rotation in eq. (2), 

- Gauss flux exponent d in 1n d   dimensions, 

- wave/particle duality with discrete jumps providing for density patterns, 

- scalar and vector fields with standard gauge symmetries, 

- angular momentum transfer, interaction and kinetic energy. 

- hierarchy of patterns, see figs. 18 and 20,   

 

Opening the loop and translating it into a helical path keeps the basic pattern 

units if proper periodic boundaries with reflection are introduced. Remarkably, 

periodic rotation-rotation dipole-dipole interaction patterns emerge on the 

spherical or helical loop, where the characteristic flux lines are emitted from a 

chaotic core, see figs. 9, 12-16. Dipole chain patterns play a very important role 

for living organisms since the molecular dipole interaction leads to protein 

folding. “Every process of protein formation, from the binding of individual 

amino acids to secondary structures to tertiary structures and even the formation 

of quaternary structures is dependent on dipole-dipole interactions [9].”  

4-D patterns projected to 3-D show often torus shapes, see fig. 17, typically 

relevant to Hamiltonian system of spin-spin and spin-orbit coupling. Spin(n) is 

simply connected and so coincides with the universal cover of SO(n) with 

isomorphisms and decompositions among the classical Lie groups like Spin(2) = 

U(1) = SO(2), Spin(3) = SU(2), Spin(4) = SU(2) x SU(2), SU(4) = Spin(6). So 

Spin(2) and Spin(3) structures can be embedded together in Spin(4). The same 

can be done in arbitrary high dimensions providing in our case for interplay of 

low-dimensional ordered states part of a higher-dimensional chaos. This could 

point to a kind of “itinerancy” [10]. Figs. 18 and 20 show connected (by thin 

wormholes) lower-dimensional chaotic structures embedded in 4-D and 6-D 

higher-dimensional systems with very low LE in the projection to three 

dimensions. This could have relevance to the standard model high energy 

particle physics with separable but interconnected subgroups in the 10-D gauge 

field embeddings      SU 3 ×SU 2 ×U 1 (5)SU  [4].  

Introducing mass and momentum, mobile singularities emitting and absorbing 

the jumping chaotic signal quanta carrying momentum and travelling at constant 
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speed provide for a very rich chaotic behaviour and dynamics, see the special 

example in fig. 23. 

9. Conclusions 

We conclude that using an iterative reflection-rotation-rotation/translation 

difference equation modelling approach according to Skiadas we can obtain 

many new interesting patterns with attributes similar to those known from 

physics. The multiple rotation formula generating hyper-sphere chaos can be 

extended to an arbitrary number of dimensions, rotations, and singularities. 

Mobile singularities could even produce more chaos. If the singularity is located 

at very large distances a small rotation can approximate a translation. At special 

numbers with smaller coupling 1/k and special initial conditions regular 

structures like rings, spirals, and waves or the many dipole-dipole interaction 

flows emerge, which could be promising for molecular science and new basic 

level concepts. Important for a pattern generation on the orbit is a tiny but 

nonlinear shift in both angular variables due to a cyclic and path dependent 

singularity extra rotation that is small compared to the orbital angular steps and 

more linear at smaller coupling (higher k) values. The hyper-sphere chaos from 

rotation permutations could act as a pseudo-random generator of chaotic 

patterns relevant for crypto applications with key given by initial conditions and 

the special rotation permutation sequence in higher dimensions.  
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Abstract: This paper proposes an innovative approach for the characterisation of the 
experimental dynamics of two phase flows. These class of systems can express a great 

variety of different flow patterns, whose characterisation and classification strongly 

depends on the approach used for feature extraction. Phase space analysis in a traditional 

delayed embedding has allowed for the observation of the complex dynamics of the 
system. Nonetheless, the attractors obtained in a delayed embedding, though 

characterised by a regular complex structure, appear partly folded and are affected by 

noisy hydrodynamic high order dynamics. 

The present paper proposes an application to a case study, represented by an 
experimental air-water two-phase flow in upward motion inside a vertical pipe, of a 

Singular Value Decomposition (SVD) approach with the aim of assessing a more 

appropriate embedding into the phase space spanned by the principal vectors. Reported 

results demonstrate the ability of the of the proposed methodology to separate the 
dominant features of the system dynamics from noise-like dynamics, leading to obtain 

efficaciously unfolded and noise-free versions of the system attractors. 

 

Keywords: Feature extraction, Two-phase flows, Experimental nonlinear dynamics, 
SVD analysis. 

 

1. Introduction 
Several basic industrial processes, ranging from power generation, chemical and 

processing plants to oil pipelines, present heat and mass transfer applications of 

two phase flows. When two phase flows occur, very different flow patterns can 

be observed as well as transitions from a flow pattern to another. Indeed, the 

dynamical behaviours associated to the various types of flow pattern established 

in the system represent critical factors for the performances of such industrial 

systems. This explains the great efforts that have been and are still devoted to 

flow patterns identification, which represents a fundamental basis for 

appropriate characterisation of two phase flow systems. 

The dynamics of two phase flows are typically of highly complex pulsating 

nature, under the effect of several nonlinearities deriving from the strong 

coupling of different mechanisms and of the dependence on various factors. 

mailto:apagano@diim.unict.it
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Among the others, the most important factors are the differential action of 

gravity on the two phases and the effect of shear and surface tension forces at 

their interface. As a consequence, several different flow patterns can be 

identified, each of which can be characterised in terms of the dynamical 

behaviour of the void fraction time series. 

Among the other, two phase flows of air-water mixtures are often theoretical 

and experimental analysed with the aim of achieving a reference perspective on 

the general dynamical behaviours, often valid also for more complex flows, 

such as those arising in presence of phase changes. In particular, the present 

study aims at analysing the behaviour of ascending air-water two phase flows in 

vertical pipes. For this kind of flows heat transfer phenomena connected to 

phase change are not involved, so that the flow pattern established in the system 

mainly depends on the mass flow rates of the two phases. By varying the mass 

flow rate of the two phases, in fact, bubbly, slug, churn and annular flows can be 

identified as the main flow patterns typical of several classifications [1-3]. 

The bubbly flow exists for low values of the gas mass flow rate and consists in 

the motion of dispersed and small gas bubbles in the liquid phase. Coalescence 

phenomena are at the basis of the transition from bubbly to slug flow, which can 

be observed by increasing the gas mass flow rate. Slug flow is characterised by 

gas bubbles, namely Taylor bubbles, enveloped by a liquid film separating them 

from the pipe walls, alternated to liquid slugs. In the class of slug flow, it is 

possible to distinguish between: cap flow, with short air bubbles (with the head 

approximately connected to the tail) separated by long liquid slugs; plug flow, 

with gas bubbles and liquid slugs of comparable length; proper slug flow, 

characterised by elongated gas bubbles separated from relatively short liquid 

slugs, often aerated for the presence of small dispersed air bubbles. 

For growing gas mass flow rate, bubble coalescence and increasing aeration of 

the liquid slug leads to a highly unstable flow pattern addressed as churn flow, 

characterised by waves propagating through the liquid film enveloping the 

bubbles and occasionally falling within the tube, so to form a short, unstable and 

highly aerated liquid slug. Finally, the annular flow consists of a thin annular 

liquid film at the tube wall on which small ripples, interspersed occasionally 

with large disturbance waves, flow in a regular manner up the tube. 

It is usual practice to perform flow pattern identification on the basis of the 

differences of the dynamical behaviour of the time series of the local void 

fraction. Therefore, the reliability of the identification approach is highly 

dependent on the accuracy of the technique adopted to measure the void 

fraction. Several techniques have been proposed [4-9] and impedance 

measurements seem to be recognized as the most reliable [6]. At the same time, 

the performances of flow patter identification approaches depend also on the 

techniques adopted for time series analysis and feature extraction. Statistical [1, 

2, 6] or spectral [9-12] techniques indeed represent the typical approach for flow 

patterns identification on the basis of the analysis of the experimental void 

fraction time series. Nonlinear techniques have been also adopted, among the 

others see [10, 13-16], but a main drawback has been represented by the 

relatively poor spatial and temporal resolution of the experimental time series. 
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In order to address this problem, the experimental time series considered in the 

present study have been detected by means of a resistive probe characterised by 

high temporal and spatial resolution, which has been appositely set-up as 

described in [17]. The preliminary analysis in a delayed embedding of the void 

fraction time series detected by means of this sensor has shown the existence of 

strange attractors of interesting morphology for the various flow patterns [18]. 

Nonetheless, attractors obtained in this way are somewhat noisy as a 

consequence of the superposition of high order dynamics to the dominant 

dynamics characterizing the flow pattern. Among the others, the most important 

high order “noisy” dynamics are those of hydrodynamic nature associated to 

small diameter bubbles dispersed in the liquid slugs and to disturbances on the 

liquid film enveloping the Taylor bubbles. 

Therefore, the present study aims at extracting the dominant features of the flow 

dynamics under various flow pattern conditions so to separate the dominant 

features of the system dynamics from noise-like dynamics. The proposed 

approach is analogous to that proposed in [19] and is based on the calculation of 

the singular vectors of a n-dimensional delayed embedding, through the 

application of the technique known as Singular Value Decomposition (SVD) 

[20], and in the analysis of the restricted portion of the dynamics that is obtained 

by projecting the attractor onto the phase space spanned by the singular vectors 

corresponding to the three highest singular values. 

Reported results, show that the attractors described in the new embedding 

present a well defined and regular structure, indicating the existence of a low 

order source of the system dynamics, which will be analysed in future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Experimental apparatus 
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2. Experimental Apparatus 

The experimental apparatus reported in Fig. 1 has been built and tested in order 

to study the dynamics of two-phase flow in vertical pipes. The test section is a 

vertical pipe of diameter 0.026 m diameter and length 3 m. The apparatus is 

equipped by an electromagnetic flowmeter and three air flow metres, 

respectively used for the measure of the water velocity and mass flow rate and 

for the regulation of the air flow rate in the range between 10 and 210 l/min. The 

air is supplied to the mixing section by a pressurised tank fed by a compressor, 

whereas the water flow rate can be varied in the range 0-150 l/min by means of 

a series of valves and bypasses placed at the pump outlet. 

A resistive probe for the measure of the void fraction is placed at a distance of 

over 100 times the diameter of the pipe from the mixing section, i.e. over the 

required entry region for two phase flows, in order to ensure a well established 

flow regime. In particular, the void fraction probe has been designed and 

realised for the experimental campaign and operates in the resistive range 

(carrier frequency of 20 kHz). The sampling frequency was set at 1 kHz with a 

cut-off frequency of 200 Hz. A detailed description of the experimental probe 

and on the wide set of experimental tests performed is reported in [17]. 

 

3. Dynamical Feature Extraction 
The results of preliminary linear analyses of the experimental time series have 

been shown to be unable to deal with the intrinsic complexity of two phase 

flows dynamics. Hence, in [18] a morphological analysis of the three-

dimensional attractors has been proposed in a classical Takens’ delayed 

embedding of the experimental void fraction time series [21]. In particular, it 

has been observed that the attractors obtained for some of the flow patterns are 

characterised by a regular fractal structure, which is indeed one of the most 

important evidences of deterministic chaotic behaviour. 

In the present study, the aim is to improve the dynamical representation by 

adopting a new embedding, derived through the application of Singular Value 

Decomposition technique, SVD [20], to the classical delayed embedding based 

on Takens’ theorem, similarly to the approach proposed in [19]. The new 

representation is characterised by a drastic reduction of noisy dynamics and, 

above all, a sensitive improvement of the attractor unfolding, so that the 

dominant morphological characteristic can be fully exploited. 

As a first step, the phase space reconstruction consists in the creation of a n  w 

matrix, S, where n is the length of a window moving through the data and w are 

the independent variables defining the phase space, i.e. delayed version of the 

experimental void fraction time series s(t)=(s0, s1, s2, …, si, …), with each 

column delayed τ time steps from the previous. The condition w>2d+1 for an 

appropriate embedding is implicitly respected if w is set much greater than the 

unknown fractal dimension d on the basis of a preliminary estimation. 

The second step consists in the application of the SVD approach to matrix S. 

This is done through the calculation of a new diagonal matrix, equivalent to the 

original one, i.e. with identical singular values but in decreasing order. In 

particular, S is factorized into its singular values according to equation: 
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 = M
T
 S C (1) 

In (1)  is the diagonal matrix containing the w singular values i of S in 

decreasing order and M and C are the matrices of the singular vectors associated 

with . Details on the factorization can be found in [20]; what is interesting for 

the scopes of the present study is that the high level singular values in Λ are 

associated to the dominant singular vectors, i.e. those representing the dominant 

features of the system dynamics, whereas the low level ones correspond to local 

behaviors or noise-like components. Therefore, the system can be virtually 

partitioned into two subsystems: the first deriving from noise free data (i.e. the 

main features and the relevant details) and the second from noisy dynamical 

behaviours, which can be considered superimposed and then eliminated. 

In order to choose how many singular vectors are needed to accurately describe 

the dominant dynamics of the system, it is possible to analyse, under the various 

possible flow patterns, the distribution of the spectrum of the normalized 

singular values (i)n, obtained by dividing the singular value i for its maximum 

(i)max under the given flow condition. By the analysis of the spectrum of the 

singular values reported in Fig. 3 for some cases representative of the typical 

flow patterns, it is possible to observe that only the three highest singular values 

are relevant in the spectrum and can therefore be chosen to describe the 

dominant dynamics of the system. It is worth observing that even for the flow 

patterns that seem to require the consideration of a higher number of singular 

values, it is possible to claim that only the three highest are actually relevant. 

The rising of higher order singular values in the bubbly flow and cap flow 

spectrum is due, in fact, to the comparatively lower amplitude of the void 

fraction oscillations under these flow conditions, which determines a greater 

relevance of noisy dynamics of hydrodynamic origin. 

 

 
 

Fig.3 Spectrum of the normalised singular values under various flow patterns. 
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4. Results and Discussion 
The described approach has been used in the present study in order to obtain a 

denoised and unfolded representation of the experimental dynamics. The SVD 

technique has been applied to the delayed embedding S of the experimental void 

fraction time series, created considering τ=1 and w=40 in order to ensure that w 

is sufficiently greater than m, i.e. greater than the (unknown) system dimension. 

