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Abstract.  The Newtonian and special-relativistic predictions for the position 

and momentum probability densities of a model low-speed (i.e., much less than 

the speed light) dynamical system are compared. The Newtonian and special-

relativistic probability densities, which are initially the same Gaussian, are 

calculated using an ensemble of trajectories. Contrary to expectation, we show 

that the predictions of the two theories can rapidly disagree completely. This 

surprising result raises an important fundamental question: which prediction is 

empirically correct? 

 

INTRODUCTION 

 
It is conventionally believed [1-3] that the predictions of special-relativistic 

mechanics for the motion of a dynamical system are well approximated by the 

predictions of Newtonian mechanics for the same parameters and initial 

conditions if the speed of the system v is low compared to the speed of light c (v 

<< c). However, contrary to expectation, it was shown in recent numerical 

studies [4-8] that the Newtonian prediction for the trajectory of a low-speed 

dynamical system can rapidly disagree completely with the special-relativistic 

prediction. 

 

In this paper, we extend the studies in [4-8] from the comparison of single-

trajectory predictions to the comparison of the probability-density predictions 

calculated from an ensemble of trajectories. The model system we study here is 

the periodically delta-kicked system previously studied in [4]. Details of the 

model system and the probability-density calculations are presented next, 

followed by the results and concluding remarks. 

 

Model System 

 
The periodically delta-kicked system [4] is a one-dimensional Hamiltonian 

system where a particle is subjected to a sinusoidal potential that is periodically 

turned on for an instant. The Newtonian equations of motion for this system are 

easily integrated exactly [9,10] to yield the well-known standard map, which 
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maps the dimensionless scaled position X and dimensionless scaled momentum 

P from just before the nth kick to just before the (n+1)th kick:  
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where n = 1,2,…, and K is a dimensionless positive parameter. 

 

The special-relativistic equations of motion are also easily integrated exactly, 

producing a mapping known as the relativistic standard map [11,12] for the 

dimensionless scaled position X and dimensionless scaled momentum P from 

just before the nth kick to just before the (n+1)th kick: 
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where n = 1,2, …, and , like K, is a dimensionless positive parameter. 

 

The initial probability density is a Gaussian for both position and momentum 

with means <X0> and <P0>, and standard deviations X0 and P0: 
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In each theory, the probability density is calculated using an ensemble of 

trajectories, where each trajectory is time-evolved using the map. The 

probability density is first calculated using 10
6
 trajectories, where the accuracy 

of the double-precision calculation is determined by comparison with the 

quadruple-precision calculation. The probability density is then recalculated 

using 10
7
 trajectories with the same accuracy determination. Finally, the 

accuracy of the probability density is determined by comparing the 10
6
-

trajectories calculation with the 10
7
-trajectories calculation. 

 

Results 

 
In the example presented here, the means and standard deviations of the initially 

Gaussian probability density are <X0> = 0.5, <P0> = 99.9 and X0 = P0 = 10
-10

. 

The parameters of the maps are K = 0.9 and  = 10
-7

. 
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Figures 1, 2 and 3 show that the Newtonian and special-relativistic position and 

momentum probability densities evolve approximately as Gaussians with 

increasing widths up to at least kick 114. 

 

 
Figure 1. Comparison of Newtonian (grey) and special relativistic (black) 

position (top plot) and momentum (bottom plot) probability density for kick 80. 

 

Figure 1 shows that, for both position and momentum, the Newtonian and 

special-relativistic probability densities are still close to one another on the 

whole at kick 80. The centers of the Newtonian and special-relativistic 

probability densities are displaced from each other in the figure because of the 

very small scale required for the horizontal axis to see the very narrow densities. 

 

By kick 89, Figure 2 shows that, for both position and momentum, although the 

centers of the Newtonian and special-relativistic probability densities are still 

close, the Newtonian probability density is significantly wider and shorter than 

the special-relativistic probability density. 
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Figure 2. Comparison of Newtonian (grey) and special relativistic (black) 

position (top plot) and momentum (bottom plot) probability density for kick 89. 

 

At kick 114, Figure 3 shows that not only are the widths and heights of the 

Newtonian and special-relativistic probability densities completely different for 

both position and momentum, the centers of the position probability densities 

are also completely different. 

 

In summary, the three figures show that, although the mean speed of the system 

remains low, only 0.001% the speed of light, the Newtonian position and 

momentum probability densities disagree completely with the corresponding 

special-relativistic probability densities from kick 89 onwards. 
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Figure 3. Comparison of Newtonian (grey) and special relativistic (black) 

position (top plot) and momentum (bottom plot) probability density for kick 

114. 

 

Concluding remarks 

 
We have shown that, contrary to expectation, the Newtonian and special-

relativistic probability-density predictions for a low-speed dynamical system 

can rapidly disagree completely. 

 

Our result raises an important fundamental question: When Newtonian and 

special-relativistic mechanics predict completely different probability densities 

for a low-speed dynamical system, which of the two predictions is empirically 

correct? Since special relativity has survived many experimental tests in the 

high speed regime, it would be very strange indeed if the theory is invalid for 

low speed motion. If special relativity is also empirically correct at low speed as 

we expect, then it must be used, instead of the standard practice of using 

Newtonian theory, to correctly calculate the probability density for a low-speed 

dynamical system. 
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Abstract: In the paper we focused on a general model for the growth of a single-species 
population with non-overlapping generations. The data we have used correspond to 
Nicholson’s blow-flies population and lie in the chaotic regime. The population was 
divided in two groups. If these groups evolve in distinct locations, their behavior is 
chaotic and, after a few generations, the initial small difference in number of individuals 
becomes big enough and behaves randomly. The question I want to answer in the paper 
is: What happens with the two populations if the individuals can migrate in both 
directions within the time intervals between their reproduction and death? The effect of 
coupling the two groups consisted in a rich dynamic behavior depending on the coupling 
strength. It was found that there is a consistent region where the coupling brings out the 
full synchronization of the two chaotic systems, two transition regions where an 
intermittent behavior was observed and two peripheral regions where control of chaos is 
shown to coexist with quasi-periodic and chaotic regimes. 
Keywords: Single-species populations, Synchronization, Intermittent chaos, Control of 
chaos.  
 

1. Introduction 
According to May [1], models for population growth in a limited environment 
are based on two fundamental premises: a) the populations have the potential to 
increase exponentially; b) there is a density-dependent feedback that 
progressively reduces the actual rate of increase. By using a variety of data from 
field and laboratory populations, some researchers have proposed continuous or 
discrete models of population growth. The most known of these models is the 
logistic equation (Verhulst, 1838). Other simple models were introduced by 
May (1974), Li & Yorke (1975), May & Oster (1976), and Hassel et al (1976). 
Their models, which refer to single-species population with discrete, non-
overlapping generation, predict that most of the populations show monotonic 
damping back to an equilibrium following a disturbance, with some exceptions 
of oscillatory damping or some sort of low-order limit cycles. They concluded 
that high-order limit cycles and chaos appear to be relatively rare phenomena in 
naturally occurring single-species populations. Guckenheimer et al (1987) have 
found that more realistic models of population growth, such as these that include 
overlapping generations, are more likely to exhibit complex behaviors. If data 
from laboratory population are used, even for these simple models, it was found 
that some populations will not exhibit stable equilibrium points but stable cycles 
or chaotic behavior [2]. That is because the laboratory situation (homogeneous 
environment, constant food supply, no competitors, no predators) make possible 
an exaggerated non-linear behavior. In this paper we focused on a general model 
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for growth of a single-species population with non-overlapping generations, 
namely 

                           b

tttt NaNNfN


  11                                   (1) 

where tN and 1tN  are the populations in successive generations,  is the finite 

rate of increase and a, b are constant defining the density-dependent feedback 
term. The values for parameters correspond to Nicholson’s blowflies and lie in 
the chaotic regime [3].  
The population of blowflies was divided in two groups. If these groups evolve 
in distinct locations their behavior is chaotic and, after a few generations, the 
initial small difference in number of individuals becomes big enough and 
behaves randomly. The question I want to answer in the paper is: What happens 
with the two populations if the individuals can migrate in both directions within 
the time intervals between their reproduction and death? 
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Fig. 1. Divergence of the two isolated populations versus time 

 

2. The Model of Two-coupled Single-species Populations 
To answer the above question let us hereafter turn our attention towards the 
following system of two-coupled single-species populations: 

                tttttttt MfNfcMfMNfMfcNfN   11 ,      (2) 

where the coupling parameter c can be thought as the fraction of the two 
populations which migrate to the neighboring location. Throughout the paper I 

used the fixed parameter values 003.0,60  a  and .6b The total 

population 3950tN was divided in two unequal groups, 1950tN and 

.2000tM  If no change between the groups was permitted, the initial small 

difference in number of individuals, 50 tN , increased quickly and behaved 

chaotically (see Figure 1). The effect of coupling consisted in a rich dynamic 
behavior having the main features as follows. 
 

2.1. Complete synchronization 
If two or more chaotic systems are couple, it is possible that the attractive effect 
of a suitable coupling to counterbalance the trend of the trajectories to separate 
due to chaotic dynamics. Synchronization of chaotic systems can be explained 
by the suppression of expanding dynamics in the state space transversal to the 

synchronization manifold (here tt NM  ). It is natural then to ask for which 
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values of coupling strength c the two systems will oscillate in a coherent and 
synchronized way. 
Laureano et al [4] have demonstrated that, for this kind of coupling, the range of 
synchronization (in the linear approximation) is given by  

                         )exp(_15.0)exp(15.0 uu c                               (3) 

where u is the Lyapunov exponent for the uncoupled map f. For our data it 

was found that 35.0u , so   Sc  85.0;15.0 .As an example, let consider 

16.0c . The synchronization takes place after 200 generations (see figure 2). 

