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Introduction

The problems of calculating hydraulic operating parameters are the
basic problems in the analysis of operating conditions of pipeline systems when
designed, operated, and controlled. These problems are traditionally solved
using models and methods, which, however, do not allow us to quantitatively
assess the satisfiability of operating conditions when consumption is random,
which is typical of many practical situations. This is explained by high
complexity and dimensionality of pipeline systems (heat-, water-, gas supply
systems, etc.) as modeling objects, excessive efforts necessary to apply general
methods of stochastic modeling (such as the Monte-Carlo method), and
difficulties in obtaining initial statistical data.

The paper presents an approach, a set of mathematical models and
methods for modeling the operating parameters of pipeline systems that were
developed in terms of stochastics and dynamics of consumption processes and the
established rules of their control, which make it possible to rationally combine the
adequacy of modeling and its high computational efforts [1, 2].

Problem statement of the probabilistic calculation of
hydraulic operating parameters. Probabilistic description of definite
hydraulic operating parameters is reduced to the probability density function,
which is denoted here by ( , )Rp R  , where R – the value of a random vector of
operating parameters (pressure, flow rate, etc.); R – distribution parameters.
Most of the practical cases allow us to use the hypothesis about normal
distribution of R . Then { , }R RR C   and the probabilistic description of
hydraulic operating parameters can be reduced to the specification of values of
mathematical expectation ( R ) and covariance matrix ( RC ) for value R.

Not every combination of R  components is acceptable, since they
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should satisfy the equations of flow distribution model ( ) 0U R   (where U –
non-linear vector function). These equations result from general physical
conservation laws, and hence should be solved deterministically.

The traditional deterministic model of  steady hydraulic operating
parameters in a pipeline system as a hydraulic circuit with lumped parameters
can be represented as [3]

T( ) ( , ) ( , , , ) 0.
( , )

Ax Q
U R U X Y U x Q P

A P f x



 

     
(1)

Here the first subsystem of equations represents the conditions of
material balance at the nodes of hydraulic circuit (equations of the first
Kirchhoff law); the second subsystem – the equations of the second Kirchhoff
law; X – boundary conditions; Y – unknown operating parameters; T –
transposition sign; A – m n - incidence matrix with elements 1( 1)jia   , if
node j  is the initial (end) node for branch i , 0jia  , if branch i is not incident
to node j ; m, n  number of nodes and branches of the hydraulic circuit; x –
n-dimensional vector of flow rate in branches, ,Q P – m-dimensional vectors of
nodal pressures and flow rates, ( , )f x  – n-dimensional vector-function with
components ( , )i i if x  , reflecting the laws of hydraulic flow for the branches;
  n -dimensional vector of parameters of these characteristics. For instance,
if ( , ) | |i i i i i i if x s x x H   , then { , }i i is H  , where ix – flow rate in the i-th
branch; is  hydraulic resistance of the branch; 0iH  – increase in pressure
in the case of an active branch (e.g. a branch representing a pumping station);

0iH   in the case of a passive branch (e.g. a branch representing a pipeline

section). If in (1) all parameters , , 1,i is H i n  are set deterministically, then
T T T T( , , )R x Q P .

Thus, the probabilistic model of steady flow distribution can be
represented as ( ) 0, ~ ( , )r RU R R N R C , where rN – r – dimensional normal
probability distribution; r – dimensional of vector R. In the case of normal
distribution of X , if we neglect the non-linear distortion of distribution

( )[ ( ), ]Y Xp Y X   (where ( )Y X – implicit function given by the flow distribution

equations), the problem can be reduced to the determination of { , }R RR C 

with the given function { , }X XX C   and under condition
( ) ( , ) 0U R U X Y  . Moreover, the composition of X  should provide

solvability of equations ( , ) 0U X Y   with respect to Y , i.e.
dim( ) dim( ) rank( / )Y U U Y    , where /U Y  – Jacobian matrix (of partial
derivatives) under fixed boundary conditions *X  in the neighborhood of the
solution point *Y , dim( ) – vector dimensional, rank( ) – matrix rank.
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Methodological approach. Let ( )X X X    be a random
deviation of possible realization of boundary conditions from its mathematical
expectation X . After linearizing function ( )Y X  in the neighborhood of X , we
obtain ( ) ( / ) XY Y X Y X     , where /Y X  is derivative matrix at point X .