The length n of the observation window has been set at 10000 data samples in 

order to be wide enough to obtain a well defined attractor in phase space, i.e. an 

attractor whose morphology does not change if further data samples are added. 

The claimed advantages of the proposed methodology can be observed in the 

results reported in the Fig. 4 to 9, which report the attractors of the same 

operating condition in two different embeddings. In particular, the phase space 

adopted for the plots on the left hand side of each figure is the basic three 

dimensional Takens’ delayed embedding, whereas the projections on the 

pseudo-phase space spanned by the three dominant principal vectors of the 

improved embedding obtained through application of SVD are those reported on 

the right hand side of each figure. It is worth observing that, as discussed on the 

basis of previous observations on the spectrum of the singular values, the three-

dimensional pseudo-phase space can indeed be considered an appropriate 

embedding for the dominant dynamical behaviour under the various flow 

patterns. 

By comparing the two methods of representation it is possible to observe that 

the attractors in the delayed phase space are in all cases sensibly affected by a 

higher noise level and are not sufficiently unfolded with respect to the 

corresponding attractors in the principal component embeddings, the last being 

characterised by a very low level of noise and a satisfactory unfolding. It is 

worth to remind that, even if the two attractors of each flow pattern appear 

different, they are, nonetheless, expressions of the same dynamical behaviour. 

In fact, they are morphologically equivalent and, therefore, characterised by the 

same invariants of the dynamics, such as fractal dimension and Lyapunov 

exponents [22-25]. 

The successful unfolding contributes to the achievement of a clear and well 

defined morphology of the attractors. This is a main advantage for the 

distinction of different flow patterns through a comparison of the representation 

of their dynamics in the phase space spanned by the principal components. 

Moreover, in some cases the proposed embedding amplifies important 

characteristics of the system dynamics. For example, the right hand cap flow 

attractor in Fig. 5 shows a clear distribution of the trajectory in alternated bands, 

which is a hint of the fractal (i.e. chaotic) nature of the system dynamics. 

Finally, the representation in the principal component phase space is very 

effective in underlining the differences between the various flow patterns. 
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Fig.4 Attractors in the delayed and principal component embeddings for the 

bubbly flow; air flow rate 2 lit/min - water flow rate 32.4 lit/min. 

 
Fig.5 Attractors in the delayed and principal component embeddings for the 

cap flow; air flow rate 5 lit/min - water flow rate 20.28 lit/min. 

 
Fig.6 Attractors in the delayed and principal component embeddings for the 

plug flow; air flow rate 10 lit/min - water flow rate 9.06 lit/min. 

 

Each type of flow pattern is, in fact, characterised by a specific morphology, 

sufficiently different from that of the other flow patterns. 

In particular:  

- each flow pattern attractor occupies a different phase space region; 

- each attractor differently “fills” its own region of phase space; for 

example, the cap flow attractor (properly 3-D) has a higher filling rate than that 

of the plug flow (which moves around a sort of 2-D limit cycle); 
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- the attracting region is progressively shifted, with a continuous trend 

from bubbly to annular flow, with respect to the first principal component. 

 

These differences are very important as the morphological considerations drawn 

insofar are related to the fractal nature and to the stretch and folding behaviour 

of the attractors [24], which can be considered as the topological expressions of 

the mentioned invariants of the dynamics, whose calculation is behind the scope 

of the present study and will be the object of future studies. 

 

5. Conclusions 
This study proposes a phase space approach for the description of typical 

complex dynamics of two-phase flow. At first the singular vectors of the 

classical delayed embedding are calculated and the attractors of the system 

dynamics are projected on the state space spanned by these eigenvectors. In this 

way the dominant feature of the dynamics, corresponding to a subset of the 

highest singular values, are separated from noisy dynamics in the time series, 

corresponding to the remaining lower singular values. The morphology of the 

attractors in the obtained unfolded and noise-free representation is analysed. 

Reported results demonstrate that the proposed approach represent a powerful 

tool for the identification of two-phase flow patterns. 

 

 
Fig.7 Attractors in the delayed and principal component embeddings for the 

slug flow; air flow rate 40 lit/min - water flow rate 16.80 lit/min. 

 
Fig.8 Attractors in the delayed and principal component embeddings for the 

churn flow; air flow rate 80 lit/min - water flow rate 9.01 lit/min. 
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Fig.9 Attractors in the delayed and principal component embeddings for the 

annular flow; air flow rate 80 lit/min - water flow rate 5.58 lit/min. 
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Abstract: As the understanding of the chaotic state increases, it becomes clearer that the 

definition and the theoretical elaboration of the chaos is not a simple hypothesis. In 

addition, it is a commonplace fact that the mathematical representation of the chaos 

theory on the whole is very difficult to be given. This means that there is not any 

mathematical equation capable of describing and solving a nonlinear and chaotic 

problem. So, as every case is unique, our work has to contribute to the chaotic topic both 

mathematically and experimentally. Magnetized argon plasma is produced into a metallic 

cylinder. A coaxial antenna is used for the r-f energy importation and the plasma 

maintenance consequently. This device has a complete cylindrical symmetry and the 

mathematic elaboration in the cylindrical system is carried out. An attempt to show a 

repeating relation for ion velocities of magnitude of every order is presented as our new 

work. In addition, it is well known that the perturbation theory can be used to extend the 

linear theory of plasma waves into the nonlinear regime and, thus, give an explanation of 

many nonlinear phenomena. This nonlinear perturbation theory of small amplitude 

plasma waves and their interactions is well developed; on the contrary, the perturbation 

theory of large-amplitude plasma waves is still being developed. In the present paper, a 

generalization of the perturbation theory is attempted with the division of the perturbed 

magnitude and the use of the repeating estimation. Computational results and 

experimental findings are in a very satisfactory accordance.   

Keywords: Chaos theory, Nonlinear problem, Cylindrical system, r-f plasma production, 

Repeating relation, Perturbation theory, Loop on the repeating relation.  

 
1. Introduction 

The stability and instability of the plasmatic state was an old problem for 

researchers during the last decades. Especially, in the early 60’s many plasma 
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instabilities have been observed taking wavy forms into the plasma [1-4]. These 

waves absorb the plasma energy, then the plasma temperature is consequently 

reduced and the removal of the thermonuclear fusion conditions is resulted. So, 

the wavy instabilities are considered to be a serious obstacle to the nuclear 

fusion process and their study has been carried out constantly and in detail 

during the last decades [5,6]. Many special books constitute the Plasma Physics 

Literacy [7-10],  list and study  all the waves from the low frequency region [1- 

6] to the high frequency one [11]. In the Plasma Laboratory of the Center 

“Demokritos” an adequate amount of experience has been gained, especially on 

the low frequency electrostatic waves [12-14] and their effect on the plasma 

conductivity [13]. The chaotic behavior of the plasma waves has been studied as 

well [15,16]. It is well known that the plasma can easily pass from a steady state 

into a chaotic one, which was repeatedly published in our previous papers 

[17,18]. In the present work an attempt takes place to compare the experimental 

data with the computation results, and so, our theory may be confirmed.  A 

mathematic relation, which connects the different order velocities, was found 

and may be used as a repeating relation showing the chaotic behavior of the 

plasma. The relation is valid under the condition that the perturbed qualities are 

small in comparison with the unperturbed one [8-10]. In the present work a 

calculative trial using the relation as a repeating one may bring it into the 

function conditions and the perturbed theory can be therefore extended. 

Although the experimental results are in a satisfactory agreement with the 

calculation, the subject remains open as a chaotic state one and requires further 

study. In the next research of ours, the influence of the initial conditions on the 

computational results is planed to be studied.   

A brief description of the experimental devices is given in Sec.2, since the 

experimental results are presented in the following Sec.3. In Sec. 4 a full 

mathematical elaboration and the computational results are curried out. The 

confirmation between theory and experiment and conclusions are included in 

Sec. 5. A more detailed mathematical elaboration is provided in the Appendix at 

the end of the paper. 

2. Description of the Experimental Set-Up 

     It is well known that the predominant direction of the external magnetic field 

B


in the Q-machine is well matched with the cylindrical geometry of the device, 

when the cylinder axis and magnetic field coincide.  As our experience on the 

magnetized argon plasma is concentrated on full cylindrical symmetry, the same 

geometry is used at the present study as well, since the low frequencies of 

plasma waves are persistent [1-4, 12-14]. A cylindrical cavity made of steady 
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steel is located with its’ axis along the external magnetic field B . The cavity is 

cm60 long with cm6  internal diameter and, in the center of the first disk-like 

base, the cm25  rf power antenna is mounted; in the other disk-like base a  

cm25  external driving wave antenna is mounted as well, which enables us to 

affect and control the plasma waves. Electrostatic Langmuir probes were fixed 

to move radially, azimouthally and axially with the ability to detect the plasma 

waves that appear and measure their physical quantities (wave frequency, wave 

amplitude, plasma temperature, plasma density, plasma potential e.t.c.). 

Furthermore, a disk-probe was fixed to move radially and around its’ axis, 

which allows, apart from the above quantities, the measuring of the azimouthal 

electron drift current.  In Fig.1 (a) the plasma column cut is shown, whereas an 

extensive drawing of the cavity’s position into the magnetic field is presented in 

Fig.1 (b). 

 

Fig.1 (a), the plasma column is shown.  Fig.1 (b), the cavity’s placing into the 

magnetic field is presented (ground plan). 

The argon entrance, its’ outlet to the pump and a suitable window are placed on 

the curved surface of the cylinder, as they are represented at the Fig.1 (b). 

3. Experimental  Data 

  The existence of the electrical waves into the argon plasma is confirmed once 

more. These low frequency waves are   divided into three frequency regions 

with a quasi-same behavior in many instances. An extensive study of these 

waves was carried out at the Plasma Laboratory of NCSR ‘’Demokritos’’ 

previously, and two of them were absolutely identified [12, 14]. A stable 

dependence of the gas pressure on the waves has been presented and measured 



120    Xaplanteris et al. 

 

again. This influence consists of the simultaneous decrease of the waves’ 

amplitude and frequency as the gas pressure increases.  Figures 2 and 3 give a 

middle frequency region wave indicatively with its’ spectrum of frequencies 

where the upper harmonics appear; the first with a high value of the gas pressure 

and the second with a low one.                                          

The plasma is lit into an wide space of the external plasma  parameters (gas 

pressure p , magnetic field B  and rf field absorbed  power P )  and results  in  

a wide region of  plasma quantities as well; these quantities include the plasma 

temperature T , the plasma density n , the plasma potential   , and all the 

wave parameters.  Table 1 shows some typical values of the plasma parameters. 

 Fig. 2. A typical wave spectrum in the middle frequency region with high gas 

pressure.

 

Fig. 3. A typical wave spectrum in the middle frequency region again with low 

gas pressure. 
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                          Table 1 The plasma parameters ranging values 
Parameters Minimum value Maximum value 

Argon pressure p  Pa001.0  Pa1.0  

Argon number density, gn  315102  m  
317102  m  

Magnetic field intensity, B  mT10  mT200  
Microwaves’ power, P  
Frequency of the rf power (standard 

value)                                 

Watt20  

GHz45.2  

Watt120  

Electron density, 0n  315102  m  
315106.4  m  

Electron temperature, eT  eV5.1  eV10  

Ion temperature, iT  eV025.0  eV048.0  

Ionization rate  %1.0  %90  

Electron drift velocity, eu  s
m4101

 s
m4107.1 

 
Electron-neutral collision frequency, e  17102.1  s  

19103  s  

 
The experimental part of the present paper consists of the following steps: 

 

i) By using the radial moving probe, the plasma potential )(r  is measured along 

the cylinder radius and then, from the relation 
r


  the plasma electric 

field   is calculated. Figure 4 is shows the radial potential and radial electric 

field along the cylinder radius.  

 
 

Fig.4 shows the plasma potential )(r and the electric field  along the cylinder 

radius. 
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It must be noted that the electric field  remains nearly constant in the middle of 

the radius, where the wave rises and its’ amplitude constantly increases [6, 12-

14]. The measurement has been done by 0BB  .   
 

ii) The perturbed electric field E must be measured, consequently. This 

measurement may be a result of the wave amplitude as it appears along the 

cylinder radius. Figure 5 is shows the wave amplitude (in Volts) and the 

perturbed field E  correspondingly. The measurement was repeated for values 

of the magnetic field B , under and above the upper cyclotron resonance resB . 

 
 

Fig. 5 shows the wave amplitude and the perturbed  electric field E along the 

cylinder radius. 

 

iii) The measurement of the azimouthal electron drift velocity eu is the next 

step. This is obtained by using the disk probe as it moves around its’ 

axis. Figure 6 indicates the method of the measurement of the 

azimouthal electron current I , which requires two simple movements: 

the orientation of the probe surface perpendicularly to the electron drift 

course, and after, in the opposite direction of the electrons’ motion. 

 
Fig. 6, the electron drift current measurement 
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 The next relations thIII  1   and thIII  2  are valid and result in 

the relation below, 

2

21 II
I


  

Taking into consideration that the relation  ... ee uneI is valid (with   

the probe surface area), the azimouthal electron drift can be found.  

Measurements and estimations are listed in Table 2, since the electron drift 

velocity eu and the perturbed velocity  are presented in Fig. 7, as well. 

 

 Table 2  The azimouthal electron drift current and the drift velocity along a 

cylinder radius 
Radius 

r  

drift 

current eI  

plasma density 

en  

drift velocity  

eu  
E  

perturbed 

velocity   

( cm ) ( A ) (
315

10
mx ) (

s
mx 310 ) 

 
(

s
m ) 

3.0  20  0.6  43.4  1.0  443  

6.0  26  2.6  57.5  05.0  278  

9.0  30  5.6  17.6  067.0  413  

2.1  37  0.7  02.7  04.0  281  

5.1  42 8.6  20.8  037.0  303  

8.1  46  2.6  85.9  25.0  2462  

1.2  35  9.5  92.7  1.0  792  

4.2  25 6.5  93.5  1.0  593  

7.2  16  5.5 86.3    

 

 

iv) The perturbed velocity  is impossible to be found directly by an 

experimental measuring, but it can be estimated from the 

relation 


 u
E

 , as the quantities E, and u have been measured above. 