0 50 100 150 200 250 300 350 400
-10

-8

-6

-4

-2

0

2

4

6

8

10

t

D
N

t

Synchronization in time

 
Fig. 2. Evolution to synchronous state for 16.0c  

 

Each of the systems shows chaos and their states are identical at each moment in 
time (full synchronization). To verify that the synchronous state is chaotic, a 
Lyapunov exponent versus coupling strength diagram was considered (see 
Figure 3. 
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Fig. 3. Lyapunov exponent versus coupling strength 

  

If c is chosen deep inside the interval S, the synchronous state is reached after 
only few steps (see Figure 4). Otherwise, if c is chosen near the borders of S the 
synchronization is hard to obtain, a lot of steps being necessary (e.g. 2000 steps 

for 15.0c . 
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Fig. 4. Evolution to synchronous state for 25.0c  

 

2.2. Intermittent chaos 
If the coupling strength c falls short of the critical value 15.0critc the 

synchronized state tt NM  becomes unstable and an intermittent dynamics is 

observed.  Figure 5 shows the time evolution of the transverse coordinate 

ttt MNDN  for 1467.0c . The time periods of synchronicity are 

interrupted by aperiodic chaotic bursts.  
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Fig. 5. Time periods of synchronicity interrupted by aperiodic chaotic bursts 

( 1467.0c ) 
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Fig. 6. A completely erratic state for 14.0c  
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The basic intermittency mechanism comes from the competition between the 
trajectory instability of chaotic elements and the synchronization tendency due 
to the diffusion-type coupling [8]. For 14.0c  the chaotic bursts were already 
merged so the synchronization started to dissolve into a completely erratic state 
(see Figure 6). 

 

2.3. Stabilization to an ordered state 
Outside the interval of synchronization the dynamics is quite complicated. For 

very small values of c (weak coupling) the system behaves chaotically, the tN  
values being distributed over an entire interval. By increasing c the chaotic 

distribution of tN  comes undone in strips, thinner and thinner (see Figure 7). 
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Fig. 7. A part of the bifurcation diagram )(cNN tt  

 

At 007.0c the system entered a periodic regime, and was subjected to a 

sequence of changes from a n2 - period cycle to a 12 n - period cycle.  A 8-

period cycle was obtained for  0080.0;0072.0c (see Figure 8). 

Then, a quasi-periodic regime with two strips appeared (Figure 9) which, in its 

turn, was changed by a 2-period cycle for  11.0;013.0c . This periodic 

regime is interrupted by windows corresponding to a 4-period cycle or even to 
thin windows of chaotic regime. 
Beginning with 1.0c the number of steps required for stabilization to the 2-
period cycle became bigger and bigger so, finally, the chaotic regime was 

reached. An analogous discussion can be done for  1;85.0c . 
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Fig. 8. Time evolution of tt MN ,  for 0079.0c (8-period cycle) 
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Fig. 9. Time evolution of tN for 99.0c (quasi-period regime) 

 

3. Conclusions 
The dynamics for many biological populations, which breed seasonally and 
have non-overlapping generations, are described by a density-dependent relation 

of the form     b
tttt NaNNfN


  11   . If data from laboratory tests are 

used it was found that populations can exhibit even a chaotic behavior. Two 
almost identical populations, living in distinct locations, evolved so that the 
initial small difference in number of individuals became big enough and 
behaved randomly. If the individuals representing the two populations could 
migrate in both directions within the time intervals between their reproduction 
and death then a rich dynamic behavior depending on the coupling strength was 
observed. It was found that there is a consistent region where the coupling 
brings out the full synchronization of the two chaotic systems, two transition 
regions where an intermittent behavior was observed and two peripheral regions 
where control of chaos is shown to coexist with quasi-periodic and chaotic 
regimes. 
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Abstract: This paper models an image steganography telecom system based on a Chua 

circuit chaotic noise generator. An unpredictable chaotic system based on a Master – 

Slave Chua circuit has been used as a random number generator. The whole system is 

modeled and simulated in Simulink. A continuous linear controller has been used to 

synchronize the two Chua circuits, with the same parameters at both the transmitter and 

the receiver. On the receiver side, usage of the same parameters with the Master circuit 

produce a similar chaotic signal via the Slave Chua circuit, synchronized to the Master 

by an analog controller, in order to produce the same noise (random sequence) as that of 

the Master circuit. After removing the noise from the received ciphertext, the original 

message is revealed. The proposed system presents advanced security features.  

Keywords: Chua circuit, chaotic noise generator, image steganography, Master Chua 

circuit, Slave Chua circuit, LSB steganography, simulation, continuous linear controller.   

 

1.  Introduction 
1.1  Random Number Generators  
Traditionally, cryptography has been based on the generation of random 

numbers produced by hardware (true) random or pseudo-Random Number 

Generators (RNGs). Most pseudo-RNGs (PRNGs) are not suitable for 

cryptography for several reasons. First, while most pseudo-RNGs outputs 

appear random to assorted statistical tests, they do not resist determined reverse 

engineering. Specialized statistical tests that show the random numbers not to be 

truly random exist. Second, when the state of most PRNGs has been revealed, 

all past random numbers can be retrodicted, allowing an attacker to read not 

only future messages, but also, all past ones. This is not possible with a chaotic 

number generator; thus, Chua circuits resist this type of cryptanalysis. 

Furthermore, in our approach, even if the configuration circuit is revealed, it is 

still difficult to reproduce the crypto- signal since this also depends on the initial 
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conditions and the tolerance of the components. The role of the continuous 

linear controller is to compensate for the component tolerance.  
  
1.2  Steganography  
Steganography is a technique for concealing data within pure or often encrypted 

or even random/ chaotic data. The data to be concealed is first encrypted and 

then used to overwrite part of a much larger block of encrypted data or  random 

data or different kinds of (usually redundant) data such as images [10, 15, 16].  

 

2.  System Overview  
In the proposed steganography telecom application, the message to be 

transmitted is first encrypted using chaotic noise produced by a standard Chua 

circuit [2, 4]; then, the encrypted sequence is concealed in an image using the 

LSB's method (Figure 1).   

 

 
Fig. 1. Proposed steganography telecom application  

 

The input message is in ASCII format; in order to be mixed with the chaotic 
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noise, it is successively converted from ASCII characters to a binary string. For 

the sake of simplicity, conversions are not shown in Fig. 1. In the receiver the 

reverse process takes place, in order to remove the secret text from the image.  

 

3.  The Chaotic True Random Number Generator   
The Chaotic True Random Number Generator (CTRNG) used by our circuit is 

based on the Standard Chua's circuit; the latter was invented back in 1983 by 

Prof. Leon O. Chua in Japan, in his effort to demonstrate chaos in an actual 

physical model and to prove that the Lorenz double-scroll attractor is chaotic [2, 

4]. The electronic circuit suits the study of chaos well because one can precisely 

control its parameters and observe the results on an oscilloscope. The circuit 

became popular because it is easy to construct, and many people have built the 

circuit using off-the-shelf electronic components. In fact, one can model the 

circuit using only resistors, capacitors, inductors, diodes and op-amps [6].  

 

 
Fig. 2. (a) Standard Chua's circuit; (b) v–i characteristic of the nonlinear device 

Source: [4].  

 

In Figure 2 VC1 and VC2  denote  the voltages across the capacitors C1 and C2, 

respectively, iL is the current through the inductor L, and gNR(VC1) is the 

nonlinear function which defines the v–i characteristic of  the  nonlinear device, 

represented by the piecewise-linear function of Fig. 2b [3]. By solving the 

above circuit we get the following differential equations (1- 3):  
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4.  Simulink implementation 
The whole telecom system was successfully implemented in Simulink [8]. In 

the following an overview of the system will be given; in addition, we shall 

present the implementation of some critical blocks.  

 

4.1  Simulink implementation of the whole telecom system 
The Simulink implementation of the cryptosystem was not as easy; several extra 

problems had to be solved starting from the input of the carrier image into 

Simulink; however, all problems were solved and finally the simulation works.   

The system overview is shown in Figure 3. Next the most important blocks will 

be briefly presented.   

 
Fig. 3. Stego System overview in Simulink 

 

The message to be encrypted appears on the left side (blue box with the 

indication Txt_Msg). The cover image for Transmission appears on the left side 
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in the middle (yellow box named “Image for Transmission”). The Transmitter 

occupies the top side of the diagram.   

The summation element (in green) combines the image, the text message and 

the Chua chaotic noise, all properly formatted for compatibility. The image with 

the text message and the Chua chaotic value appears in the yellow box named 

Msg_plus_Chua_plus_Image below the Transmitter Side and it is also inserted 

into the channel.   

The Chua circuits are on the top blue box with the indications Out1 and Out2 

for the Master and Slave output values respectively. The value of the continuous 

linear controller which synchronized the two Chua circuits is K=6921 as shown 

in the blue textbox (top right).  

The receiver side occupies the bottom side of the diagram. In case an 

eavesdropper subtracts the image from the received information, he will see an 

invalid message (bottom right, in magenta).   