Since ( )E Y Y  and ( ) 0XE   , where E  is the operation of mathematical

expectation, then ( )Y Y X . Thus, the mathematical expectation of unknown
operating parameters ( Y ) is the function of flow distribution equations under
boundary conditions X . Correspondingly,

( )
X X

R
Y Y X
   

    
   

(2)

and
T

X XYX X
R

YX YY Y

C C
C E C C

 
 

     
      

       
,

where
T T

T T
Y Y Y X X X

Y Y Y YC E E C
X X X X

   
                        

,

T T
T T T( )XY YX X Y X X X

Y YC C E E C
X X

   
                  

, ( )Y Y Y   .

Thus, the general scheme for solving the problem of probabilistic
calculation of  hydraulic  parameters is reduced to the following: 1) to obtain
vector Y  by traditional methods for calculating the flow distribution with the
given X ; 2) to determine matrix RC , whose individual blocks are determined
using the known matrix XC  and derivative matrix /Y X   at point X .

Here two main questions arise: 1) based on what do we set the
distribution parameters of boundary conditions ( { , }X XX C  ); 2) what is the
final form of relationships for the resultant covariance matrices in different
variants of the division of R  into X  and Y , since in the traditional methods for
the flow distribution calculation the derivatives /Y X   are not calculated in
explicit form, which represents a separate problem.

Probabilistic description of consumer loads. A typical
example of pipeline systems operating under the conditions of stochastic
consumer loads is water supply systems. The approach applied to the
probabilistic description of these stochastic conditions is based on the use of the
queuing theory methods and on results of the studies [4, 5, etc.], which found
their reflection in the regulatory documents [6]. According to these results, the
probability of using plumbing units ( hrp ) can be described by “Erlang
formulas”, which demonstrate a discrete limit distribution of used channels,
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depending on the characteristics of the flow of requests and the performance of
the queuing system.

The suggested technique for calculating the mathematical expectation
of consumer flow rates ( hrq ) and their variances ( 2

,q hr ) consist in the
following:

1. Knowing the number of plumbing units at the consumption node
( N ) and the probability of using them hrp [6], we can calculate hrm m  such
that maximum value ( max ( )p m ) acquires the probability

 
( )

!

m

hrN p
p m Z

m

 
 
 
 

 , 0,1,...,m N , (3)

where
 

0 !

k
N

hr

k

N p
Z

k

 , m  is the number of simultaneously used plumbing

units; hrNp is their usage rate.
2. We should determine the average hourly flow rate 0,hr hr hq m q ,

where 0, 0, / 1000h hrq q – hourly water flow rate by one device, m3/h; hrq –
can be interpreted as the mathematical expectation of flow rate at the
consumption node; 0,hrq – standardized value, l/h.

3. When approximating the discrete Erlang distribution by the
continuous normal distribution, we should calculate the equivalent variance by
formula 2 2

, max1/ 2 ( )m hr p m  .
4. The variance  of the average hourly flow rate will be determined as

2 2 2
, 0, ,q hr h m hrq  .

Figure 1 presents a diagram of function (3), where N=270 and
hrp =0.023. The diagram shows that the maximum probability density function

corresponds to hrm , whose average hourly flow rate is hrq .
General scheme of obtaining the covariance matrix consists

of three stages: 1) to linearize system (1) at point X ; 2) to reduce linearized

system 0R
U
R


 


 to Y X
Y
X


  


; 3) to obtain covariance matrix of the vector

of unknown operating parameters RC  using the operation
T

X X

Y Y

E
 
 

   
   
    

.
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Thus, for the case, where X Q ,
x

Y
P
 

  
 

, constmP  , const :

T

0AU
f AR

 
     