The results for the  are given again in Table 2.  
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Fig.7. The drift velocity eu and the perturbed velocity  are presented 

 

 
4.  Mathematical  Elaboration - Computational Results 

                  Perturbed velocities’ study 
 

       In the Appendix it is proved that the drift and perturbed velocities are 

related to the electrical fields with the Eq. (A. 9),              

                                          rr u
E


     and   


 u

E
         (A. 9)  

A. When the perturbed electric field E is very small, then the relations 

rr u and  u   are valid. 

B. If the relation u is valid, the electric fields must have the same behavior 

as E . This means that the wave amplitude undergoes some big changes 

along the cylinder radius. 

With the replacement of the quantity , the Eqs ( A. 7)  are written: 

 
 22

2

)(
.









kujB

E

c

c      and   
 

 22 )(

)(
.











kuj

kuj

B

E

c

c
r          

(1) 

The azimouthal perturbed velocity  is of the most interest: by taking 

)(2)( 222   kujku  and limiting the real part only, the first of 

Eqs (1) is rewritten as following, 
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222

2

)(
.









kuB

E

c

c       (2) 

with    for simplicity; this may be used as the repeating relation. 

It must be reminded that the Eq.(A. 9)  was produced with the presupposition 

that the relation u is valid. This consists a necessary condition for the 

linearization of Eq. (A. 1) (perturbation theory).  

 Now, if we seek a solution for u , approximately, by separating the 

perturbed velocity  into small parts i ,....,, 321  with ,....1000,100,10i  

and every part  i , the perturbation theory condition is satisfied. 

 Taking 0uu   and 
10

1


  , the Eq. (2)  is written, 

                                            
2

0
22

2

1
)(

.








kuB

E

c

c           (3) 

  With the addition    101  uu , the above equation gives the term 2 , 

                                             
2

1
22

2

2
)(

.








kuB

E

c

c  

  If it is taken 212  uu  ,  the Eq. (2) gives the term 3 , 

  And so on, with 11   iii uu    the repeating relation, 

                                               
222

2

1
)(

.








ic

c
i

kuB

E
      (4) 

 is obtained. 

Repeating equation study 

It is evident that the minimum value of the term 
2)( iku  is zero, and then the 

denominator in the Eq. (4) takes the maximum value. Then, we conclude that, at 
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the value
k

u i


 , the 1i has the minimum value, 

22

2

1








c

c
i

B

E
, which is 

the same as if the quality   )(kuj , is taken. 

Another significant result is obtained if the relations 101  uu , 212  uu , 

323  uu , ….. iii uu  1 ,        are  added by parts, when the relation 

ii uu   ...3210  or 

                                                      0uu i     (5)   

 is obtained 

 with i  ....321  the whole-total large perturbed velocity. 

 The relation  0uu i  must be confirmed experimentally.  

Computational results 

 The experiment leads to the following calculations; 
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e
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2192 10  s  

When it is taken 00 ku , then  
l

R
k

u .
0

 
l

Ru .
0

 .   

Taking 
1410.7.2.2  sf     1510..4,1  s ,  1l  and 

mR 210.2     then 

s
mu 25

0 10.2.10..4,1                  
s

mu 4
0 10.88,0               

In the above case the perturbed velocity 1 is minimized at the value,  (see eq. 

3) , 
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s
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s
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On the other hand, the relation  uE


   gives, 

                                u
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s
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 Now, with  
s

muu )8808800(101       
s

mu 96801  , the perturbed 

2  from the repeating equation below can be calculated,  
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.1430
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                or                       78437500196249999837,13402   

Now it is taken, 212  uu ,  78437500196249999837,134096802  u  

78437500196249999837,110202  u , and so on. 

5. Explanation- Conclusions 

 The existence of the low frequency waves into the argon magnetized 

plasma was observed in our early experiments at the Plasma Laboratory of 

Demokritos. A satisfactory explanation about it was given as well [ 12,14]. In 

previous publication the possibility for development of the low frequency waves 

has been presented. Two kinds of these waves have been identified already [12, 

14]. The cylindrical symmetry of the plasma column gives them azimouthal 

propagation, whereas the boundaries cause for standing waves formation. By 

using the perturbation theory on the two fluids model, the relation, 
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kuB

E

c
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is obtained under the conditions u . 

The validity of the above equation is attempted to be proved with the present 

experiment. So, the value of the perturbed velocity   was found at first 

experimentally and then by estimation from the above equation. The direct 

measurement of the perturbed velocity   is impossible to be carried out as it is 

added on the drift velocity u , resulting in the inability to be distinguished from 

it. For this reason, the relation uE .


  was used, which requires the 

measurement of the quantities E ,   and u . As Figs 4 and 5 show, the electric 

fields E  and  are maximized in the middle of the radius, where the wave is 

developed, and the ratio 


E is very close to the perturbation theory condition. 

Furthermore, from Table 2 the values of the drift electron velocity are taken. 

Figure 7 gives the measured values of the perturbed velocity . Afterwards, the 

calculated values from the repeating equation are taken. Despite the inevitable 

inclinations of the measurements, the two results are satisfactory close, and may 

have the certainty that the suggested calculation method is right. Another 

significant observation is that, because of the use of the equation as a repeating 

one, the values of the perturbed velocity are slightly affected from the drift 

velocity enlargement. On the contrary, the drift velocity enlargement 

strengthens the function condition u . 

        Appendix 

        The momentum equation on the two fluids theory based on a non-local slab 

is written as,                  

  pVmN
c

BxV
qNEqNVV

t
mN 



 






 


)(.).      

                     where the indicator  is given for both kinds of the charged 

particles, electrons and ions. In the following elaboration, the  is omitted for 

simplicity and the momentum equation for either electrons and ions becomes, 

           pVNm
c

BxV
NqENqVV

t
mN 



 



 )(.).     (A.1) 

 

        where  ),(),,(0 trEEtrnnN tot


  , and  ),(0 truV


 , 

       and ),(),,( trEtrn


, and ),( tr


 , the perturbed qualities with harmonic 

influence 
)( trkje 



. 
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When no perturbation exists, the drift velocity 0u , is obtained; 
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                        With the separation on the r


and   axis the drift components are 

given, 
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i) If  the perturbation is taken into account,  eq.(A. 1) gives, 
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                           ( the 1
st

  order equation) 
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                           (the 2
vd

  order equation)  

              γ)        And finally, 

                                 0. 


n     (A. 6) 

                            (the 3
rd

 order equation). 

_      From  the equilibrium state (zero order equation), the drift velocity 

components  are easily obtained, 
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_       From the first order equation, the perturbent velocity components may be 

given as,  
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     with   ,    )(kuj  

 

A combination of drift and perturbed velocities components gives, 
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              If it is considered that  ku , then it is taken   and the 

perturbed  velocity components (eq.A. 7) become, 
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                 as the drift velocity components by replacing the dc electric field   

with  the perturbed one E . 

If  ku , then    is taken likewise and from Eqs  (A. 8) the below 

relations (A. 9) are obtained, 

                                                 rr u
E


     and   


 u

E
         (A. 9)  
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Abstract: Nonlinear analysis of dynamical states based on matrix decomposition theory 

for the Hopfield’s neural network is developed in this paper. A formula for determining 

the values of approximating vector function increments for any number of network 
neurons is derived. The procedure of noisy monochrome image restoration using 

Hopfield’s network is simulated here. 

Keywords: Hopfield’s neural network, Nonlinear dynamical systems, State space, 

Attractors, Matrix decomposition theory. 

 
1    Introduction 

Hopfield’s neural networks have been widely used as a simple and 

intuitive understanding of the associative memory model. This follows from the 

fact that artificial neural networks (ANNs) have some similar characteristics of 

the human associative memory, namely: 1) information retrieval is carried out 

not by means of a memory address supply but through a data measure 

determining the similarity with the standard pattern; 2) data distribution of the 

stored patterns are located throughout the memory space; 3) data access to 

memory space are represented by a dynamical process. Due to the stable states 

of Hopfield’s AAN correspond to local minimum of the Hopfield’s energy 

function, they have well been used to solve various optimization problems [2]. 

Despite its advantages, the Hopfield’s ANNs have several drawbacks. 

These include a small memory capacity for the stored standard patterns and 

higher sensitivity to the correlation between the input patterns. For example, in 

[1] it has been experimentally proved that the memory tends to 0,15N where N 

is a number of neurons in the network. However, in the paper [3] it has been 

shown that the number of stored patterns can not exceed / 4logN N , besides 

the memory capacity is decreased sharply in case of correlation between the 

stored reference patterns. 

It should be noted that these formulas are not very effective for practical 

application. For example, it is impossible to determine the input pattern 

affecting on the behavior of all trained network. In this connection an 

investigation of dynamical states of Hopfield’s ANN is very important problem. 

mailto:alxkrot@newman.bas-net.by
mailto:rprakapovich@robotics.by
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Generally speaking, methods of nonlinear dynamics including calculation of 

minimal attractor embedding dimension, the Lyapunov characteristic exponents 

etc. are basic tools for characterizing behavior of complex systems [4], [5], [6]. 

To quantify more exactly a dynamics of complex system quantitatively more 

exactly these methods have to take into account higher order nonlinearities. In 

the papers [7-14] higher order nonlinearities have been described by means of 

matrix series in state space of complex system. Entirely, decomposition methods 

of nonlinear operators describing the behavior of system in state space (phase 

space) are very important for analysis, identification and modeling of nonlinear 

dynamical systems, especially complex nonlinear dynamical systems [5], [6]. 

In this context, the purpose of this paper is to study the behavior of the 

Hopfield network based on the developed in [7-14] nonlinear analysis methods 

for attractors of complex dynamical systems. This paper investigates the 

stability of the convergence of retrieval binary vectors processes using the 

matrix series expansion theory [7-14]. 

 

2    Analysis of the Hopfield’ ANN Dynamics on the Basis of the 

Matrix Decomposition Theory 

Let us consider the Hopfield ANN as a nonlinear dynamical system consisting 

of three neurons u1, u2 and u3 (Figure 1). It is known [1], the dynamics of the 

Hopfield ANN functioning is given by the following rule: 

 ,

1,

( 1) ( ) T , 1,
N

i i l l i

l i l

u t w F u t i N
 

       (1a) 

where ,i lw  are elements of synaptic weights matrix 3 3W  , N is the input vector 

length (in particular, N = 3), F is an activation function, Ti  is a bias value of the 

i-th neuron (as a rule, T 0i  ). As activation function ( ) lF u  we choose the 

hyperbolic tangent. 

Let us describe the dynamics of states of each neuron iu : 

,

1,

( ) T
N

i i l l i i

l i l

u w F u u
 

      (1b) 

Let us investigate the dynamics of the state changing for all output neurons in 

the Hopfield’s ANN for N=3 in accordance with Figure 1: 

 

1 1 1 2 3 12 2 13 3 1

2 2 1 2 3 21 1 23 3 2

3 3 1 2 3 31 1 32 2 3

( , , ) ( ) ( ) ;

( , , ) ( ) ( ) ;

( , , ) ( ) ( ) .

u f u u u w F u w F u u

u f u u u w F u w F u u

u f u u u w F u w F u u

   


   
    

`  (2) 
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Fig. 1. The Hopfield’s neural network architecture 

 

In order to use theory of matrix decomposition [7-14] we represent the system 

of equations (2) by the following vector functions: 

1

2

3

u

u u

u

 
 

  
  

    (3a) 

12 2 13 3 1

21 1 23 3 2

31 1 32 2 3

( ) ( )

( ) ( ) ( )

( ) ( )

w F u w F u u

f u w F u w F u u

w F u w F u u

  
 

   
   

   (3b) 

According to the nonlinear analysis based on matrix decomposition [7-14] we 

study the solution of equation (1b) near a specific standard state *{ }iu , where 

 * *

i iu u t , permanently disturbed by value  i iv v t  of external perturbations 

or internal fluctuations. In result, instead of *

iu  a new solutions becomes 

*

i i iu u v      (4) 

Taking into account (4) we can find the increment of the vector function in the 

state space of the Hopfield’s ANN (3b) in the form 
* * *( , ) ( ) ( )f v u f u v f u      
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   

   

   

* * * *

12 2 2 2 13 3 3 3 1

* * * *

21 1 1 1 23 3 3 3 2

* * * *

31 1 1 1 32 2 2 2 3
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( ) ( ) ( ) ( )

w F u v F u w F u v F u v

w F u v F u w F u v F u v

w F u v F u w F u v F u v

      
 
       
 
      
 

  (5) 

According to the matrix decomposition theory [7-14] let us represent the 

increment of the vector function in the space of states by the matrix series 

expansion: 
* * *( , ) ( ) ( )f u v f u v f u      

2 3

(1) (2) (3) ( )

1

1 1 1
( ) ( ) ,

2! 3! !
k

k k

N N N N N N N N
k

L v L v v L v v v L v
k




   


         (6a) 

*
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T T T
... ...k
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N N

u

L f
v v v

      
       

     
,  (6b) 

where ( )
k

k

N N
L


 are matrix kernels of homogeneous nonlinear operators of the 

system into the state space; ( ... )

k

kv v v v      is k-th Kronecker degree of 

the vector v  [7-14]. 