Finally, at the bottom left side in the blue display with the indication 

Ascii_MsgOut the successfully recovered ASCII message appears.  

 

4.2  Simulink implementation of Chua's circuits Figure 4 presents the 

Simulink implementation of Chua's circuit, based on the differential equations 

presented above. The Subsystem (bottom right) represents the nonlinear device.  

 

 
 

Fig. 4. Simulink implementation of Chua's circuit  

 

4.3  Simulink implementation of the nonlinear device  
Figure 5 presents the implementation of the nonlinear device with the v-i 

characteristic shown in Fig. 2b.   
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Fig. 5. Simulink implementation of the nonlinear device  

 

5.  Synchronization of the Master and Slave Chua circuits  
5.1  The need for  Master-Slave synchronization 

Chaotic systems present an apparently infinite number of states. This 

characteristic, together with the dependence on the initial conditions as well as 

the tolerance of the Chua circuit components, make CTRNGs totally 

unpredictable and non-reproducible, hence ideal for cryptography. However, the 

receiver must be able to reproduce exactly the same chaotic noise in order to 

subtract it from the received signal (Figure 1). This becomes possible with 

synchronization between the two Chua circuits: through the use of specific 

controllers, we can guide the trajectory of chaotic systems to specific areas 

producing specific behavior. For this reason, the initial state of the Master Chua 

circuit [X0, Y0, Z0] has to be transmitted to the Slave Chua circuit via a secure 

channel (Fig. 6). In our implementation the initial conditions for the Master and 

Slave Chua circuits are: (Vc1=0, Vc2=1, IL=0) and (Vc1=0, Vc2=1.1, IL=0) 

respectively.  

During the last two decades, the chaotic synchronization problem has received a 

tremendous interest [4]. This property is supposed to have interesting 

applications in different fields, especially in private and secure communication 

systems based on cryptography. The broadband and noise-like features of 

chaotic signals are seen as possibly highly secure media for communication. 

The cryptographic communication schemes usually consist of a chaotic system 

as transmitter along with an identical chaotic system as receiver; where the 

confidential information is embedded into the transmitted chaotic signal by 

direct modulation, masking, or another technique. At the receiver end, if chaotic 

synchronization can be achieved, then it is possible to extract the hidden 

information from the transmitted signal.  
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Fig. 6. Synchronization between Master and Slave Chua circuits  

 

5.2  Master-Slave Synchronization circuit  
For the synchronization between Master and Slave Chua circuits, Pyragas' 

continuous control method has been used [1, 3, 5, 7, 9, 11-14]. This method was 

chosen because it was relatively easy to implement. The synchronization circuit 

(simplified) is shown in Fig. 7.   
 

 

Fig. 7.  Master-Slave Synchronization circuit  

 

The Master and Slave Chua's circuits along with the Synchronization device are 

placed on the top-right side of Figure 4, in a block named Chua circuit. The 

interior of this block is shown in Figure 8 [6].  
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  Fig. 8. Chua's circuits along with the synchronization device 

 

6.  Simulation results 
Initial results show that the system works successfully. Using a small text 

message and the picture shown in Figure 9 as Cover image, the system 

produced the stego image of Figure 10.  

 

 
 

Fig. 9. Cover image 

 

Figure 10 contains the ciphertext, which is also shown (in ASCII) at the top left 

column of Figure 3. In this same Figure below we can see the decrypted 

message at the receiver. An eavesdropper with sufficient information about the 

image, even connected at a sensitive point of the receiver, won't be able to 

decode the message correctly, as shown at the bottom of Figure 3.  
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Fig. 10. Stego image  

 

7.  Security features of the proposed stegosystem  
The security features of the proposed application are based on: 

� the unknown Chua’s circuit topology;  

� the varying tolerance of  components (which changes circuit behavior); 

� the unknown initial conditions;  

� the unknown type of  the controller / compensator.  

 

8.  Conclusion  

In this work we have proposed a Steganography Telecom System Based on a 

Chua Circuit Chaotic Noise Generator with advanced security features. In this 

system the text message is encrypted using a CTRNG and then the ciphertext is 

concealed in a cover image using the LSB insertion method. The system has 

been successfully simulated in Simulink and works with both grayscale and 

color images.  
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Abstract: An existing anti-symmetric-case piecewise-linear delay differential 

equation (DDE) has exhibited chaos at a delay time τ = 3 using an odd term fa = f1 for a = 

1. Three new compound anti-symmetric-case piecewise-linear DDEs are presented. Each 

DDE exhibits chaos using τ < 3. The first compound DDE is a combination of two odd 

terms f1 and f3 where a = 1 and 3, and 1.70 < τ < 2.10. The second compound DDE is a 

combination of two even terms f2 and f4 where a = 2 and 4, and 1.50 < τ < 1.90. Finally, 

the third compound DDE is a combination of two odd terms f1 and f3, and an even term f2 

where a = 1, 2, and 3, and 1.05 < τ < 1.27. Not only can the higher value of ‘a’ reduce the 

value of τ for chaos, but the more combination of terms fa also can. The reduction in τ 

enables simple implementation of a LC network in the delay unit.  

Keywords: chaos, delay differential equation; reduced-delay 

 

1. Introduction 
Since the discovery of the eminent Lorenz chaotic attractor in 1963 [1], 

studies of chaotic behavior in nonlinear systems have attracted great attention 

due to a variety of applications in science and technology, e.g. chaos-based 

secure communications [2], [3], [4]. Time-delay systems can exhibit chaos with 

a relatively simple model involving a value of the dynamical variable at one or 

more times in the past [5]. They have an infinite-dimensional state space with a 

large value of positive Lyapunov exponents and are good candidates for highly 

secure communications. In general, a first-order time-delay system is described 

by a delay differential equation (DDE) of the form. 

 

�x(t) = f [x(t),x
τ
]    (1) 

 

where the overdot denotes a time (t) derivative, xτ = x(t−τ) is the value of x at an 

earlier time (t−τ), and τ is a delay time, i.e. τ ≤ t.  

One of the earliest and most widely studied DDE is the Mackey-Glass 

equation [6], as shown in (2), proposed to model the production of white blood 

cells. The equation exhibits chaos with parameters such as a = 0.2, b = 0.1, c = 

10, and τ = 23. Other examples of DDEs exhibiting chaos include Ikeda DDE 

[7] and sinusoidal DDE [5]. 
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�x =
ax

τ

1+ x
τ

c
+ bx,      (2) 

Recently, chaos in an anti-symmetric-case piecewise-linear DDE has been 

reported [5], as shown in (3). 

 

�x = x
τ
+1 − x

τ
−1 − x

τ
    (3) 

 

for τ = 3. The largest Lyapunov exponent λ = 0.0909. Such a system is 

especially amenable to implementation with electronic circuits [8]. A delay unit 

may be implemented using an LC network [9]. As the size of the LC network is 

proportional to the value of the delay time τ, a reduction of τ in (3) is preferable. 

In this paper, three new compound anti-symmetric-case piecewise-linear 

DDEs are presented. Each DDE exhibits chaos using delay time τ < 3. Such a 

reduction of the delay time in the DDEs enables simple implementation of the 

LC network in the delay unit.  

 

2. Compound Anti-Symmetric-Case Piecewise-Linear DDEs 
For simplicity, the right hand side of (3) can be modified as a general 

function fa as shown in (4) 

 

  
af x a x a x

τ τ τ
= + − − −    (4) 

 
where the parameter ‘a’ is an integer. Equation (3) is therefore represented by 

an odd term f1 as a = 1. Three new compound anti-symmetric-case piecewise-

linear DDEs are proposed. The first compound DDE is a combination of two 

odd terms f1 and f3 where a = 1 and 3, as shown in (5). The second compound 

DDE is a combination of two even terms f2 and f4 where a = 2 and 4, as shown 

in (6). Finally, the third compound DDE is a combination of two odd terms f1 

and f3, and an even term f2 where a = 1, 2, and 3, as shown in (7).   

 

�x1 = f1 + f3

= x
τ
+1 − x

τ
−1 + x

τ
+ 3 − x

τ
− 3 − 2x

τ

                  (5) 

 
�x2 = f2 + f4

= x
τ
+ 2 − x

τ
− 2 + x

τ
+ 4 − x

τ
− 4 − 2x

τ

                    (6) 

 

   

�x
3
= f

1
+ f

2
+ f

3

= x
τ
+1 − x

τ
−1 + x

τ
+ 2 − x

τ
− 2 + x

τ
+ 3 − x

τ
− 3 − 3x

τ

  (7) 
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3. Numerical Results 
For the first compound DDE shown in (5), Figures 1, 2 and 3 visualize 

numerical results of a chaotic waveform, a chaotic attractor, and a bifurcation 

diagram, respectively, using τ = 2.07. The largest Lyapunov exponent is λ = 

0.3112. 

 
 

Fig. 1.  A chaotic waveform of (5) with τ = 2.07. 

 

 
 

Fig. 2.  A chaotic attractor of (5) with τ = 2.07. 

 

 
Fig. 3.  A bifurcation diagram of (5). 
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For the second compound DDE shown in (6), Figures 4 and 5 illustrate 

numerical results of a chaotic attractor and a bifurcation diagram, respectively. 

(6), using τ = 1.75. The largest Lyapunov exponent is λ = 0.1174.  

 

 
 

Fig. 4.  A chaotic attractor of (6) with τ = 1.75. 

 

 

 
 

Fig. 5.  A bifurcation diagram of (6). 