In particular, the kernels of elements of the first order in accord with (1b) and 

(4) can be expressed by the following formula: 
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where ij  is the Kronecker’s delta-symbol. Taking into account (7a) let us write 

the kernel of the first order in the matrix form: 
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Similarly, we find elements of the second order kernel by means of the formula: 
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k k k k

j j

k k

i

ijk il l i

l l iu u u uj k j k

u u u u

l i

il

l l ik j j u u

u u

f
L w F u u

v v v v

F u u
w

v v v

 

 

  

 



  



  
    
     

  
   
   
 





 

 2 2 *3

2
1,

( )
(1 )

l j

il ij ij ik

l l i j k j

F u F u
w w

v v v
 



 

 
   

  
 .  (8a) 
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So, the corresponding matrix for the second order kernel takes the following 

form: 

13 312 2
(2)

3 9 21 1 23 3

32 231 1

0 0 ( )0 0 0 0 ( ) 0
( ) 0 0 0 0 0 0 0 ( )

0 0 00 ( ) 0( ) 0 0

w F uw F u
L w F u w F u

w F uw F u



 




 
  
 
 

 (8b) 

By analogy with (7b), (8b) we can obtain the matrix form of kernel of the third 

order: 
(3)

3 27L    

13 312 2

21 1 23 3

32 231 1

00 ( )0 00 0 ( ) 0000 000 000 000 000 000
( )00 000 000 000 0 0 0 000 000 000 00 ( )

000 000 000 000 000 000 00 00 ( )0( ) 00

w F uw F u
w F u w F u

w F uw F u



 



 
  
 
 

(9) 

Restricting number of terms in the matrix series (6a) up to the 3-rd order 

inclusively, we approximate the increment of the vector function (5) into state 

space of the Hopfield’s ANN: 

(1) (2) (3)

3 3 3 9 3 27

1 1
( , ) ( ) ( ) ( ) ( ) ( )

2! 3!
f v u L u v L u v v L u v v v   

           . (10) 

To estimate the accuracy of the approximation, let us we find the following 

three terms of the matrix series in analytical form: 
(1)

3 3

12 2 13 3 1

21 1 23 3 2

331 1 32 2

( )

1 ( ) ( )

( ) 1 ( )

( ) ( ) 1

L u v

w F u w F u v
w F u w F u v

vw F u w F u





 

 

 



    
     
        

 

12 2 2 13 3 3 1

21 1 1 23 3 3 2

31 1 1 32 2 2 3

( ) ( )

( ) ( )

( ) ( )

w F u v w F u v v

w F u v w F u v v

w F u v w F u v v

 

 

 

     
      
      

.  (11a) 

(2)

3 9

2

1

1 2

1 3

13 3 2 112 2
2

21 1 23 3 2

2 332 231 1

3 1

3 2
2

3

( ) ( )

0 0 ( )0 0 0 0 ( ) 0
( ) 0 0 0 0 0 0 0 ( )

0 0 00 ( ) 0( ) 0 0

L u v v

v
v v
v v

w F u v vw F u
w F u w F u v

v vw F uw F u
v v
v v

v







 



  

 
 
 
  
    
     
 
 
  

 

2 2

12 2 2 13 3 3
2 2

21 1 1 23 3 3
2 2

31 1 1 32 2 2

( ) ( )

( ) ( )

( ) ( )

w F u v w F u v

w F u v w F u v

w F u v w F u v

 

 

 

    
     
     

   (11b) 

 
(3)

3 27 ( ) ( )L u v v v

      
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3

1

1 1 2

1 1 3

1 2 1
2

1 2

1 2 3

1 3 1

1 3 2

13 312 2

21 1 23 3

32 231 1

00 ( )0 00 0 ( ) 0000 000 000 000 000 000
( ) 00 000 000 000 0 0 0 000 000 000 00 ( )

000 000 000 000 000 000 00 00 ( ) 0( ) 00

v
v v v
v v v
v v v

v v
v v v
v v v
v v v

w F uw F u
w F u w F u

w F uw F u



 



 
  
 
 

2

1 3
2

2 1

2 1 2

2 1 3

2 2 1
3

2

2 2 3

2 3 1

2 3 2
2

2 3
2

2 1

3 1 2

3 1 3

3 2 1
2

3 2

3 2 3

3 3 1

3 3 2
3

3

v v

v v
v v v
v v v
v v v

v
v v v
v v v
v v v

v v

v v
v v v
v v v
v v v

v v
v v v
v v v
v v v

v

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 3

12 2 2 13 3 3
3 3

21 1 1 23 3 3
3 3

31 1 1 32 2 2

( ) ( )

( ) ( )

( ) ( )

w F u v w F u v

w F u v w F u v

w F u v w F u v

 

 

 

    
     
     

    (11c) 

 

Substituting (11a)(11c) in (10) we find an approximating function ( , )Mg v u  

for *( , )f v u  as a vector sum of three terms of this matrix series ( 3M  ): 

2 2

12 2 2 13 3 3 1 12 2 2 13 3 3
2 2

21 1 1 23 3 3 2 21 1 1 23 3 3
2

31 1 1 32 2 2 3 31 1 1 32

3

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )
2!( ) ( ) ( )

( , ) ( , )

w F u v w F u v v w F u v w F u v

w F u v w F u v v w F u v w F u v

w F u v w F u v v w F u v w F

f v u g v u

   

   

  

 

     

       

     

  

 
 
 
 

2

2 2
( )u v





 
 
 
 

 

3 3

12 2 2 13 3 3
3 3

21 1 1 23 3 3
3 3

31 1 1 32 2 2

( ) ( )
1

( ) ( )
3! ( ) ( )

w F u v w F u v

w F u v w F u v

w F u v w F u v

 

 

 

 

  

 

 
 
 
 

 

1 12 13

2 21 23

2 3 2 3

2 2 2 2 2 2 3 3 3 3 3 3

2 3 2 3

1 1 1 1 1 1 3 3 3 3 3 3

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 6 2 6
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
2 6 2 6

v w w

v w w

F u v F u v F u v F u v F u v F u v

F u v F u v F u v F u v F u v F u v

     

     

  

   



   
           

   
   

           
   

3 31 32

2 3 2 3

1 1 1 1 1 1 2 2 2 2 2 2

.

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 6 2 6
v w wF u v F u v F u v F u v F u v F u v     
 

 
 
 
 
 
    

            
    

(12) 
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To determine the vector function of an approximation error ( , )M v u  , i.e. the 

so-called residual vector, we find the difference between the right-hand sides of 

equations (5) and (12) for 3M  : 

( , ) ( , ) ( , )M Mv u f v u g v u
  
    

2 3

* * 2 2 2 2

12 2 2 2 2 2

2 3

* * 1 1 1 1

21 1 1 1 1 1

2 3

* * 1 1 1 1

31 1 1 1 1 1

( ) ( )
( ) ( ) ( )

2 6

( ) ( )
( ) ( ) ( )

2 6

( ) ( )
( ) ( ) ( )

2 6

F u v F u v
w F u v F u F u v

F u v F u v
w F u v F u F u v

F u v F u v
w F u v F u F u v

 



 



 



    

    

    

 


 


 


  
  
  

  
  

 
  
  

  .








 

2 3

* * 3 3 3 3

13 3 3 3 3 3

2 3

* * 3 3 3 3

23 3 3 3 3 3

2 3

* * 2 2 2 2

32 2 2 2 2 2

( ) ( )
( ) ( ) ( )

2 6

( ) ( )
( ) ( ) ( )

2 6

( ) ( )
( ) ( ) ( )

2 6

F u v F u v
w F u v F u F u v

F u v F u v
w F u v F u F u v

F u v F u v
w F u v F u F u v

 



 



 



    

    

    

 


 


 


  
  
  

  
   

 
  
  

  .







   (13) 

Further we estimate the approximation error M  of vector function (5) in the 

state space of Hopfield’s ANN based on a length of vector 

discrepancy ( , )M v u  : 

*( , )
100%

M N N

M

v u

N


   .    (14) 

Then in the case of 3M  , the residual vector 3  is equal to 

2 2 2

3 1 2 3 2 3 2 1 3 1 3 3 1 2 1 2

1
( , , , ) ( , , , ) ( , , , ) 100%

3
u u v v u u v v u u v v            . 

Before calculating (13) and (14) should be noted that 

( ) tanh( ) ;
l l

l l

u u

l l u u

e e
F u u

e e






 


 

 
2 2

1 4
( ) ;

cosh ( ) l l

l
u u

l

F u
u e e



  


 

 

 

 

 

2 3

2

2

4 2 4

2
( ) tanh( ) 8 ;

cosh ( )

32 162 4
( ) tanh ( ) ,

cosh ( ) cosh ( )

l l

l l

l l

l l

u u

l l
u u

l

u u

l l
u u

l l

e e
F u u

u e e

e e
F u u

u u e e










    



 
     


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where the values 
lu  are chosen equal to 1, 0 or +1. Then it follows directly 

that 

0.7616  if 1;
( ) 0.0  if 0;

0.7616  if 1.

0.4200 if 1;
( ) 1.00  if 0;

0.4200  if 1.

0.6397  if 1;
( ) 0.00  if 0;

-0.6397  if 1.

0.0618  if 1;
( ) -

l

l

l

l

l

l

l

l

l

l

u
F x u

u

u
F x u

u

u
F x u

u

u
F x

  
 



 
  



 
  



 
  2.00  if 0;

-0.7673  if 1.
l

l

u
u





 

One can see from (12) that in general form the elements of a vector 

approximating functions ( , )Mg v u  can be described as follows: 

* ( ) *

,

1, 1

1
( , ) ( )

!

N M
i k k

M j j i i j j j

j j i k

g v u v w F u v
k  

     ,  (15) 

where ( ) *( )k

jF u  denotes the k-th derivative of the activation function ( )jF u  

calculated at the point *

ju , N is a number of neurons in the input layer and M is a 

number of kernels of the matrix series (6a). 

Thus, owing to (12) and (15) it has become possible to calculate the 

increment of the vector function ( , )f v u  in the state space of the Hopfield’s 

ANN under condition of input vector of arbitrary length N with accuracy to M-

th kernel. 

To obtain the residual vector ( , )M v u   and the error value M  let us 

simulate the Hopfield’s ANN. 

 

3    A Computational Experiment to Determine the Approximation 

Error for Binary Patterns 

As an example, let us consider the process of restoration of binary vector 
T[1 1 1]a  using the Hopfield’s ANN (Figure 1). To this end, we use the 

Hebb’s learning rule [1] to calculate the weight matrix 3 3W  . In general, the 

formation of the weight matrix is carried out by means of the Hebb’s learning 

rule [1], [2]: 

 

 
1

1
W E

p

N N i i N N

iN
 



    a a ,   (16) 
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where WN N
 is a weight matrix with size of N N , besides N is a length of the 

input vector, p  is a number of trained pairs of vectors, EN N
 is a diagonal 

identity matrix with size of N N . The operation (2 1)i i
  a a  is performed to 

convert the binary vectors 
ia  in the bipolar form, i.e. to find T[1 1 1] a . For 

the considered case N=3 and p =1, we obtain that 

 

 3 3

1 1 0 0 0 1 1
1 1

W 1 1 1 1 0 1 0 1 0 1
3 3

1 0 0 1 1 1 0



      
      

        
            

,  (17) 

i.e. weight matrix element values are calculated as follows: 
12 13 1/3w w  , 

21 23 1/ 3w w  , 
31 32 1/ 3w w  , а 

11 22 33 0w w w   . 

Considering the obtained element values 
ijw  of the weights matrix 3 3W   accord 

with (17), we rewrite the system (2) as follows: 

 

 

 

 

1 2 3 1

2 1 3 2

3 1 2 3

1
( ) ( ) ;

3

1
( ) ( ) ;

3

1
( ) ( ) .

3

u F u F u u

u F u F u u

u F u F u u


  




  



  


   (18) 

According to the above mentioned statements of the matrix decomposition 

theory (3a)  (12) with respect to a Hopfield’s ANN, an external disturbance 

vector is interpreted as a disturbance vector v  distorting the standard vector u . 

In other words, according to formula (4) let us assume that the vector v  is the 

disturbance from behind the input vector u  differs from the reference vector 

u , i.e. u u v  . 

Thus, the elements of the vector v  belong to the set «1», «0» and «+1» that 

defines the following: if 0iv   then i iu u , i.e. the test vector elements 

completely coincide with elements of the standard vector; if 1iv    then 

i iu u . Consequently, the vector magnitude v  can be estimated on the basis of 

the Hamming’ distance ( , )d u u  between vectors u  and u , i.e. by the number 

of positions in which these vectors are different. In other words, the Hamming 

distance ( , )d u u  is the norm of vector v : 

1

( , )
N

i

i

d u u v v



  ,    (19) 

where ( , )d u u
 is the Hamming distance and N is a  length of the vector v . 
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A computational simulation of the Hopfield’ ANN permits to determine the 

numerical values of the vector 
M  components of the approximation error. The 

data of computational simulation are presented in the Table 1 which displays the 

approximation error 
M  of vector function in the state space of the Hopfield’s 

ANN on the basis of the theory of matrix decomposition and computer 

modeling. 

The fifth column of this Table 1 shows the kernels number M used for function 

approximation. As can be seen from the Table 1, the maximum error occurs in 

the case of linear approximation ( 1M  ) and matches to 9.3% (in the first 

example), and the minimum error occurs under taking into account the nonlinear 

terms of higher order in equation (6a), besides it is equal to 1.05% (see the 

second example). The first 5 kernels have been used in the simulation only. 

However, the values 
M  of the approximation error for the first pair of vectors 

u  and v  lead to an assumption about periodic behavior. 

At the same time, a series of experiments estimating the residual vector
M  and 

the approximation error 
M  have been carried with an activation function as the 

sigmoidal function ( ) 1/(1 )l

lF u e  . As a result, the values 
M  and 

M  are 

found slightly higher but the behavior error is remained the same. 

 

Table 1. Calculation of the approximation error in computational experiments 

with Hopfield’s ANN 

No u  u
 v  M  

Theoretical 

estimation f  

Computational 

estimation f  M  M , 

% 

1 2 3 4 5 6 7 8 9 

1 

1
0
1

 
 
  

 
1
1
1

 
 
  

 
0
1

0

 
 
  

 

1 
-0.1400

1.0
-0.1400

 
 
  

 

-0.2539
1.0

-0.2539

 
 
  

 

-0.1139
0.0

-0.1139

 
 
  

 9,30 

2 2 
-0.2466

1.0
-0.2466

 
 
  

 
-0.0073

0.0
-0.0073

 
 
  

 0,60 

3 3 
-0.2040

1.0
-0.2040

 
 
  

 
-0.0499

0.0
-0.0499

 
 
  

 4,07 

4 4 
-0.1947

1.0
-0.1947

 
 
  

 
-0.0591

0.0
-0.0591

 
 
  

 4,83 

5 5 
-0.1793

1.0
-0.1793

 
 
  

 
-0.0746

0.0
-0.0746

 
 
  

 6,09 
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Table 1 (continuation) 

1 2 3 4 5 6 7 8 9 

6 

1
1
1

 
 
  

 
1
1
0

 
 
  

 
0
0
1

 
 
  

 

1 
-0.3333
-0.3333

-1.0

 
 
    

-0.2539
-0.2539

-1.0

 
 
  

 

-0.0795
-0.0795

0.0

 
 
  

 6,49 

7 2 
-0.3333
-0.3333

-1.0

 
 
    

-0.0795
-0.0795

0.0

 
 
  

 6,49 

8 3 
-0.2222
-0.2222

-1.0

 
 
    

-0.0316
-0.0316

0.0

 
 
  

 2,58 

9 4 
-0.2222
-0.2222

-1.0

 
 
    

-0.0316
-0.0316

0.0

 
 
  

 2,58 

10 5 
-0.2667
-0.2667

-1.0

 
 
    

0.0128
0.0128

0.0

 
 
  

 1,05 

 
4    Computer Simulation of Stages of the Hopfield’s ANN 

functioning 

One of the main applications of ANN is the classification and pattern 

recognition. The task of classification is the reference of the input vector to one 

of the known classes. A stable functioning of the classifier depends on a 

measure of similarity of the input vector with the standard one storing in the 

memory of the classifier. This stability also depends on a level of noise imposed 

on the input vector when the latter can be still recognized correctly. 

The process of patterns retrieving based on the Hopfield’s ANN is to 

suppress the distortions presenting in the input vectors. Due to the known 

difficulties of the mathematical analysis of complex dynamical behavior of 

recurrent ANN, the question of the maximal possible level determining has been 

not enough iterpretive in the scientific literature. Therefore, one of purposes of 

this paper is to develop a method of nonlinear analysis based on matrix 

decomposition allowing predicting the behavior of the Hopfield’s ANN under 

recognizing the input vectors. 

However, the above illustrated example for recording and recovery (with the 

help of Hopfield’s ANN) of binary vector (consisting of 3 elements only) does 

not allow to fully estimate the benefits of the proposed method. Therefore, let us 

consider a typical problem of Hopfield’s ANN concerning associative 

restoration of noisy patterns. 
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For example, Figure 2 shows two noisy images (2b) and (2c) represented by 

vectors 
1u , 

2u , and one distorted image (2d) represented by a vector 
3u , which 

have been obtained by applying to the standard image (2a) (represented by a 

vector u ) disturbances in the form of noises (2e)(2g) encoded by vectors 
1v , 

2v  and 
3v  respectively. Two-dimensional vector with size of 32×32 represents 

different types of monochrome images of the letter "A". 

 

 
a) 

u  

     

 

1u  

 

1v  
1

( , ) 51d u u 

5%d   

b)  e)   

 

2u

 

 

2v  
2

( , ) 102d u u 

10%d   

c)  f)   

 

3u  

 

3v  
3

( , ) 330d u u 

32%d   

  d)  g)   

Fig.  2. The process of applying distortion and noise on the standard image 

 

For each pair of vectors, the values of the Hamming distance ( , )id u u  [15] 

are shown. However, as it follows from this example, the analysis of vectors 

consisting of a large number of elements (32×32=1024) is not always 

convenient to use the specified value. Therefore, we introduce a new value, so-

called a relative Hamming distance d , besides its value does not depend on the 

length of vectors u  and *u : 

( , )
( , ) 100%

d u u
d u u

N


   .   (20) 

In this regard, the vector v  is to be characterized by a variable ( , )d u u  which 

is calculated by the ratio of the Hamming distance ( , )id u u
 to the value of 

elements of this vector v  

Even in the case of presence 32% of distortions the trained Hopfield’ ANN 

is able to qualitatively recover the input image to the standard values. This is 

achieved due to the fact that one image is recorded by the ANN only. However, 
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the practical implementation of the Hopfield’ ANN shows that an increase in the 

number of images recorded in the network leads to decreases of the ability of 

the Hopfield’ ANN to restore them, i.e. an image can be restored only in the 

case of a slight distortion. 

Due to (15) it is possible to numerically analyze the influence of the initial 

distortions in the process of pattern restoring. For example, Figure 3 shows the 

gradient of the increment of the function describing the dynamics of the 

Hopfield’s ANN consisting of 1024 neurons in which each image represents a 

two-dimensional monochrome image of the letter "A". The standard vector u  

and input vector 
3u  for these images are illustrated in Figure 2a and 2d, 

respectively. As one can see from these data, a new vector is characterized by 

the small perturbations therefore it has properly been restored. 

It should be noted that in result of the restoration of pattern, the image parts 

are presented by black and dark gray colors in Figure 3, i.e. by the values -

0.1470 and -0.1464, have been assigned to the object, whereas these shown by 

light gray and white, i.e. by values -0.0007 and 0.0, have been interpreted as 

background. Thus, knowing the threshold value, it is possible to determine in 

advance how the input vector can influence the process of recovery through the 

ANN. 

 

-0,1470 

-0,1464 

-0,0007 

0,0 

Fig. 3. The gradient values of the function increments 

On the other hand, knowing the value of the standard elements of 

recognizable images, we can estimate based on formula (15) what percentage of 

the distortions for already trained network can be overcome. In other words, the 

Hopfield’ ANN should consistently apply to the images in which the percentage 

of distortion increases with each time. Then, analyzing the values i

Mg  we can 

determine the threshold value when the system would no longer be able to 

adequately restore the image. 

 

4    CONCLUSIONS 

In this paper we propose a new approach for the numerical determination of 

the perturbations of the Hopfield’ ANN on the stages of the restoration of 

previously unknown pattern with usage of the matrix decomposition theory 

[7-14]. The approximating function i

Mg  has been derived besides its accuracy 
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of restoration depends on the number M of the matrix kernels of homogeneous 

non-linear operators of the complex dynamical system as the Hopfield’s ANN. 
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Abstract: As known, modification of specified slow sodium channels (Na1,8) in the 

membrane of nociceptive neurons is the basis of the pain perception by the human brain. 

The work is devoted to determination of parameters of the channels most sensitive to 

perceiving the painful signals. Using the bifurcation analysis of the model system 
describing the impulse activity of the membrane of mammalian nociceptive neuron we 

partition the parameter planes into the regions corresponding to stable and unstable 

periodic solutions. The left boundary of the region corresponds to subcritical Hopf 

bifurcation and emergence of the rough excitation in the form of large amplitude 
oscillations. The right boundary relates to supercritical Hopf bifurcation and appearance 

of the smooth excitation in the form of small large amplitude. Integrating inside the 

region of stable solutions we obtain the relationship between the parameter and 

frequency values. Bifurcation parameters such as the effective charge transfer of the 
activation gating system of the sodium channels and the maximal conductance of the 

channels play the main role in increasing the frequency and, hence, in transformation of 

the unpainful stimulus into the painful one. The results explain ionic mechanisms of 

action of analgesic drugs having high selectivity to NaV1,8 channels independently of the 
primary target of action. 

Keywords Hopf bifurcation, Membrane model, Sodium channels, Nociceptive neuron.  

 

1. Introduction  
It is known that in response to injury of nervous system nociceptive neurons can 

become hyper-excitable and generate spontaneous impulse activity of unusual 

frequency [1]. Perception of painful feeling is connected with activation of 

peripheral nociceptors recording painful signals and transmitting them by 

afferent nerve fibers to nociceptive neurons soma of which are in spinal ganglia. 

Low frequency of nerve impulses carries information about adequate tactile 

action and rise of the frequency for amplification of signal testifies about 

possible injury [2]. Slow sodium NaV1,8 channels are considered significant in 

generation of painful feeling since the enhancement of synthesis and functional 

activity of these channels is related to hyper-excitability of nociceptive neurons 

and high frequency neurophatic pain [3, 4]. The failure in the synthesis of the 

channels causes the reduce of neurophatic pain [5]. Modulation of activity of the 

channels by mediators of inflammation can lead to pathological state such as 

hyperalgesia (an increase of painful sensitivity) [6]. Hyperalgesia is removed by 

agents descending impulse activity of NaV1,8 channels [7].That is why these 
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agents  are believed as the analgesic highly selective drugs [2].The aim of the 

work is to answer the question: what parameters of the slow sodium NaV1,8 

channels do maximal influence on pain signaling transduction?To answer the 

question it is necessary 1) to study relations between these parameters, an 

applied external stimulus and a type of stable solution of the model system 

describing the impulse activity of the nociceptive neuron;2) to clarify what 

parameters do determine the possibility of the nociceptive neuron to generate 

spontaneously a signal of a painful range frequency? 

2. The model 
We have used the space-clamped Hodgkin-Huxley type model: 
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 (1) 

 

where E  is the membrane potential, the variables m, h, n, ms, hs represent the 

probabilities of activation and inactivation of fast sodium, potassium and slow 

sodium channels, respectively. 

The constants cm=20 pF,      gNaf  =40 nS,   gK = 20 nS, gL = 5 nS,  ENa =55 mV, 

EK= - 85 mV, EL= -70 mV  are the membrane capacitance, the maximal 

conductance of the fast sodium, potassium and leakage ions channels and the 

reversal potentials for Na
+
, K

+
 and leakage ions. 

The voltage-dependent expressions 
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describe rates of transfer of the activation and inactivation gating structures of 

ionic channels between the closed and open states. 

According to the Boltzmann’s principle for the channel with the two-state open-

closed structure the ratio of the number of open channels (N0) to the number of 

closed channels (NC) is determined by  

 

,
/)(

1

kTEEeeffZ
e

sm

sm

cN

oN 



  

 

where Zeff    is the effective charge of the activation gating structure (in electron 

units) coupled with conformational change of the gating structure during the ion 

transfer through the membrane, k is the Boltzmann’s constant, T is the absolute 

temperature, e  is the electron charge,  E is the membrane potential such that 

N0=NC. 

Then at EE   for the activation gating structure of the slow sodium channels 

one can write 
SS mm   , whence it follows that the effective charge value of 

the activation gating structure can be gained as  

 

)21( kk
e

kT
effZ  . 

 

3. Partition of the model parameter space into regions of 

qualitatively different solutions  

To obtain relationship between the type of stable solution of the system, its 

parameters and an applied external stimulus it is sufficient to find points 

belonging to the boundary partitioning the parameter space of the model system 

into the regions of the qualitatively different types of stable solutions (steady 

states and stable periodic oscillations). For constructing the boundary the 

method of bifurcation analysis is applied. 

On the I axis there are at least 3 bifurcation points (I0<I1<I2) [8]. For I<I0     and  

I>I1       there is a one-to-one correspondence between the type of steady state  

(unstable or stable) and the presence or absence of a stable periodic solution. 

For    II0    and    II2 the steady state is stable and a limit cycle does not exist. 

While the bifurcation parameter I increases in interval    (I0<II1)    the steady 

state is stable and a stable and unstable periodic solutions coexist appearing via 

fold limit cycle bifurcation. The unstable periodic solution shrinks down to the 

rest state and makes it lose stability via subcritical Andronov-Hopf bifurcation.  
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Therefore, for    I>I1      the stable periodic oscillations of large amplitude exist 

both with decreasing and increasing I value. But for   I0<II1   the stable limit 

cycle of large amplitude is exhibited only with decreasing I  

Since for the Hodgkin-Huxley type system     I0I1       for all the physiologically 

possible parameter values [9], the value of   I1 can be used as an approximate 

value of I0. That is why the task of finding the boundary of qualitatively 

different types of stable solutions can be reduced to the more simple numerical 

task of constructing the boundary of various steady states (stable and unstable). 

We write system (1) in the form  

 

),,,( IpxF
dt

dx
                 (2) 

 

where x=(E, m, h, n, mS, hS) is a vector of the phase coordinates,  

p=(gNaS, k1, k2) is a vector of parameters which can be considered as bifurcation 

ones. 

The method for determining the boundary points of the region of stable periodic 

solutions is reduced to the sequence of operations: 

1) finding the equilibrium state of system (2) as a unique solution x0 (p, I) of the 

equation  

F(x, p, I)=0, 

 

2) calculating the eigenvalues  61),( Ipi  of the Jacobian matrix  
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3) finding the parameter values satisfying the Hopf bifurcation, namely, arising 

of a pair of purely imaginary eigenvalues  

 

06   ,05   ,04   ,03    ,2    ,1   ii . 

 

To determine values I1 (p) and I2 (p) at which maximal real part 

)),(( Ipm becomes equal to zero the following algorithm is used. 

1) The interval [I0, IK] of possible values is discretized with k consecutive 

subintervals of length .  

In the case of existence even though one solution I1 (p) of equation  

 

 0),( Ipm , 

 



Chaotic Modeling and Simulation (CMSIM)  1:  147-154, 2013   151 
 

the i - subinterval involving the solution, is determined by the consecutive 

search beginning from the left side of the interval. The value of this solution is 

determined by linear interpolation. 

2) The value of I2 (p) is calculated in the interval [i*, IK] by the method of 

bisection followed by linear interpolation. 

The numerical solution of system (1) inside the obtained region of stable 

periodic solutions is found by a fourth-order Runge-Kutta method with a 

modified variable step size and Gear algorithm. The frequency of the periodic 

solution is calculated by the time values corresponding to local maxima. 

 

4. Results and discussion  

To elucidate the role of slow sodium channels in generation of the painful 

stimulus the maximal conductance of the slow sodium channels (gNaS), the 

effective charge transfer of the activation gating system of the channels (Zeff) 

and the shift (G) of the activation curve along the membrane potential axis have 

been used as variable parameters. 