 

 

For the third compound DDE shown in (7), Figures 6 and 7 depict 

numerical results of a chaotic attractor and a bifurcation diagram, respectively, 

using τ = 1.20. The largest Lyapunov exponent is λ = 0.2823. 
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Fig. 6.  A chaotic attractor of (7) with τ = 1.20. 

 
 

Fig. 7.  A bifurcation diagram of (7). 

 

Table 1 summarizes ranges of delay time τ of equations (5), (6), and (7), for 

which chaos occurs. There are various periodic windows immersed in chaos. It 

can be notice from Table 1 that not only can the higher value of the parameter 

‘a’ of fa reduce the value of the time delay τ for chaos, but the more 

combination of terms fa also can. 

 

 Table 1: Summaries of Ranges of τ For Chaos 

 

Equations Ranges of τ 

�x
1
= f

1
+ f

3
 1.70 < τ < 2.10 

�x
2
= f

2
+ f

4
 1.50 < τ < 1.90 

�x
3
= f

1
+ f

2
+ f

3
 1.05 < τ < 1.27 
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3. Conclusions 
Three new compound anti-symmetric-case piecewise-linear DDEs have 

been presented. The first combines two odd terms f1 and f3 and chaos occurs for 

1.70 ∠ τ ∠ 2.10. The second combines two even terms f2 and f4 and chaos 

occurs for 1.50 ∠ τ ∠ 1.90. Finally, the third combines three terms f1, f2 and f3 

and chaos occurs for 1.05 ∠ τ ∠ 1.27.  Chaos occurs using less delay timeτ than 

that of the existing approach. The reduction in delay time enables the reduction 

in size of the LC network of the delay unit. 
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Abstract: A motivation for looking at chaos in the classical realizations of the Yang-
Mills or Yang Mills augmented by Higgs equations is the importance of this system in 

the initial (in)stability at big bang, since in the initial stages all interactions were of the 

same strength and were based on non abelian gauge theories, of which the SU(2) Yang 

Mills is a first example. 
In this study we consider the following two particle effective Hamiltonian suggested by 

Biro, Matinyan and Müller: 
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Keywords: Dynamical systems, Yang-Mills, Lyapunov exponents, Chaos.  

 

1. Introduction 
Global properties for mappings such as Poincare sections, Lyapunov exponents 

and other topological properties as introduced by Poincare and Birkhoff are 

important objects of study in nonlinear dynamical systems in addition to their 

local properties such as various bifurcations and invariant manifolds[1].   

As Matinyan suggested, one of the ways to search for chaos is to investigate 

Poincare sections[4,5,6]. Since the system is described by a time independent 

Hamiltonian, the energy integral reduces the four dimensional system into a 

three dimensional system and a two dimensional Poincare map[1,2,3]. 

Unfortunately, the Hamiltonian involves the squares of the momentum. Taking 

the square root leads to missing information since the trajectory should cross 

into regions where the momentum can have either sign. There are two ways 

mailto:oaybar@yeditepe.edu.tr
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known to solve this problem. One of the solutions to this problem is the 

symplectic numerical integration technique and the other one is to check the 

energy conservation numerically at every point.  Results of these investigations 

lead to the same results obtained by KAM (Kolmogorov–Arnold–Moser) theory 

and hence this numerical study is proven to be an indicator for chaos. 

If the system is integrable, the trajectory is closed. Hence a torus is obtained. If 

the system is not integrable, elliptic orbits are observed with a chaotic regime. 

According to KAM theory the invariant tori of an integrable system retain their 

topology under a perturbation that destroys the integrability of the Hamiltonian, 

however chaos is observed in some regions of the phase space of the system 

with random points on the surface of section.  

In addition to the Poincare section study done by Matinyan et. al, a Lyapunov 

exponent study can reveal the parts of the parameter space in which chaos is 

observed. Preliminary results indicate that for the case in which the Higgs terms 

(x
4
 and y

4
) are absent, all regions for the parameters a>0 and b>0 give positive 

maximal Lyapunov exponents that indicate chaos For a = b = 0, the chaoticity 

is maximum. As a or b increase, the system is still chaotic, but the system loses 

its chaoticity gradually and tends to converge to a limit cycle. On the other 

hand, for the case the Higgs terms are present with a=b=0, the system still has a 

positive maximal Lyapunov exponent whose value is smaller than that in the 

Yang Mills case. 

 

2. Chaos in Yang Mills Higgs system 

 
Although there is no universally accepted definition of chaos, most experts think 

that chaos is the aperiodic, long – term behavior of a bounded, deterministic 

system that exhibits sensitive dependence on the on initial conditions. Lyapunov 

Exponents is the mathematical method for the determination of chaos in 

dynamical systems. It is the measure of the exponential separation of two 

trajectories with a very small initial separation. A system with positive values of 

Lyapunov Exponents is chaotic, and the value of these exponents the average 

rate at which predictability is lost. 

In this section, we compute Lyapunov exponents with the aid of Fortran code 

that implement Wolf algorithm as we discussed before. In addition we also use 

Reduce code which calculates variational equations needed for the Wolf 

algorithm. Both programs are included in appendixes. We mostly emphasize on 

Yang Mills Higgs coupled system in order to demonstrate the corresponding 

chaotic behavior. 

First of all we investigated how exponents are changing with respect to the scale 

parameter p, we found that system possesses chaotic motion in wide range of 

value of p. Especially we  scan for the interval from p=0.05 to p=4. Here are 

some of graphs for the specific values of p.  
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Fig. 1. Lyapunov exponents vs time for p=0.2  

 

 
Fig. 2. Lyapunov exponents vs time for p=0.5 
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 Fig. 3. Lyapunov exponents vs time for p=0.8  

 

 
Fig. 4. Lyapunov exponent vs time for p=2.2 
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On the other hand we also analyze the results of adding oscillator term to 

dynamical system by giving a coefficient “a”. We saw that all Lyapunov 

exponents tend to decrease for bigger value of “a” and there occurs a transition 

from chaotic motion to periodic or quasi periodic motion. We investigate this 

transition for the value of parameters where the Lyapunov exponents seem to be 

maximum. Some of the results are shown below 

 

 
Fig. 6. Lyapunov exponents vs time for a=0.1 and p=2.2   

 

We can deduce from these graphs that, for small values of “a” the system persist 

for a chaotic behavior. But when “a” grows system start to possess periodic 

motion.On the other hand we can see that almost all Lyapunov spectrums are 

symmetrical which is the expected result since in Hamiltonian systems the sum 

of Lyapunov exponents must be zero as we stated before so when there is an 

expanding trajectory in phase space there must be also equally contracting 

trajectory to compensate for this.  

 We also investigate phase space trajectories for the corresponding system. Here 

are some of the trajectories for this system 



220     Aybar et al. 

 

 
Fig. 7. Trajectory of  y vs Py 

 

 
 

Fig. 8. Trajectory of  x vs Px 

 



Chaotic Modeling and Simulation (CMSIM)  1:  215-221, 2013     221 
 

3. Conclusions 
In this article we try to demonstrate chaotic behavior in the dynamically coupled 

Yang Mills Higgs system classically. We know that pure Yang Mills fields 

possess highly chaotic behavior. Although Yang Mills Higgs system also 

possess chaotic behavior for variety of range of scale parameter, in general the 

Higgs field is responsible for considerably regularizing motion in the dynamical 

system[4,6]. So we can say that Higgs mechanism has a stabilizing effect. On 

the other hand we also consider an additional oscillator term in the Yang Mills 

Higgs system and it is observed that for small coefficients of the oscillator term 

chaotic motion still persists. But when oscillator term gets larger chaos 

disappears and regular motion involving multi periodic motion takes place 

instead, since the oscillatory motion begins to dominate[5,6]. 
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Abstract. Recently, in the field of telecommunication, chaotic encryption has drawn 

much attention because of its ease in design and implementation over conventional 
encryption methods. In this paper, chaos shift keying (CSK) models are designed based 

on Qi hyper-chaos. The efficiency and effectiveness of the developed models are 

evaluated using the bit error rate. By using power spectrum analysis and low pass 

filtering techniques, the robustness of CSK based on Qi hyper-chaos over CSK based on 
the Lorenz chaotic system is verified. The results show that the robustness and bit error 

rate performance of encryption based on Qi hyper-chaos is much better than that based 

on Lorenz chaos. 

Keywords: Chaos, Encryption, Hyper-chaos, BER, CSK. 

 

1. Introduction 
Telecommunication as a field has tremendously grown in the last decade. 

Associated with this growth, is the requirement for efficient and effective secure  

communication methods [1]. One method of making data secure is through 

encryption and decryption. Over the past few years, methods of chaotic 

encryption have developed enormously, and several chaotic systems, such as the 

Lorenz, Chen and Rössler systems, have been proposed [2-5]. These systems 

have been employed for encryption and decryption of message signal, image 

and video during communication. In this context there are a number of different 

chaotic encryption methods that have been employed for encryption and 

decryption, for example, chaos synchronization, chaos shift keying and chaotic 

masking. 

Traditional encryption schemes based on integer number theory have been 

studies for a long time and are considered to be reliable. In contrast, the security 
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mailto:dennisluke11@yahoo.com
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of chaotic communication schemes often relies on a mixture of analytic methods 

and intuition. Encryption and cryptanalysis using chaotic dynamics is a 

relatively new field that has only been intensively researched on for less than a 

decade. 