The family of the plane sections of the boundary partitioning the parameter 

space (gNaS, Zeff,  I) into the regions of stable and unstable steady states are given 

in Fig.1 a, b. 

Inside the each found region the steady state is unstable and there is a stable 

limit cycle corresponding to stable periodic solution. 

Stain-stepping effect of the left boundary of the region is related to features of 

arising limit cycles on the left and right sides of the boundary. The left boundary 

of the region corresponds to subcritical Hopf bifurcation and emergence of the 

rough excitation in the form of large amplitude oscillations. The right boundary 

relates to supercritical Hopf bifurcation and appearance of the smooth excitation 

in the form of small large amplitude. 

As is seen, if gNaS =0, periodic oscillations are absent at any stimulus value. 

The minimal value of gNaS such that the oscillations emerge is equal to 14,9 nS 

at the stimulus – 142,5 pA and the value grows when Zeff  increases. 

When the effective charge is less than e5 the periodic oscillations arise only 

by hyperpolarizing stimulus (I<0 pA). 

With increasing Zeff the steady periodic solutions region extends significantly 

and shifts in direction of depolarizing stimulus (I>0 pA). 

Integrating inside the constructed regions we obtain the relationship between the 

model parameter and frequency values. The examples of steady periodic 

solutions are represented in Fig.2 and Fig.3. 

The periodic oscillations emerging on the left boundary of the region have large 

amplitude and small frequency. When moving inside the region from left to 

right an amplification of the external stimulus tends to change in amplitude and 

frequency of the nociceptive neuron. In other words, for the constant maximal 

conductance of the slow sodium channels and effective charge transfer of the 

activation gating system an enhancement of the external stimulus leads to the 

increase of the frequency of periodic oscillations and then their disruption. 
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Fig. 1. The examples of the plane sections of the boundary partitioning the 

parameter space (gNaS, Zeff,  I) into the regions of stable and unstable steady 

states. Each section is constructed with 800 points on the (gNaS,  I) plane 

corresponding to 700 net values of the parameter gNaS .Values G=10 mV, 

   eeeeeeeeeeeeffZ 10 ,9 ,8 ,7 ,5.6 ,6 ,5.5 ,5 ,5.4 ,4 ,5.311
1

 . 

 

The periodic oscillations emerging on the left boundary of the region have large 

amplitude and small frequency. When moving inside the region from left to 

right an amplification of the external stimulus tends to change in amplitude and 

frequency of the nociceptive neuron. In other words, for the constant maximal 

conductance of the slow sodium channels and effective charge transfer of the 

activation gating system an enhancement of the external stimulus leads to the 

increase of the frequency of periodic oscillations and then their disruption. 
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Fig. 2. The examples of steady solutions for nSNaSgeeffZ 100     ,5.6   and 

various values of stimulus. 
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Fig.3. The examples of steady solutions 0     ,5.6  IeeffZ  and different 

values of .NaSg  
 

The periodic oscillations emerging on the left boundary of the region have large 

amplitude and small frequency. When moving inside the region from left to 

right an amplification of the external stimulus tends to change in amplitude and 

frequency of the nociceptive neuron. In other words, for the constant maximal 

conductance of the slow sodium channels and effective charge transfer of the 

activation gating system an enhancement of the external stimulus leads to the 

increase of the frequency of periodic oscillations and then their disruption. 

When moving inside the region from bottom to top a growth of the maximal 

conductance of the slow sodium channels for the constant stimulus value results 

in increase of the frequency, period doubling and also failure of periodic 

oscillations (Fig.3). 
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Thus, both factors, namely, decrease of effective charge transfer of the 

activation gating system of the slow sodium channels for the constant maximal 

conductance of the channels and decrease of the maximal conductance of the 

slow sodium channels for the constant stimulus decline the frequency of impulse 

activity. Since an increase in the frequency of impulse activity of nociceptive 

neurons is related to the emergence of neuropathic pain, our findings indicate 

the direction of looking for chemical agents possessing analgesic properties. 
 

3. Conclusion 
The form of the constructed regions demonstrates that ability of each parameter 

to be bifurcation one significantly depends on the other parameter values. Thus, 

the conclusions about bifurcation properties of the system parameters are 

determined by the investigated point in the parameter space. 

The character of changes in the system solutions and in the frequency of 

periodic solutions can be used in searching of chemical agents aimed for 

selective removal of neuropathic pain. 
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Abstract: The purpose of this effort is to study changes in the amplitude noise and 

timing jitter of an optical pulse chain from a mode-locked laser, as it undergoes soliton 

propagation through a nonlinear silicon nanowire waveguide.  A numerical model was 

developed using the Non-Linear Schrödinger Equation to model the soliton formation 
with two-photon absorption.  The amplitude noise was modeled as a separate noise 

envelope, and the phase noise and timing jitter was modeled using Monte-Carlo 

simulations of jitter-induced phase-shifts.  It was observed that while increased pulse 

energy will result in increased amplitude and phase noise, the presence of two-photon 
absorption, which attenuates optical nonlinearities in the waveguide, results in a 

reduction in phase noise at the output of the silicon waveguides.   

Keywords: Noise, Phase Noise, Timing Jitter, Monte-Carlo, Non-Linear Schrödinger 

Equation, Silicon, Photonics, Soliton, Dispersion, Waveguides, Self-Phase Modulation, 
Kerr, Nonlinear Optics,  

 

1. Introduction 
One of the challenges that must be overcome for the practical implementation of 

optical data transfer is the issue of noise, particularly phase noise, amplitude 

noise, and timing jitter.  Practical optical data communication often requires 

pulse repetition rates of tens of gigahertz (GHz), and therefore timing jitter on 

the order of femtoseconds (fs) is often necessary to ensure a low bit-rate error in 

the data.  This paper investigates numerically the effects of soliton pulse 

propagation within silicon nanowire waveguides, and the effects of these 

nonlinearities on noise and jitter, for the purpose of applied optical data 

communications.   

 

Much research has previously been conducted on the effects of optical 

propagation through a dispersive waveguide on the phase noise, timing jitter, 

and amplitude noise [1-2].  This research to date has predominantly focused on 
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optical fibers [3], photonic crystal fibers [4], and mode-locked lasers [5].  The 

purpose of this paper is to investigate optical soliton propagation [6-8] through 

silicon nano-waveguides.  Silicon waveguides are of interest to the scientific 

community for their high-nonlinearities and tight optical confinement.  

Compared to optical fibers, silicon nano-waveguides have much smaller length 

scales, and offers many applications at the chip-scale level for all-optical data 

transfer, information manipulation, and computing.   

 

2. Simulations 
It has been previously observed that the noise can often be attributed as a 

separate envelope [2,9] of much weaker intensities than the undisturbed pulse 

input:  

 

A(z,t) = (P0
½

 + a(z,t))*exp(-j*φ(z))  a(z,ω) = -∞∫
∞
 a(z,t)*exp(-i*ωt) 

 

With this assumption, the NLSE can be linearly separated, and a separate NLSE 

for the noise can be derived:  

 

(j/2)*β2*ω
2
*a + (j/6)*β3*ω

3
*a + j*γ*P0*{a+a

*
}*exp(–α*z) = – ∂a/∂z 

 

The noise can be assumed to be an independent envelope propagating through 

the waveguide, and analyzed as a separate NLSE problem, propagating 

concurrently with the pulse.   

 

In the time domain, a(z,t) = ar(z,t) + j*ai(z,t), where ar(z,t) and ai(z,t) are real 

functions.  By substituting these terms into the noise-NLS equation, one gets a 

simple relationship for the real and imaginary components of the noise function 

in the spectral domain:  

∂ar(z,ω)/∂z = ρ * ai(z,ω) 

∂ai(z,ω)/∂z = –{ρ + (2*j*γ*P0*exp(–α*z))} * ai(z,ω) 

ρ = (β2*ω
2
/2) + (β3*ω

3
/6) 

 

Using these assumptions, with a given noise input, one can estimate the change 

in the power spectral density after optical soliton propagation through a given 

distance increment of a waveguide [9] by using the following equations:  

 

Φ (L,ω) = ½*Φ(0,ω)*exp(–α*z)*(2*|M11(ω)|
2
 + |M12(ω)|

2
 + |M21(ω)|

2
) 

M11(ω) = cos(δ(ω)*L) 

M12(ω) = (ρ/δ)*sin(δ(ω)*L) 

M21(ω) = –(δ/ρ)*sin(δ(ω)*L) 

δ = [ρ
2
 + 2*ρ*γ*P0]^½  

 
Using these terms and incorporating them into the NLSE numerical simulation, 

an accurate prediction of the changes in the frequency noise after propagation 

through a silicon waveguide could be obtained.   
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Many NLSE simulations were conducted in order to complement the 

experimental silicon waveguide used in this experiment.  The silicon waveguide 

parameters include a length of 4.1 mm, an effective area of 250 nm by 450 nm, 

a Kerr coefficient of 4.4 * 10
-18

 m
2
/W, an effective index of 2.5, a group index 

of 4.5, and a 2
nd

 and 3
rd

 order GVD of 4.5 ps
2
/m and 0.01 ps

3
/m, respectively.  

The model took into account both two-photon absorption (TPA), free-carrier 

absorption (FCA), and linear loss of the pulse envelope.  Because the noise is 

assumed to be substantially weaker compared to the pulse envelope, only linear 

loss is applied to the noise envelope.   

 
For the initial simulations, the wavelength was set at 2543 nm, so that there 

would be no effects of TPA or FCA.  Simulations were run repeatedly for 

various input pulse energies ranging from 1 pJ to 500 pJ; these energies are far 

in excess of the fundamental soliton energy for the 2.3 ps hyperbolic secant 

pulse.  As the lasers timing jitter was in excess of the pulse duration, the 

simulation assumed a constant noise envelope for the temporal window 

analyzed.  It was observed that at lower input pulse powers, the noise would 

decrease after propagation through the waveguide, but this loss would decrease 

with increasing powers.  After an input pulse energy of 250 pJ, it was found that 

the energy would in fact increase exponentially with increasing energy.  This is 

expected, as previous work in glass photonic crystal fibers [4] has also noticed 

an increase in jitter from solitons not subjected to TPA.   

 

 
 

Figure 1 – Results of NLSE simulations of noise after propagation in the silicon 

waveguide, with a wavelength of 2543 nm that is not subjected to the nonlinear 

effects of two-photon and free-carrier absorption.   

 
The simulation was then conducted for optical pulses at 1543 nm, which are 

now subjected to a considerable amount of TPA at this wavelength [10,11].  It 

was observed numerically that for optical soliton propagation in a silicon 

waveguide, the noise would consistently be reduced from 1.6 to 1.4 dB; this 

reduction would decrease with increasing input pulse energies within the 

waveguide.  After 1 nJ of energy, which is far more than will be practically 

realized experimentally, the noise decrease will plateau, and there will be little 

change with increasing power.   
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Figure 2 – Results of NLSE simulations of noise after propagation in the silicon 

waveguide, with a wavelength of 1543 nm that is subjected to the nonlinear 

effects of two-photon and free-carrier absorption.   

 

3. Monte-Carlo Analysis of Soliton Timing Jitter  
One of the challenges of performing a numerical analysis on the effects of 

optical soliton propagation on phase noise and timing jitter is the fact that such 

noise can reasonably be assumed to be random jitter.  Even though most of this 

jitter is deterministic and repeatable, the variation of each pulse can still have a 

significant amount of randomness involved.  Therefore, in an effort to 

numerically model the changes in phase noise after soliton propagation, Monte-

Carlo simulations of pulse phase-shifts will be used in conjunction with the 

Non-Linear Schrödinger Equation (NLSE) solver.   

 

The goal of this solver is to determine the change in timing jitter after 

propagation through a silicon waveguide for various energies and wavelengths.  

Input pulse energies from 5 pJ to 5 nJ were studied, and the wavelengths of 

1550 nm and 2300 nm were analyzed.  At each pulse-energy being studied, the 

program first solves the NLSE for a transform-limited hyperbolic secant squared 

pulse with no chirp; the output pulse shape and phase of the NLSE simulation 

will be used for comparison against a number of random trial simulations of 

jitter-shifted pulses.  Before propagating these pulses, the same hyperbolic 

secant-squared input pulses are phase-shifted to represent the timing jitter.  The 

phase shift is as follows:  

 

Phase Shift = exp[i*(2*f*Jitter)*((2*rand)-1)] 

 

where f is the frequency of the mode-locked laser (39.11 MHz), Jitter is the 

RMS of the input timing jitter (this study used 20 ps), and rand is a random 

number from zero to 1.  The code is written so that the phase shift varies up to 

twice the specified average jitter, and can be either positive or negative.   
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After applying the random phase shift, the pulse was analyzed with the NLSE 

solver.  The new output pulse phase was compared to the original non-shifted 

phase, the difference in phase was converted to timing jitter, and the RMS of the 

jitter was calculated.  As Monte-Carlo simulations require many repeated 

random terms to be statistically significant, the simulation was repeated 1,000 

times at each energy level, for a total of over 400,000 separate NLSE 

simulations.  The raw data of the results can be seen in Figure 3, which shows 

the output timing jitters as a function of input pulse-energy.   

 

 
 

Figure 3 – Raw Data of simulations, (a) λ = 2300 nm and (b) λ = 1550 nm.   

 

After all of the simulations were completed, in order to remove any statistical 

outliers, the code went through and factored out all simulations greater than 2 

standard deviations away from the mean jitter.  The RMS of this noise was then 

collected, and a final output timing jitter was given for each energy level. The 

data of the timing jitter as a function of energy was cleaned up of statistical 

outliers, and averaged out to obtain the trend of output timing jitter as a function 

of energy. 