 

This paper aims to demonstrate the robustness and bit error rate performance of 

digital message signal encryption based on Qi hyper-chaos systems compared to 

message signal encryption based on Lorenz chaotic system. 

 

2. Comparison between the Qi hyper-chaotic system and the 

Lorenz chaotic system 
Many   proposed chaos-based secure encryption have been totally or partially 

broken by different attacks   [6, 7]. This section provides a detailed comparison 

between Qi hyper-chaos and the Lorenz chaotic system in terms of their 

randomness and disorder. 

The nonlinear dynamic model representing Qi hyper-chaos is given by [8, 9]: 

 

                           

1 2 1 2 3

2 1 2 1 3

3 2 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx ex x x

x dx fx x x

  

  

   

   

                                             (1)
 

        
Here 

ix  1, 2, 3, 4i   are the state variables and a, b, c, d, e, f are positive 

constant parameters. The well-known Lorenz system is given in Ref. [10]. 

The basic comparisons of the dynamic property between Qi hyper-chaos and 

Lorenz chaotic system are summarized in the next paragraph [8].  

 

The attractor of Qi hyper-chaotic system exhibits a very irregular and disordered 

form unlike the butterfly shape produced by the Lorenz chaotic system. The 

Stochastic distribution of Qi hyper chaos is very similar to that of Gaussian 

white noise but that of Lorenz has three peaks at its trajectory is unlike Gaussian 

white noise.  Qi hyper-chaotic signal is much more sensitive to initial condition 

than the Lorenz chaos and other hyper-chaos. With these rich advantages of Qi 

hyper chaos over Lorenz chaotic system, as demonstrated in [8], there is a need 

to explore the effects implementing the system for encryption of messages.  

 

3. Qi-Hyper-Chaos-Shift Keying Encryption 
 

3.1 Method 1: Non-Coherent Decryption Based on Bit-Energy Estimation 

 

In this encryption scheme two hyper-chaotic signals are used to encrypt the 

message signal at the sending end and decryption is done at the receiving end 

based on energy bit estimation [11, 12].   
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Two chaos generators produce signals 
1( )c t  and 

2 ( )c t , respectively. During the 

bit duration, i.e. [( ( 1) bl T ), 
blT ], if a binary “+1” is about to be sent, 

1( )c t  is 

transmitted, and if “−1” is about to be sent, 
2 ( )c t is transmitted.  

The encrypted signal r(t) is then sent through a channel of communication. Thus 

 

                                   ( ) ( ) ( )r t s t t                                               (2)
 

where  ( )t  is the noise signal added to the sent signal during communication. 

The decryption method used is called non-coherent demodulation based on an 

energy bit estimator. Decryption is done based on some distinguished 

characteristics of the signal transmitted. The property used in this paper is the 

bit energy, which is deliberately made different for different symbols in the 

encryption process.  

A Qi hyper-chaos generator is used to produce two chaotic signals; the first 

chaotic system is assigned different value, i.e. 
1( )c t M , where M is the value 

assigned to separate with 
2( )c t . At the receiving end the bit energy can be 

estimated by a square and integration process. 

Let energy per bit be ( )by lT . When the energy bit ( )b hy lT T  then binary “+1” 

was send, otherwise binary “−1” was send, where 0hT   is threshold value. 

The simulation results of non-coherent demodulation based on bit-energy 

estimation are shown in Fig. 1, which demonstrates successful performance of 

encryption and decryption. 
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Fig. 1. Qi-Hyper-Chaos-Shift Keying Encryption and decryption 
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3.2 Method 2: Coherent Demodulation Based on Correlation 

The process of correlation is where the “likeness” between two chaotic signals 

is evaluated. In this method two correlators are employed to evaluate the 

correlations between the received signal and the two recovered chaotic signals. 

The outputs of the correlators for the lth bit are given by 

                            
 

 '

1 1
1

b

b

lT

b
l T

y lT r t c t dt


                                           (3) 

                              
 

 '

2 2
1

b

b

lT

b
l T

y lT r t c t dt


                                        (4) 

where '

1( )c t  and '

2( )c t  are synchronizations of 
1 ( )c t  and 

2 ( )c t , respectively. 

The following equation is used to determine the output to the threshold detector.
 

                                   0 1 2b b by lT y lT y lT                                      (5)
 

If the output  o by lT is greater than 
hT  then +1 was sent, otherwise 1  was 

sent. 

The process of encryption is the same as that of Method 1, but the decryption 

process takes place with the aid of synchronizations. The decryption proceed by 

evaluating the correlation of the transmitted signal and the regenerated chaotic 

carrier as in Eq. (3) and eq. (4), and followed by energy bit calculation then 

compared in Eq. (5). If the output is greater than the value specified at the 

threshold then “+1” is decoded otherwise " 1"  is decoded. 

The simulation results of correlation-type coherent decryption for CSK with two 

Qi hyper chaos generators are shown in Fig. 2. 
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Fig. 2. Comparison between sent and received signal 
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4. BER Performance of CSK Based on Qi Hyper Chaos 

Compared to Lorenz Based CSK 
 

Bit Error Rate (BER) is a performance measurement that specifies the number 

of bit corrupted or destroyed as they are transmitted from its source to its 

destination [13, 14]. 

BER measurements compare digital input and output signals to access what 

fractions of the bit are received incorrectly. It is defined as: 

 

                                            BER e

t

N

N
                                            (6)

 

Where eN is the number of error bits received over time  t, and tN  is the total 

number of bits transmitted. Signal to Noise Ratio (SNR) is defined as the ratio 

 of a signal power to noise power and it is normally expressed in decibel (dB). 

The mathematical expression of SNR is: 

 

                       10

SignalPower
SNR 10log ( )dB

NoisePower
                                    (7)

 

Relationship between the system’s SNR and BER is that the higher the  SNR, 

The lower would be the corresponding BER 

                                        BER 1 SNR
k

                                         (8)
 

where k is a specific subcarrier index. 

In this paper simulation of BER is done using Bertool tool in Matlab\Simulink. 

 

Fig. 3 shows the comparison of the BER performance between chaos based 

CSK using energy bit estimation method for decryption (Simulation 0) and Qi 

hyper chaos CSK based using correlation method for decryption (Simulation 1). 
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Fig 3: Comparing the BER performance between Qi hyper-chaos based CSK 

using energy bit estimation method for decryption and using correlation method 

for decryption.  
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The BER performance of the latter is seen to be much lower than the former; 

hence, the correlation method for decryption is more efficient compared the 

energy bit estimation method for decryption. 

 

Qi hyper-chaos CSK based on correlation method has better performance 

because with the aid of synchronization the low frequency noise and high 

frequency noise can be easily eliminated.  

 

5. Power Spectrum and Low Pass Filter Methods of Attacking 

Chaos Based Secure Communication 
Security during communication is fundamental since it is one of the components 

that add up to effective and efficient communication. There are varieties of 

methods that have been proposed to attack chaos-based secure communication 

schemes. In different cases in literature [14] they have indicated successfully 

breaking of chaos encryption without knowing the secrete key or the parameters 

used during encryption. This kind of attack is only possible if the received 

message m (t) is a periodic signal or if m (t) consists of periodic frames within a 

given duration. The attack can be accomplished using two methods power 

spectrum analysis and low pass filter technique and return map analysis. 

Power spectrum and low pass filter technique are very powerful schemes that 

can be used to break chaotic communication without knowing the parameters or 

the initial components used during encryption.These two methods are 

implemented in this paper to determine how robust CSK based on Qi hyper 

is.The message signal encrypted by Lorenz chaotic system hereby successfully 

extracted by the filter and decision circuit as shown Fig. 4 
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Fig. 4. Attacking Lorenz Chaos through power spectrum and low pass filter 
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The attempt to attack message signal encrypted based on Qi hyper-chaotic 

system was unsuccessfully as shown Fig. 5 
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Fig. 5. Attacking Qi hyper-chaos through power spectrum and low pass filter, 

The simulation results in Fig. 5 indicates that it is not easy to attack digital 

message signal encryption based on Qi hyper-chaos. The difficulty in attacking 

message signal based on Qi hyper-chaos can be attributed to the rich properties 

of Qi hyper-chaos. 

 

6. Conclusion 
In this paper message signal based on Qi hyper-chaos has been implemented. 

The BER performance comparison between Qi hyper-chaos and Lorenz chaos 

shows that Qi hyper-chaos based CSK has better performance compared to 

Lorenz based CSK. The rich properties of Qi hyper chaos such us high 

frequency spectrum, high level of disorder, etc. have made it very cumbersome 

for low pass-filter and power spectrum analysis method to be successful in 

attacking  and decrypting the encrypted message signal sent. 
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Abstract. We give the description for elements of the sequence of inversive congru-
ential pseudorandom numbers yn as polynomials on number n and initial value y0.
We also estimate some exponential sums over yn.
Keywords: inversive congruential numbers, exponential sum, discrepancy.

1 Introduction

Let p be a prime number, m > 1 be a positive integer. Consider the
following recursion

yn+1 ≡ ayn + b(mod pm), (a, b ∈ Z), (1)

where yn is a multiplicative inversive mod pm for yn if (yn, p) = 1. The param-
eters a, b, y0 we call the multiplier, shift and initial value, respectively.

In the works of Eichenauer, Lehn, Topuzoǧlu, Niederreiter, Flahive, Sh-
parlinski, Grothe, Emmerih ets were proved that the inversive congruential
generator (1) produces the sequence {xn}, xn = yn

pm , n = 0, 1, 2, . . ., which
passes s-dimensional serial tests on equidistribution and statistical indepen-
dence for s = 1, 2, 3, 4 if the defined conditions on relative parameters a, b, y0
are accomplishable.

It was proved that this generator is extremely useful for Quasi-Monte Carlo
type application (see, [3],[4]). The sequences of PRN’s can be used for the
cryptographic applications. Now the initial value y0 and the constants a and b
are assumed to be secret key, and then we use the output of the generator (1)
as a stream cipher. By the works [1],[2] it follows that we must be careful in
the time of using the generator (1).

In the current paper we give the generalization for the generator (1). We
consider the following recursive relation

yn+1 ≡ ayn + b+ cF (n+ 1)y0(mod pm) (2)
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c© 2013 CMSIM ISSN 2241-0503
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under conditions

(a, p) = (y0, p) = 1, b ≡ c ≡ 0(mod p), F (u) is a polynomial over Z[u].

The generator (2) we call the generator with a variable shift b+cF (n+1)y0.
The computational complexity of generator (2) is the same as for the generator
(1), but the reconstruction of parameters a, b, c, y0, n and polynomial F (n)
is a tricky problem even if the several consecutive values yn, yn+1, . . . , yn+N
will be revealed. Thus the generator (2) can be used in the cryptographical
applications. Notice that the conditions (a, p) = (y0, p) = 1, b ≡ c ≡ 0(mod p)
guarantee that the recursion (2) produces the infinite sequence {yn}.

Our purpose in this work is to show passing the test on equidistribution
and statistical independence for the sequence {xn}, xn = yn

pm , and hence, the
main point to be shown is the possibility for such sequences to be used in the
problem of real processes modeling and in the cryptography.

Notations: For p being a prime number

Rm := {0, 1, . . . , pm − 1},
R∗m := {a ∈ Rm | (a, p) = 1},
em(u) := e2πi

u
pm , u ∈ R,

exp(x) := ex for x ∈ R,
νp(A) = α ∈ N ∪ {0} if pα ‖ A, pα+1 6 |A.

For u ∈ Z, (u, p) = 1 we write u if u · u ≡ 1(mod pm).

2 Auxiliary results

We need the following simple statements.
Let f(x) be a periodic function with a period τ . For any N ∈ N, 1 ≤ N ≤ τ ,

we denote

SN (f) :=

N∑
x=1

e2πif(x)

Lemma 1. The following estimate

|SN (f)| ≤ max
1≤n≤τ

∣∣∣∣∣
τ∑
x=1

e2πi(f(x)+
nx
τ )

∣∣∣∣∣ log τ (3)

holds.

Let I(A,B; p) be a number of solutions of the congruence A − Bu2 ≡
0(mod p), (u, p) = 1.

Lemma 2. Let p be a prime number and let f(x), g(x) be the polynomials over
Z

f(x) = A1x+A2x
2 + p(A3x

3 + · · · ),
g(x) = B1x+ p(B2x

2 + · · · ),
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and, moreover, let νp(A2) = α > 0, νp(Aj) ≥ α, j = 3, 4, . . .. Then we have
the following estimates∣∣∣∣∣ ∑

x∈Rm

em(f(x))

∣∣∣∣∣ ≤
{

2p
m+α

2 if νp(A1) ≥ α,
0 else;

(4)

∣∣∣∣∣∣
∑
x∈R∗m

em(f(x) + g(x))

∣∣∣∣∣∣ ≤


(I(A1, B1; p) · p)m2 if (B1, p) = 1,

2p
m+α

2 if νp(A1) ≥ α,
νp(Bj) ≥ α,
j = 1, 2, . . . ,

0 if νp(A1) < α ≤ νp(Bj),
j = 1, 2, 3, . . . .

(5)

3 Preparations

Consider the sequence {yn} produced by the recursion (2).
Let n = 2k. We put

y2k ≡
a
(k)
0 + a

(k)
1 y0 + · · ·

b
(k)
0 + b

(k)
1 y0 + · · ·

:=
Ak
Bk

(mod pm) (6)

Twice using the recursion (2) we infer

y2(k+1) =
Ak+1

Bk+1
≡

(
aA(k) + abB(k) + b2A(k)

)
aBk + bAk + cAkF (2k + 1)y0

+

+

(
acB(k) + bcA(k)F (2k + 2) + bcA(k)F (2k + 1)

)
y0

aBk + bAk + cAkF (2k + 1)y0
≡

≡ (aAk + abBk + b2Ak)

aBk + bAk + cAkF (2k + 1)y0
+

+
(acBk + bcAkF (2k + 2) + bcAkF (2k + 1)) y0

aBk + bAk + cAkF (2k + 1)y0
+

+
c2AkF (2k + 1)F (2k + 2)y20
aBk + bAk + cAkF (2k + 1)y0

(7)

Define the following matrices

S0 =

(
a+ b2 ab
b a

)
, S1 =

(
b a
0 0

)
, S2 =

(
1 0
1 0

)
, S3 =

(
1 0
0 0

)
Tk = S0 + cy0F (2k + 2)S1 + bcy0F (2k + 1)S2+

+ c2y20F (2k + 1)F (2k + 2)S3

(8)

Now from (6)-(7) we obtain the matrix equality(
Ak+1

Bk+1

)
= TkTk−1 · · ·T1

(
A0

B0

)
,

(
A0

B0

)
=

(
y0
1

)
(9)
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Denote

Yi = cy0F (2i+ 2)S1 + cby0F (2i+ 1)S2 + c2y20F (2i+ 1)F (2i+ 2)S3

Then we have

T1T2 · · ·Tk = Sk0 +

k−1∑
`=1

Sk−`0

k∑
j=0

∑
i1,...,i`

′

Yi1 · · ·Yi` , (10)

where the sum
∑

i1,...,i`

′
takes over all collections i1, . . . , i` for which 0 ≤ i1,...,i` ≤

k, it 6= is for t 6= s, and it 6= j, t = 1, . . . , `, s = 1, . . . , `.
We will suppose that ν = νp(b) < νp(c) = µ. Therefore Yi ≡ 0(mod pµ),

and hence, all summands of sum
∑

i1,...,i`

′
are equal to zero modulo pm if ` > k0 :=[

m+1
µ

]
.

First we study Sk0 in detail.
We have

S0 = aI + bZ,

where

I =

(
1 0
0 1

)
, Z =

(
b a
1 0

)
.

Hence, putting `0 = min
([
k+1
2ν

]
,
[
m+1
2ν

])
we can write

Sk0 =

k∑
j=0

(
k
j

)
ak−jbjZj =

`0∑
j=0

j is even

+

`0∑
j=0

j is odd

:=
∑

1
+
∑

2
, (11)

where modulo pm

∑
1

=

`0∑
j=0

(
k
2j

)
ak−2jb2jZ2j ,

∑
2

=

`0∑
j=0

(
k

2j + 1

)
ak−2j−1b2j+1Z2j+1.

(12)

Notice that

Z2 =

(
b a
1 0

)2

=

(
a+ b2 ab
b a

)
= aI + bZ.

Consequently, raising to square in series the matrix Z we derive for j ≤ `0

Z2j = F0(j)I + F1(j)Z (13)

where F0(j) = f0,j + b2f2,j + · · ·+ b2j−2f2j−2,j ,
F1 = bf1,j + b3f3,j + · · ·+ b2j−1f2j−1,j ,
f0,j = aj , f1,j = aj−1j.

(14)



Chaotic Modeling and Simulation (CMSIM) 1: 231–238, 2013 235

Moreover, it is easy to see that

f2,j = aj−1(2j − 3), f3,j = 2aj−1(3j2 − 9j + 8),
f2j−4,j = a2(2j − 3), f2j−2,j = a,
f2j−3,j = a(f2j−3,j−1 + 2j − 3), f2j−1,j = 1,
f2`,j = aj−`(f2`,j−1 + f2`−1,j−1),
f2`+1,j = aj−`(f2`,j−1 + f2`+1,j−1 + f2`−1,j−1),
` = 2, 3, . . . , j − 2.

(15)

So, for k ≥ m the coefficients f`,j does not depend on k.
From (13)-(14) we derive

Z2j+1 = (jajb+ f3,ja
j−1b3 + · · ·+ ab2j−1)I+

+ (aj + aj−1b2(f2,j + j) + · · ·+ ab2j−2(2j − 1) + b2j)Z =

= G0(j)I +G1(j)Z.

(16)

Thereby the relations (13)-(16) give

Sk0 =

`0∑
j=0

ak−2j−1b2j
((

k
2j

)
aF0(j) +

(
k

2j + 1

)
bG0(j)

)
I+

+

`0∑
j=0

ak−2j−1b2j
((

k
2j

)
aF1(j) +

(
k

2j + 1

)
bG1(j)

)
Z.

(17)

Now after the simple calculations we obtain

Sk0 = H0(k)I +H1(k)Z, (18)

where modulo pm
H0(k) = ak + kak−1b(1 + b2h01) + k2ak−2b2(2 + b2h02)+

+ k3ak−2b3H03(k),
H1(k) = ak−1bk(1 + b2h11) + k3b3H13(k),
H03(k), H13(k) ∈ Z[k], h01, h02, h11 ∈ Z.