 

 
 

Figure 4 – Output timing jitter as a function of pulse energy, for (a) λ = 2300 nm 

and (b) λ = 1550 nm.   
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In the study of the 2300 nm pulse without TPA, the simulation clearly 

demonstrated the timing jitter growing exponentially with increasing pulse 

energy, just as the NLSE simulation of the separate noise envelope has 

demonstrated.  In the case of the 1550 nm pulse subjected to TPA, the Monte-

Carlo simulations showed the output timing jitter to consistently decrease from 

20 ps RMS to 11.6 ps of RMS timing jitter.  Just as observed with the study of 

the NLSE of the phase-noise envelope, the presence of TPA has attenuated the 

jitter, rather than allowed it to develop with increasing energies.  It is therefore 

concluded, based on these two separate simulations, that, soliton propagation in 

the presence of TPA will result in a decrease in phase noise and timing jitter.   

 

4. Conclusion 
The numerical simulations have demonstrated that an optical pulse propagating 

in the optical C-band within a silicon waveguide will see an attenuation of the 

amplitude noise and timing jitter due to the presence of the two-photon 

absorption.  The two-photon absorption has the property of attenuating the pulse 

proportionally to the intensity, which acts to inhibit the self-phase modulation 

and thus soliton compression.  If this attenuation were not present, an increase in 

intensity will result in an increase in nonlinear effects and thus an increase 

sensitivity to jitter-induced phase-shifts; for this reason high optical intensities 

have shown to increase the timing-jitter in the simulations of longer 

wavelengths not subjected to two-photon absorption.  In the presence of two-

photon absorption, however, less variation in the pulse phase-shifts can be 

expected as a result the reduction in two-photon absorption.  For this reason, it 

is concluded that optical soliton propagation in the presence of two-photon 

absorption has the ability to attenuated the phase noise and timing jitter of a 

mode-locked optical pulse.   

 

 

 



Chaotic Modeling and Simulation (CMSIM)  1:  155-161, 2013     161 
 

 

7. Acknowledgements 
Sources of funding for this effort include Navy Air Systems Command 

(NAVAIR)-4.0T Chief Technology Officer Organization as an Independent 

Laboratory In-House Research (ILIR) Basic Research Project (Nonlinear 

Analysis of Ultrafast Pulses with Modeling and Simulation and 

Experimentation); a National Science Foundation (NSF) grant (Ultrafast 

nonlinearities in chip-scale photonic crystals, Award #1102257), and the 

Science Mathematics And Research for Transformation (SMART) fellowship.  

The author's thank James McMillan, Tingyi Gu, Kishore Padmaraju, Noam Ofir, 

and the laboratory of Keren Bergman for fruitful discussions.   

 

References 

1. “Analysis of Timing Jitter for Ultrashort Soliton Communication Systems Using 

Perturbation Methods.”  Margardia Facao and Mario Ferreira, Journal of Nonlinear 

Mathematical Physics, 2001.   

2. “Electromagnetic Noise and Quantum Optical Measurements.”  Hermann Haus.  
Springer-Verlag Berlin Heidelberg 2000.   

3. “Soliton Transmission Control,” A Mecozzi, Hermann Haus, et al.  Optics Letters, 1 

December 1991, Volume 16, Number 3 

4. “Supercontinuum generation and soliton timing jitter in SF6 soft glass photonic crystal 
fibers.”  Anatoly Efimov and Antoinette Taylor, Optics Express, Volume 16, 

Number 8.  14 April 2008.   

5. “Noise and Stability of Actively Mode-locked Fiber Lasers,” PhD thesis by Matthew 

Edward Grein, Massachusetts Institute of Technology, June 2002.   

6. “Nonlinear Fiber Optics,” 4th Edition, Govind Agrawal. 

7. “Temporal solitons and pulse compression in photonic crystal waveguides,” P. 

Colman, C Husko.  Nature Photonics, 21 November 2010. DOI: 

10.1038/NPHOTON.2010.261 

8. "Fundamentals of Photonics.” 2nd Edition.  Saleh, Teich.   

9. Husko, De Rossi, and Wong, Effect of multi-photon absorption and free carriers on 

self-phase modulation in slow-light photonic crystals.  Optics Letters, Vol. 36, No. 

12.  June 15, 2011  

10. “Modeling nonlinear phase noise in differentially phase-modulated optical 

communication systems.”  Leonardo Coelho.  Optics Express 3226, 2 March 2009, 

Volume 17, Number 5.   

11. "Introduction to Solid State Physics, 8th Edition."  Kittel, Charles.  Wiley, 2004.   

12. “Characterization of the Noise in Continuously Operating Mode-Locked Lasers,” 

Dietrich Von der Linde.  Applied Physics B 39, 201-216 (1986).   

13. JitterTime Consulting LLC: http://www.jittertime.com/articles/pnsheet.shtml  

 

 

 





 
Chaotic Modeling and Simulation (CMSIM)  1: 163-168, 2013 

 

_________________ 

Received: 24 July 2012 / Accepted: 10 October 2012 

© 2013 CMSIM                                                                                ISSN 2241-0503 

Shadow Prices and Lyapunov Exponents 
 

Ilknur Kusbeyzi Aybar 

 

Yeditepe University, Istanbul,Turkey 

Department of Computer Education and Instructional Technology  

E-mail: ikusbeyzi@yeditepe.edu.tr  

 
Abstract: A relation between the optimal solution of the optimization problem and the 

stability and bifurcation properties of the corresponding dynamical system is suggested 

in this work. There exists a relation between the optimal solution of an optimization 

problem and an equilibrium point of a dynamical system. In this sense stability 
properties, Lyapunov exponents and bifurcations of the resulting dynamical systems can 

be studied.  
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1. Introduction:  
 

Shadow price is the unit change in the objective function of the optimal solution 

of an optimization problem. The shadow price is equivalent to the Lagrange 

multiplier at the optimal solution in the nonlinear scenario. It is also referred to 

as the dual variable considering the Lagrangian is the dual problem of the 

original optimization problem. The gradient of the objective function is a linear 

combination of the constraint function gradients with the weights equal to the 

Lagrange multipliers. Investigations on various linear optimization problems 

can be formulated as dynamical systems [4]. Stability analysis, Lyapunov 

exponents and bifurcation patterns of the resulting dynamical systems can be 

studied in a localized manner [2]. There is a relation between the global 

optimum value of the optimization problem to the local stability analysis of the 

corresponding dynamical system. The bifurcation properties and Lyapunov 

exponents of the corresponding dynamical system can be studied. The aim is to 

compare these invariant parameters of the dynamical systems to the shadow 

prices of the optimization problem. The motivation for this is the fact that to 

calculate a Lyapunov exponent, each dynamical variable is given a small 

variation and the corresponding hypercube is allowed to evolve in time [1]. Let 

us start by defining an optimization problem as 

 

  
 

Then the Lagrangian function is given by (in the two variable case) 
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(with obvious generalization to higher dimensions) and by solving this function 

for its saddle point we obtain the shadow prices and the maximal utility,   

,  given by the following formula: 

 

 
 

 

On the other hand, shadow prices are found by observing the change in the 

optimal solution under a similar variation on the constraint of the direct problem 

by relaxing the constraint or alternatively, varying the corresponding parameter 

of the objective function in the dual problem. The definitions for the Lyapunov 

exponents and shadow prices are thus related to a change due to a variation. The 

former is a familiar element of the theory of dynamical systems. The route to 

chaos leads to Lyapunov exponents and this work introduces a new point of 

view for shadow prices as chaos search in dynamical systems [3]. Under the 

assumption that f be differentiable and  the variational equation is: 

 

 
 

Then the Lyapunov exponent is defined to be 

 
 

A negative Lyapunov exponent indicates a stable equilibrium point and a 

positive Lyapunov exponent indicates chaos. So Lyapunov exponents are 

studied numerically to see if the given system shows chaos for certain parameter 

values. It has been proven that discrete-time dynamical systems are used in 

optimization algorithms. We also know that a discrete-time dynamical system 

can be transformed into a continuous dynamical system, i.e. system of 

differential equations by Euler’s method. Both proofs depend on Lyapunov 

stability theory. 

 

2. Optimization problem and corresponding dynamical system 
Theorem 2.1: For the optimization problem  

kk yxyxf ),(max  

with respect to yxyxg 1),(  
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3. Bifurcation analysis: 
The optimization problem discussed in the previous section can be considered as 

the corresponding dynamical system according to the Euler scheme: 

ybyaxy

xyxx kk





1


 

Investigating the bifurcation analysis of this system around the trivial 

equilibrium point, two different bifurcation patterns are achieved according to 

the value of k being odd or even. The first case where k is even (k=2,4,…) and a 

is chosen as the bifurcation indicates a limit point (LP) and a Bogdanov-Takens 

(BT) bifurcation point as given in Figure 2.1. When b is varied another case 

where a subcritical Hopf bifurcation point and a transcritical bifurcation point 

are observed as given in Figure 2.2.  The second case where k is odd (k=1,3,…) 

and a is chosen as the bifurcation indicates two limit point (LP), a Bogdanov-

Takens (BT) and a cusp (CP) bifurcation points as given in Figure 2.3. When b 

is varied another case where a subcritical Hopf bifurcation point and a 

transcritical bifurcation point are observed as given in Figure 2.4.   
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Figure 2.1. For even k (k=2,4,…) and arbitrary a 

 

 
Figure 2.2. For even k(k=2,4,…) and arbitrary b 
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Figure 2.3. For odd k  (k=3,5,…) and arbitrary a 

 

 
Figure 2.4. For odd k (k=3,5,…) and arbitrary b 

 

4. Conclusion 
The parameter b in our model indicates subcritical Hopf bifurcation for both 

even and odd cases of k. Bogdanov-Takens bifurcation is observed in all of the 

cases. Cusp bifurcation is observed for odd values of k. The higher nonlinearity 

for x and y does not affect the bifurcation phenomena. There are two different 

bifurcation patterns for odd and even values of k. Real values are taken into 

consideration in order to study real world situations. 
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Abstract: We implement Cryptography with Chaos following and extending the original 

program of  Shannon with 3 selected Torus Automorphisms, namely the Baker Map,  the 
Horseshoe Map and  the Cat Map. The corresponding algorithms and the software 

(chaos_cryptography) were developed and applied to the encryption of picture as well as 

text in real time.  The maps and algorithms may be combined as desired, creating keys as 

complicated as desired. Decryption requires the reverse application of the algorithms.  
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1. Chaotic Maps in Cryptography 
Chaotic maps are simple unstable dynamical systems with high sensitivity to 

initial conditions [Devaney 1992]. Small deviations in the initial conditions (due 

to approximations or numerical calculations) lead to large deviations of the 

corresponding orbits, rendering the long-term forecast for the chaotic systems 

intractable [Lighthill 1986]. This deterministic in principle, but not determinable 

in practice dynamical behavior is a local mechanism for entropy production. In 

fact Chaotic systems are distinguished as Entropy producing deterministic 

systems.  In practice the required information for predictions after a (small) 

number of steps, called horizon of predictability, exceeds the available memory 

and the computation time grows superexponentially. [Prigogine 1980, Strogatz 

1994, Katok, ea 1995, Lasota, ea 1994, Meyers 2009]. 

Shannon in his classic 1949 first mathematical paper on Cryptography proposed 

chaotic maps as models - mechanisms for symmetric key encryption, before the 

development of Chaos Theory. This remarkable intuition was based on the use 

of the Baker’s map by Hopf in 1934 as a simple deterministic mixing model 

with statistical regularity. The Baker’s Map is defined below and the mixing 

character is presented in figure 1: 
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The reverse transformation: 
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Fig. 1: Baker Map 

The Entropy production theory of Chaotic maps was developed later by 

Kolmogorov and his group [Arnold, Avez 1968, Katok, ea 1995, Lasota, ea 

1994].  Baker’s map is the simplest example of chaotic automorphisms with 

constant Entropy production  equal to one bit at every step and has served as toy 

model for understanding the problem of Irreversibility in Statistical Mechanics 

[Prigogine 1980]. Shannon observed that using chaotic maps, encryption is 

achieved via successive mixing of the initial information which is “spread” all 

over the available state space. In this way it is becoming exponentially hard to 

recover the initial message without knowing the reverse transformation. 

A variation of the transformation of Baker Map is the Horseshoe Map [Smale 

1967, Smale 1998], with the same Entropy production defined below and the 

mixing character presented in figure 2:  
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Fig. 2: HorseShoe Map (http://en.wikipedia.org/wiki/Horseshoe_map) 

Both Baker’s Map and the Horseshoe Map belong to the general class of torus 

automorphisms. The well known Cat Map introduced by Arnold in 1968 which 

is a torus automorphism a much stronger mix than two previous ones. The Cat 

Map is defined below and the mixing character is presented in figure 3: 
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         

 

Fig. 3: Cat Map (http://en.wikipedia.org/wiki/Arnold's_cat_map) 

The numerical analysis of the Cat Map shows interesting periodicity in the state 

space discretization [Vivaldi 1989]. Although the Cat Map and the torus 

automorphisms admit analytical solution, computability does not increase 

significantly. [Akritas, ea 2001]. Statistical estimates for the transformation of 

Baker Map and the Cat Map are possible through the spectral analysis 

[Antoniou and Tasaki 1992, Antoniou, ea 1997, Antoniou and Tasaki 1993]. 

From Pesin’s 1977 Formula, the entropy of the Cat Map 

is: 2

3 5
log 1,39

2


, ie. larger than the entropy of the Baker’s map. 

Following Shannon’s idea, encryption is achieved by entropy producing 

(chaotic) maps like the torus automorphisms, via successive mixing of the initial 

information which is “spread” all over the available state space. In this way it is 

becoming exponentially hard to recover the initial message without knowing the 
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reverse transformation. Most applications of Chaos cryptography with 2-

dimensional maps deal with image encryption [Guan D. ea, 2005, Xiao G. ea  

2009]. We also found  results on text encryption [Kocarev, ea 2003, Kocarev, ea 

2004, Kocarev and  Lian  2011,  Li  2003].  We shall show how encryption of 

texts can also be achieved with chaotic maps. 

 

2. Text Encryption and Decryption by Torus Automorphisms 
The text Cryptography by Torus Automorphisms involves 3 steps: 

Step 1: Place the text in a 2-dimensional table so that each array element is a 

character. 

Step 2: Apply the selected transformations on the table for a number of steps 

specified by the key. 

Step 3: convert the modified table from step 2 in the text. 

The decryption process is equally simple for anyone who holds the key. Simply 

follow the steps backwards and use inverse transformations to the same number 

of steps. 

 

We propose 2 algorithms for the implementation of the text cryptography:  

 

Algorithm 1:  

Step 1: Count all characters of text including line breaks (=N1) 

Step 2: If  N1 is not a perfect square of an integer, then find the smallest integer 

M > N1 so that M is a perfect square. If the N1 is a perfect square integer number 

then set M=N1. 

Step 3: Set N M  

Step 4: Create a character table (NxN) and place the characters of the text inside 

the table, putting also the special characters newline (enter) in a position in the 

table. 

Step 5: If there are empty cells at the end of the table place the spaces in these 

(cells).  

 

So we create a NxN table of characters with the properties:  

1) The number of rows and columns of the table depends on the length of the 

text only. 

2) The number of lines of characters changes during the encryption because all 

the special characters like “enter” are involved in encryption. 

 

Example: 

 

Cryptography with chaos 

George Makris, Ioannis Antoniou 

Thessaloniki 54124 

Greece.  

 

The above text has 82 characters. We need a 10x10 table to fit the text in table 

(100 is the minimal encoding length)  



Chaotic Modeling and Simulation (CMSIM)  1:  163-178, 2013     173 
 

  

 

C r y p t o g r a p 

h y  w i t h  c h 

a o s \n G e o r g e 

 M a k r i s ,  I 

o a n n i s  A n t 

o n i o u \n T h e s 

s a l o n i k i  5 

4 1 2 4 \n G r e e c 

e .         

          

 

Algorithm 2:  

Step 1: Count the number of lines (NL) of the text. 

Step 2: Count the number of letters of each line. 

Step 3: Find the M1 = max {the number of letters of each line}. 

Step 4: Set N = max {NL, M1} 

Step 5: Create a character table (NxN) 

Step 6: Place each character in text in the table so that it corresponds to each 

line of text in the corresponding row of the table. Put the special character space 

(‘ ‘) in all the blank cells.  

 

So we create a NxN table of characters with the properties:  

1) The number of rows and columns of the table defined by the structure and the 

length of the text. 

2) The number of lines of characters does not change in encryption because gaps 

were placed on each line so that all lines have the same number of characters.  

For the same example we have: 

Cryptography with chaos      23 characters  

George Makris, Ioannis Antoniou    31 characters  

Thessaloniki 54124     18 characters 

Greece.        07 characters 

 

Lines  NL = 4 

Μ1=max{23,31,18,07}=31 

N=max{4,31}=31 

 
C r y p t o g r a p h y  w i t h  c h a o s         

G e o r g e  M a k r i s ,  I o a n n i s  A n t o n i o u 

T h e s s a l o n i k i  5 4 1 2 4              

G r e e c e .                         
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Examples of text and image encryption are presented in the appendices  

 

3. Software Development for the implementation of 

"Cryptography with Chaos" 
The software for the algorithms was developed with Java, as this language  is 

independent of the operating system and platform. Moreover the Java programs 

run on Windows, Linux, Unix and Macindosh, mobile phones, Ipads, 

Playstations and other game consoles without any modification like compilation 

or changing the source code for each different operating system.  

The software developed (chaos_cryptography) has a graphical user interface and 

is very simple and user friendly (figure 4). 

The user may encrypt / decrypt images and texts. The user may use any of the 

above chaotic maps with one or the other algorithm or any combination for 

more  difficult deciphering. 

Window dialogs alert the user in case of any errors in the procedure.  

The developed libraries (classes) can be used by any other software and 

application 

 
Fig. 4: chaos_cryptography application  (main window) 
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4. Concluding Remarks  
Shannon Cryptography indices for chaos cryptography are summarized in the 

table below.   
Shannon 

Cryptography 

indices  

Cryptography with Chaos  

Required degree 

of cryptographic 

security 

High  

Key Length 

Small 

The key is the selected transformations and the number of 

iterations that apply each transformation. 

Practical 

implementation 

of the encryption 

/ decryption 

Depends on the size of the text. Generally, permutation is a 

faster method than the replacement. 

Growth of the 

encrypted text  

No growth in the case of images. Small growth in the case of 

texts, due to “spaces” only 

Error 

Propagation  

In case of images, pixel errors propagate, are preserved in the 

reconstructed images without  influencing the decryption.  

In case of text, errors may rendering text decryption 

practically impossible. 

 
The key length includes the map definition, the number of iterations and the 
parameters of the specific map. The proposed encryption algorithms are 
“MonoBlock” ciphers based on permutations, however  they are neither steams 
nor block ciphers. The Key is very small and does not depend on the size of text 
to be encrypted (block). 
For example, the specific key for encryption algorithm (Baker, Cat, Horseshoe) 
has a size 4 (Table 2x2). In classical permutation algorithms to encrypt a text 
with N characters (MonoBlock, size of the block = N) a key size N is required 
which is the size of the Block. 
The innovations of this work are summarized as follows: 
a) The application of Cryptography with Chaos to content with texts and 
images. 
b) The construction of examples of a new class on ciphers, namely the  Mono–
Block Ciphers as a third class beyond the Block  Ciphers  and  the Stream 
Ciphers.  
c) The key is completely independent from the length of the block that is 
encrypted and it is very small compared to the key of the classic permutation 
algorithms which is equal to the length of the  block.  
d) in the developed algorithms the key cannot operate if  some small part of the 
document is lost. 
Chaos Cryptography has only the disadvantage of all systems of symmetric 
cryptography, namely the safe transport of the key.  
In this paper three of the most famous chaotic maps were investigated. The 
proposed algorithms can be adapted to other chaotic maps.  
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Appendix B : Image Encryption  
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Abstract: Two modified inductorless sinusoidal oscillators are presented as two chaotic 

oscillators. The active component employs a current-feedback operational amplifier 
(CFOA) whereas the nonlinear component employs a simple diode. Numerical and 

PSpice simulations are demonstrated in terms of chaotic attractors. A bifurcation diagram 

is also included. 
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1. Introduction 
The design and development of autonomous chaotic oscillators over the 

past three decades have been increasing due to a variety of applications in, for 

example, spacecraft trajectory control, stabilization of the intensity of a laser 

beam, noise radars and sonar [1], synchronization [2, 3] and secure 

communications [4, 5, 6]. One of the best known chaotic circuits is Chua’s 

circuit [7] as well as its variants [8, 9], using a Chua’s diode. However, an active 

nonlinear resistor such as the Chua’s diode is not recommended by [10] because 

it does not follow the design rules of [10]. Instead, a passive nonlinear 

component for chaos has been suggested using either a diode or a junction field 

effect transistor (JFET) [10]. 

A current-feedback operational amplifier (CFOA) is currently recognized as 

a versatile alternative to the traditional op amp for its excellent performance in 

high-speed and high slew-rates analog signal processing, and therefore does not 

suffer from the finite gain bandwidth product typically encountered in the 

conventional voltage op amps [11]. A chaotic oscillator has been designed using 

a modified CFOA-based sinusoidal oscillator with two capacitors and an 

inductor for a third-order chaotic system [11]. Such a chaotic oscillator has 

subsequently been further investigated by [12] using three capacitors. The 

nonlinear device of both chaotic oscillators has exploited a two-terminal 

nonlinear resistor formed by a JFET (J2N4338). However, chaos has not 

successfully found in [12] using a single diode as a nonlinear component.    

In this paper, chaos in two modified CFOA-based inductorless sinusoidal 

oscillators is presented. The active element employs the CFOA whereas the 

mailto:banlue@siit.tu.ac.th
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nonlinear component employs a single diode. Chaos can be found by replacing a 

JFET resistor of [12] with a sub-circuit consisting of a diode and a resistor. 

 

2. Circuit Implementation 
Figures 1(a) and 1(b) show two proposed chaotic oscillators using a single 

diode as a nonlinear device. Both circuits are modified CFOA-based 

inductorless sinusoidal oscillators which almost resemble the existing circuits 

reported in [12], except that the JFET nonlinearity of [12] is replaced with a new 

sub-circuit consisting of a diode D1 and a resistor R3. The latter is connected to a 

negative DC supply.  

 

 
 

(a)                                                         (b) 

 

Fig. 1 Modified CFOA-based inductorless sinusoidal oscillators using a diode 

for : (a) the first chaotic oscillator, (b) the second chaotic oscillator.  

 

The proposed chaotic oscillator shown in Figure 1(a) is described by a set 

of differential equations as follows : 

 

2 1
1 1

1

2 1 2
2 2

1 2

3
3 3

3

( )

( )

9
( )

C C
DC

C C C
C

C
DC

V V
CV I

R

V V V
C V

R R

V
C V I

R


 


 


 

         (1) 

 
where the overdot denotes a time (t) derivative. The voltages across capacitors 

C1, C2, and C3 are VC1, VC2, and VC3, respectively. A diode current ID = 

ISexp[(VC1−VC3)/nVT] − 1 where IS is the reverse saturation current, n is the 

nonideality factor, and VT is the thermal voltage of 25.85 mV at room 

temperature (300K). The proposed chaotic oscillator shown in Figure 1(b) is 

described by another set of differential equations as follows: 
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                  (2) 

 

where the diode current ID = ISexp[(VC2−VC3)/nVT] − 1  

 

3. Simulation Results 
The CFOA can be implemented using the commercially available AD844. 

The diode D1 is 1N4001 using PSpice parameters IS = 14.11×10
-9

 A and n = 

1.984. The junction capacitance of 1N4001 is typically 15 pF and, for 

simplicity, may be neglected compared to the much larger values of C1, C2 and 

C3. For a PSpice simulation, Figure 2(a) shows a circuit diagram of (i) a diode 

circuit (D4, R2), (ii) a nonlinear JFET resistor (J1, R4), and (iii) a sub-circuit 

consisting of a diode and resistors (D3, R1, R3). Figure 2(b) shows a comparison 

of the three simulation results of current-voltage characteristics in (i), (ii) and 

(iii) where the currents on the vertical axis are through R2, R4 and R1, 

respectively, and the voltage on the horizontal axis is Vs, which is swept linearly 

from -2V to +1V with an increment of 0.01 V. It should be noted that the 

current in (i) is always positive whereas the current in (ii) can be either positive 

or negative. This may probably be the reason why the authors in [12] could not 

find chaos in their proposed oscillators using only a diode in (i). With a new 

sub-circuit in (iii), the current in (iii) can be either positive or negative, as 

shown in Figure 2, and chaos can be quickly found without changing the 

connections of other components. 

 

 
(a)                                                         (b) 

Fig. 2 (a) A circuit diagram of three circuits using (i) a diode circuit (D4, R2), (ii) 

a nonlinear JFET resistor (J1, R4), and (iii) a sub-circuit consisting of a diode 

and resistors (D3, R1, R3), (b) A comparison of three simulation results. 
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Fig. 3. A numerical result of a chaotic attractor projected onto VC3−VC1 plane of 

equation (1). 
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Fig. 4. A PSpice simulation of a chaotic attractor projected onto VC3−VC1 plane 

of the oscillator shown in Figure 1(a). 

 

Figure 3 shows a numerical result of a chaotic attractor projected onto a 

VC3−VC1 plane of equation (1) using a fourth-order Runge-Kutta integrator with 

a fixed step size of 0.1µs. The same values of components reported in [12] are 

used except R3, i.e. C1 = C2 = 10 nF, C3 = 18 nF, R1= 220 Ω, R2 = 1.5 kΩ, and R3 

= 170 kΩ. Figure 4 shows a PSpice simulation of a chaotic attractor projected 

onto VC3−VC1 plane of the oscillator shown in Figure 1(a) with the same values 

of components reported in [12] except R3 = 180 kΩ. As shown in Figure 4, the 

PSpice simulation runs up to 30 ms with a fixed step size of 0.5 μs. The results 

in the first 20 % are discarded to ensure that the solution is on the attractor. 

Initial conditions are (VC1, VC2, VC3) t=0 = (0, 0, 0). The numerical and PSpice 

results are in a similar manner. 
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It can be seen from Figures 1(a) and 1(b) that R3 is connected in series with 

the diode D1. This enables R3 to control the current of D1 in DC operation (by 

opening C1, C2, and C2). Therefore R3 can be exploited as a tunable bifurcation 

parameter. As an example, Figure 5 depicts a bifurcation diagram of the peak of 

VC3 (VC3−max) of Figure 1(a) versus R3 varied from 140 to 220 kΩ. A period-

doubling route to chaos is evident. There are various periodic windows 

immersed in chaos. 

 

 
 

Fig. 5. A bifurcation diagram of the peak of VC3 of Figure 1(a). 

 

Figure 6 shows a numerical result of a chaotic attractor projected onto a 

VC3−VC2 plane of equation (2) using a fourth-order Runge-Kutta integrator with 

a fixed step size of 0.1µs, C1 = 10 nF C2 = 11 nF, C3 =5 nF, R1= 220 Ω, R2 = 2.7 

kΩ, and R3 = 220 kΩ. Figure 7 illustrates a PSpice simulation of a chaotic 

attractor projected onto VC3−VC2 plane of the oscillator shown in Figure 1(b) 

with the same values of components used in Figure 6. The PSpice simulation 

runs up to 20 ms with a fixed step size of 0.1 μs. The results in the first 20 % are 

discarded to ensure that the solution is on the attractor. Initial conditions are 

(VC1, VC2, VC3) t = 0 = (0, 0, 0). 
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Fig. 6. A numerical result of a chaotic attractor projected onto VC3−VC2 plane of 

equation (2). 
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Fig. 7. A PSpice simulation of a chaotic attractor projected onto VC3−VC2 plane 

of the oscillator shown in Figure 1(b). 

 

4. Conclusions 
Two chaotic oscillators have been presented through the use of two 

modified CFOA-based inductorless sinusoidal oscillators. A CFOA has been 

exploited as the active component whereas a single diode has been exploited as 

the nonlinear component. Numerical and PSpice simulations have been 

demonstrated with chaotic attractors. A bifurcation diagram has been studied.  
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