(19)

Repeating the argument used in the proof of relations (18),(19) we easy
deduce that

k0∑
`=1

Sk−`0

k∑
j=0

∑
i1,...,i`

′

Yi1 · · ·Yi` = H0(k)I +H1(k)Z, (20)

where {
H0(k) = kcak

[
(f0,0 +H01b) + kb2H02(k)

]
,

H1(k) = kbcakH1,0(k),
(21)

H01(k), H02(k), H10(k) are the integer polynomials with coefficients depending

only on a, (a)2, . . . , (a)m, b0, b
2
0, . . . , b

[m+1
ν ]

0 , c0, c
2
0, . . . , c

[m+1
µ ]

0 , b0 = b
pν , c0 = c

pµ .
After all this preliminaries it is straightforward to establish two representa-

tions for yn:
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Lemma 3. Let p be a prime number, p ≥ 5, and let m ∈ N, m ≥ 3; a, b, c ∈ Z,
GCD(a, p) = 1, b ≡ c ≡ 0(mod p), ν = νp(b), µ = νp(c), ν < µ, also, let {yk}
is the sequence from (2). Then for any y0 ∈ R∗m and k = 0, 1, 2, . . . we have

y2k = (kb− 2−1k(k2 − 1)a−1b3 +G0(k))+

+ (1 + k(k + 1)a−1c+G1(k))y0+

+ (−ka−1b− (k3c+ k2(k + 1)a−1)bc+

+ (2−13k3 − 2k2 + 2−1k)a−2b3 +G2(k))y20+

+ (k2a−2b2 − k2a−1c+G3(k))y30 +G4(k, y0)y40 ;
y2k+1 = ((k + 1)b− k2a−1c+ k(k − 1)a−1b3 +H0(k))+

+ ((2k+)c+H1(k))y0 + (a− k2c− 2k2b2 +H−1(k))y−10 +

+ (−kab+ 2−13k2(k + 1)b3 + 4−1k2(k2 − 1)a−1b3+

+H−2(k))y−20 + y−30 H3(k, y−10 ),

where

Gi(k) ∈ Z[k], Gi(0) = 0, Gi(k) ≡ 0(mod pmin (2ν+µ,4ν)), i = 0, 1, 2, 3;
Hi(k) ∈ Z[k], Hi(0) = 0, Hi(k) ≡ 0(mod pmin (2ν+µ,4ν)), i = −2,±1, 0;
G4(k, u), H3(k, u), are the polynomials on k, u,

moreover,

G4(0, u) = H3(0, u) = 0, G4(k, u) ≡ H3(k, u)(mod pmin (2ν+µ,4ν)).

Lemma 4. For k = 0, 1, 2, . . . we have

y2k = y0 + k(b(1− a−1y20) + 2a−1b3(a+ y20) + a−1cy0 + C1(y0))+

+ k2(−a−1b2y0 + a−1cy0(1− y20) + C2(y0)) + k3C3(k, y0)

y2k+1 = (b+ cy0 + ay−10 ) + k(b(1− ay−20 ) + 2cy0 +D1(y0, y
−1
0 ))+

+ k2(c(a−1 − y−10 ) +D2(y0, y
−1
0 )) + k3D3(k, y0, y

−1
0 )

where C1(y0) ≡ C2(y0) ≡ C3(k, y0) ≡ 0(mod pmin (ν+µ,3ν)),
D1(y0, y

−1
0 ) ≡ D2(y0, y

−1
0 ) ≡ D3(k, y0, y

−1
0 ) ≡ 0(mod pmin (ν+µ,3ν))

for every y0, y
−1
0 ∈ R∗m, k ∈ Z.

Corollary 1. Let τ be a period length of the sequence {yn} generated by re-
cursion (2), y0 be an initial value, and let νp(b) = ν, νp(c) = µ > ν.

(A) If a 6≡ y02(mod p), then τ = 2pm−ν .
(B) If νp(a− y20) = δ < min (3ν, µ), then τ = 2pm−ν−δ.
(C) Otherwise: τ ≤ 2pm−ν−min (3ν,µ).

4 Main results

Let the sequence {yn} is produced by recursion (2) and let the least length
of period for {yn} is equal to τ .

For any N , 1 ≤ N ≤ τ , and h ∈ Z we define the sum

SN (h, y0) =

N−1∑
n=0

em(hyn)
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Theorem 1. Let {yn} is the sequence generated by the recursion (2) with the
parameters a, b, c and the function F (n), F (0) = 0, and let 0 ≤ νp(a− y20) <
ν = νp(b), 2ν < µ = νp(c), νp(h) = s. Then we have

|SN (h, y0)| ≤

{
2p

m+ν+s
2

(
N
τ + log τ

p

)
if ν + s < m

N else.

Theorem 2. In the notations of Theorem 1 we have

SN (h) =
1

ϕ(pm)

∑
y0∈R∗m

|SN (h, y0)| ≤ 3Np−
m−s−ν

4

The proofs of these theorems are an analogue of the proofs for Theorem 7
and 8[5] and by the representations of yn which have been obtained in Lemmas
3 and 4, and using Lemmas 1 and 2.

Now applying the Turan-Koksma inequality(see,[3]) for the discrepancy DN

we obtain

Theorem 3. Let p > 2 be a prime number, y0, a, b, c,m ∈ Z, m ≥ 3 and
let a, y0 are co-primes to p and let b ≡ c ≡ 0(mod p), 0 < νp(b) < νp(c),
a 6≡ y20(mod p). Then for the sequence {xk}, xk = yk

pm , k = 0, 1, . . ., where yk
determine by (2) we have

DN (x0, x1, . . . , xN−1) ≤ 1

pm
+ 2N−1p

m−ν
2

(
1

p

(
2

π
log pm +

7

5

)2

+ 1

)
,

where 1 ≤ N ≤ τ , and τ is the least length of a period for {yk}.

Next, we denote

X(s)
n = (xn, xn+1, . . . , xn+s−1), s = 2, 3, 4.

Theorem 4. The discrepancy D
(s)
N (X

(s)
0 , X

(s)
1 , . . . , X

(s)
N−1) produced by the re-

cursion (2) with the period τ = 2pm−ν satisfies the inequality

D(s)
τ ≤

√
p

√
p− 1

p−
m
2 +ν

(
1

π
log pm−ν +

3

5

)s
+ 2p−m+ν .

From the Theorems 3 and 4 it follows that the sequence {xn}, x− n = yn
pm

passes the s-serial tests, s = 2, 3, 4 on equidistribution and statistical indepen-
dence.

Thus, by the complexity of reconstruction for the parameters a, b, c, y0,
F (u) under recursion (2) the sequence of PRN’s {yn} can be used in crypto-
graphical applications.
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Long ago it was stated [7,5] that quantum vortices in superfluid helium can
be studied either as open lines with their ends terminating on free surfaces of
walls of the container or as closed curves. Nowadays the closed vortices are
treated as topological objects equivalent to circles. The existence of structures
such as knotted and linked vertex lines in the turbulent phase is almost obvi-
ous [12] and has forced researchers to develop new mathematical tools for their
detailed investigation. In this proposed direction Z. Peradzyński [8] proved a
new version of the Helicity theorem, based on differential-geometric methods
applied to the description of the collective motion in the incompressible su-
perfluid. The Peradzyński helicity theorem describes in a unique way, both
the superfluid equations and the related helicity invariants, which are, in the
conservative case, very important for studying the topological structure of vor-
tices.

By reanalyzing the Peradzyński helicity theorem within the modern sym-
plectic theory of differential-geometric structures on manifolds, we propose a
new unified proof and give a magneto-hydrodynamic generalization of this the-
orem for the case of an incompressible superfluid flow. As a by-product, in
the conservative case we construct a sequence of nontrivial helicity type con-
servation laws, which play a crucial role in studying the stability problem of a
superfluid under suitable boundary conditions.

1 Symplectic and symmetry analysis

We consider a quasi-neutral superfluid contained in a domain M ⊂ R3 and
interacting with a “frozen” magnetic field B : M −→ E3, where E3 := (R3, <
., . >) is the standard three-dimensional Euclidean vector space with the scalar
< ., . > and vector “×” products. The magnetic field is considered to be
source-less and to satisfy the condition B = ∇ × A, where A : M −→ E3 is
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some magnetic field potential. The corresponding electric field E : M −→ E3,
related with the magnetic potential, satisfies the necessary superconductivity
conditions

E + u×B = 0, ∂E/∂t = ∇×B, (1)

where u : M −→ T (M) is the superfluid velocity.
Let ∂M denote the boundary of the domain M . The boundary conditions

〈n, u〉|∂M = 0 and 〈n,B〉|∂M = 0 are imposed on the superfluid flow, where
n ∈ T ∗(M) is the vector normal to the boundary ∂M , considered to be almost
everywhere smooth.

Then adiabatic magneto-hydrodynamics (MHD) quasi-neutral superfluid
motion can be described, using (1), by the following system of evolution equa-
tions:

∂u/∂t = −〈u,∇〉u− ρ−1∇P + ρ−1(∇×B)×B,

∂ρ/∂t = −〈∇, ρu〉, ∂η/∂t = −〈u,∇η〉, ∂B/∂t = ∇× (u×B),
(2)

where ρ : M −→ R+ is the superfluid density, P : M −→ E3 is the internal
pressure and η : M −→ R is the specific superfluid entropy. The latter is
related to the internal MHD superfluid specific energy function e = e(ρ, η)
owing to the first law of thermodynamics:

T dη = de(ρ, η)− Pρ−2dρ, (3)

where T = T (ρ, η) is the internal absolute temperature in the superfluid. The
system of evolution equations (2) conserves the total energy

H :=

∫
M

[
1

2ρ
|µ|2 + ρe(ρ, η) +

1

2
|B|2

]
d3x, (4)

called the Hamiltonian, since the dynamical system (2) is a Hamiltonian system
on the functional manifold M := C∞(M ;T ∗(M) ×R2 × E3) with respect to
the following [4] Poisson bracket:

{f, g} :=
∫
M

{
〈µ, [ δfδµ ,

δg
δµ ]

c
〉+ ρ

(
〈 δgδµ ,∇

δf
δρ 〉 − 〈

δf
δµ ,∇

δg
δρ 〉
)

+η〈∇, ( δgδµ
δf
δη −

δf
δµ

δg
δη )〉+ 〈B, [ δgδµ ,

δf
δB ]c〉

+〈 δfδB , 〈B,∇〉
δg
δµ 〉 − 〈

δg
δB , 〈B,∇〉

δf
δµ 〉
}
dx,

(5)

where we denoted by µ := ρu ∈ T ∗(M) the specific momentum of the superfluid
motion and by [., .]c the canonical Lie bracket of variational gradient vector
fields:

[
δf

δµ
,
δg

δµ
]
c

:= 〈δf
δµ
,∇〉 δg

δµ
− 〈 δg

δµ
,∇〉δf

δµ
(6)

for any smooth functionals f, g ∈ D(M) on the functional spaceM. Moreover,
as was shown in [4], the Poisson bracket (5) is, in reality, the canonical Lie–
Poisson bracket on the dual space to the Lie algebra G of the semidirect product
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of vector fields on M and the direct sum of functions, densities and differential
one-forms on M . Namely, the specific momentum µ = ρu ∈ T ∗(M) is dual
to vector fields, ρ is dual to functions, η is dual to densities and B is dual to
the space of two-forms on M . Thus, the set of evolution equations (2) can be
equivalently recast as follows:

∂u/∂t = {H,u}, ∂ρ/∂t = {H, ρ},

∂η/∂t = {H, η}, ∂B/∂t = {H,B}.
(7)

The Poisson bracket (5) can be rewritten for any f, g ∈ D(M) as

{f, g} = (Df, ϑ Dg), (8)

with Df :=
(
δf
δµ ,

δf
δρ ,

δf
δη ,

δf
δB

)
∈ T ∗(M) and ϑ : T ∗(M) −→ T (M), being the

corresponding (modulo the Casimir functionals of bracket (5)) invertible [3]
co-symplectic operator, satisfying the standard [10,2] properties

ϑ∗ = −ϑ, δ(δw,∧ ϑ−1δw) = 0, (9)

where the differential variation complex condition δ2 = 0 is assumed, the dif-
ferential variation vector δw := (δµ, δρ, δη, δB) ∈ T ∗(M) and the symbol “∗”
denotes the conjugate mapping with respect to the standard bilinear convolu-
tion (., .) of the spaces T ∗(M) and T (M). Note here that the second condition
of (9) is equivalent [2,10] to the fact that the Poisson bracket (5) satisfies the
Jacobi commutation condition. Thus, one can define the closed generalized
variational differential two-form on M

ω(2) := (δw,∧ϑ−1 δw), (10)

which provides the symplectic structure on the functional factor manifold M
(modulo the Casimir functionals of bracket (5)). Owing now to the commuta-
tion property

[∂/∂t+ Lu, Lv] = 0, (11)

equivalent to the subgroup Dt and Dτ commuting for any suitable t, τ ∈ R,
from the invariance condition

∂ρ/∂τ = 0, (12)

we deduce that the quantities

γn := Lnvγ (13)

for all n ∈ Z+ are invariants of the MHD superfluid flow (2) if the density
γ ∈ Λ3(M) is also an invariant on M .

We construct the following new functionals on the functional manifold M

H̃n :=

∫
M

γ̃n d
3x =

∫
M

ρLnv (ρ−1〈B,A〉) d3x (14)
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for all n ∈ Z+, which are invariants of our MHD superfluid dynamical system
(2). In particular, when n = 0 we obtain the well-known [4] magnetic helicity
invariant

H̃0 =

∫
M

〈A,∇×A〉 d3x, (15)

which exists independently of boundary conditions, imposed on the MHD su-
perfluid flow equations (2).

The result obtained above can be formulated as the following theorem.

Theorem 1. The functionals (14), where the Lie derivative Lv is taken along
the magnetic vector field v = ρ−1B, are global invariants of the system of
compressible MHD superfluid and superconductive equations (2).

Below we proceed to a symmetry analysis of the incompressible superfluid
dynamical system and construct the related local and global new helicity in-
variants. The case of superfluid hydrodynamical flows [9] is of great interest
for many applications owing to the very nontrivial dynamical properties of
so-called vorticity structures appearing in the motion.

2 The incompressible superfluid: symmetry analysis and
conservation laws

The helicity theorem result of [8], where the kinematic helicity invariant

H0 :=

∫
M

〈u,∇× u〉 d3x (16)

was derived, employed differential-geometric tools in Minkowski space in the
case of an incompressible superfluid in the absence of a magnetic field (B = 0).
We shall now describe its general dynamical symmetry nature. The governing
equations are

∂u/∂t = −〈u,∇〉u+ ρ−1∇P, ∂ρ/∂t+ 〈u,∇ρ〉 = 0, 〈∇, u〉 = 0, (17)

where the density conservation properties

(∂/∂t+ Lu)ρ = 0, (∂/∂t+ Lu)d3x = 0 (18)

hold for all suitable t ∈ R. Define now the vorticity vector ξ := ∇×u and find
from (17) that it satisfies the vorticity flow equation

∂ξ/∂t = ∇× (u× ξ). (19)

Actually, the first equation of (17) can be rewritten as

∂u/∂t = u× (∇× u)− ρ−1∇P − 1

2
∇|u|2. (20)

Then, applying the operation “∇× · ” to (20), one easily obtains the vorticity
equation (19). Moreover, equation (19) can be recast in the equivalent form

∂ξ/∂t+ 〈u,∇〉ξ = 〈ξ,∇〉u, (21)
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which allows a new dynamical symmetry interpretation. Now, define β(1) ∈
Λ1(M) as the one–form

β(1) := 〈u, dx〉 (22)

and readily conclude that

(∂/∂t+ Lu)β(1) = −ρ−1dP +
1

2
d|u|2 = d(ρ−1P +

1

2
|u|2). (23)

We have shown that the following generalized functionals

Hn :=

∫
M

ρLnv (u× ξ) d3x (24)

for all n ∈ Z+are new helicity invariants for (17). Notice here that all of the
constraints imposed above on the vorticity vector ξ = ∇× u are automatically
satisfied if the condition supp ξ ∩ ∂M = ∅ holds. The result obtained can be
summarized as follows.

Theorem 2. Assume that an incompressible superfluid, governed by the set of
equations (17) in a domain M ⊂ E3, possesses the vorticity vector ξ = ∇× u,
which satisfies the boundary constraints Lnρ−1ξξ|∂M for all n ∈ Z+. Then all of

the functionals (24) are generalized helicity invariants of (17).

The results obtained above allow some interesting modifications. To present
them in detail, observe that equality (23) can be rewritten as

(∂/∂t+ Lu)β(1) − dh = (∂/∂t+ Lu)β̃(1) = 0, (25)

where, by definition,

h := ρ−1P +
1

2
|u|2, β̃(1) := 〈u−∇ϕ, dx〉, (26)

and the scalar function ϕ : M −→ R is chosen in such a way that

(∂/∂t+ Lu)ϕ = ∇h. (27)

Then, obviously, one obtains the additional equation

(∂/∂t+ Lu)dβ̃(1) = 0, (28)

following from the commutation property [d, ∂/∂t+Lu] = 0. Then, we see that
the density λ̃ := β̃(1) ∧ dβ̃(1) ∈ Λ3(M) satisfies the condition

(∂/∂t+ Lu)µ̃ = 0, (29)

for all t ∈ R. A similar result holds for densities λ̃n := Lnv λ̃ ∈ Λ3(M), n ∈ Z+;
namely,

(∂/∂t+ Lu)λ̃n = 0, (30)
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owing to the commutation property (11). Therefore, the following functionals
on the corresponding functional manifold M are invariants of the superfluid
flow (2):

Υn :=

∫
M

λ̃n =

∫
Dt

ρLnρ−1ξ〈(u−∇ϕ), ξ〉 d3x (31)

for all n ∈ Z+ and an arbitrary domain Dt ⊂ M , independent of boundary
conditions, imposed on the vorticity vector ξ = ∇ × u on ∂M . Notice here
that only the invariants (31) strongly depend on the function ϕ : M −→ R,
implicitly depending on the velocity vector u ∈ T (M). It should be mentioned
here that the practical importance of the constructed invariants (31) remains
to be fully clarified.

3 Conclusions

The symplectic and symmetry analysis of compressible MHD super-fluids de-
veloped above, appears to be an effective approach for constructing the related
helicity type conservation laws, which are generally important for practical ap-
plications. In particular, these conserved quantities play a decisive role [4,1]
when studying the stability of MHD superfluid flows under special boundary
conditions. Some of the results in this direction can also be obtained mak-
ing use of group-theoretical and topological tools developed in [1,13,11], where
the importance of the basic group of diffeomorphisms Diff(M) of a manifold
M ⊂ R3 and its differential-geometric characteristics were shown in consider-
able detail.
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