;
1 T 1

1

( )xx
Q

P

f A M
M






 



  
   

    
;

1 1 1

1 T 1 1 T 1 1 1 1 T 1 1

1 1 1 1 1 1

( )
( ) ( ) ( ) ( )

( )

Q Qx QP

R xQ x xP

PQ Px P

Q Q x Q

x Q x Q x x Q

Q Q x Q

C C C
C C C C

C C C

C C M A f C M
f A M C f A M C M A f f A M C M

M C M C M A f M C M

  

        

     

 
 

  
 
 

 
 

     
  

,
where xf  – diagonal matrix with elements ( , ) /i i i if x x  ; QC  known
covariance matrix of nodal flow rate; PC , xC  covariance matrix of nodal
pressure and covariance matrix of flow rate in branches; T

Qx xQC C 

covariance matrix of nodal flow rate and flow rate in branches; T
PQ QPC C 

covariance matrix of nodal pressure and flow rate; T
Px xPC C  covariance

matrix of nodal pressure and flow rate in branches. Thus, knowing X QC C ,
we can calculate RC . No special requirements are imposed on matrix QC ,
however, in practice it is usually taken as a diagonal matrix from considerations

Fig. 1. Continuous approximation of Erlang distribution for the probability

of simultaneously used devices for the case where N =270 and hrp =0.023.
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of statistical independence of consumer loads. This means that
2cov( , )j t Q j

Q Q   for j t , and cov( , ) 0j tQ Q   for j t .

Covariance matrix for the general case of setting boundary
conditions T T T T( , , )X X XX Q P  , where at each node we can set either the flow
rate or the pressure, and each branch is characterized by ,in -dimensional vector
(e.g. { , }i i is H  , , 2in  ) of hydraulic parameters, which is specified in the
probabilistic form in full or partially [1, 2].

Divide the set of nodes in the design scheme into subsets of nodes with
the given flow rate ( QJ ) and pressure ( PJ ), and the set of branches into subsets
of branches with hydraulic parameters given in the probabilistic ( VI ) and
deterministic ( DI ) forms. We omit the conclusion and give the finite
expressions for the covariance matrix of unknown operating parameters:
1) Covariance matrix of unknown nodal pressure

T
T T

T T

,

;

V VY Y
PY PY PY QV V QV

X V V X

Y Y Y Y
QX PX

X X X X

x xP PC A C A
Q Q

P P P PC C
Q Q P P

 
 

              

      
          

2) Covariance matrix of flow rate in the branches with deterministically
specified characteristics

T T
T

, , ,, D D D D
x D x D x D PY PX

Y Y X X

x x x xC C C
P P P P

 
                     

;

3) Covariance matrix of flow rate in the branches with probabilistically
specified characteristics

T
T

TT

, V V
xV V V PY

Y Y

V V V V
PX V

X X V V

x xC C
P P

x x x xC C
P P

x x



 

 

           

     
          

;

4) Covariance matrix of unknown nodal flow rates
T T T,QY QY QY PD xD PD PV xV PVC A C A A C A       ,

where QDA – ( )Q Dm n -dimensional incidence matrix with elements jia ,

Qj J , Di I ; QVA – ( )Q Vm n - dimensional incidence matrix with elements

jia , Qj J , Vi I ; PDA – ( )P Dm n -dimensional incidence matrix with
elements jia , Pj J , Di I ; PVA – ( )P Vm n -dimensional incidence matrix
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Fig. 2. Daily change in the frequency distribution of hydraulic operating parameters

а) For the nodal flow rate, b) For the nodal pressure
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– matrices of

partial derivatives of the corresponding combinations of parameters, which

implicitly depend on three matrices only: xD

D

f
x



, xV

V

f
x




 and xV

V

f




, whose

structure is determined by the type of branch characteristics. Moreover, the first
two of them are diagonal, and therefore, easily invertible.

Thus, based on the given relations, we can sequentially calculate the
covariance matrices of all the operating  parameters, if we know the covariance
matrices of nodal flow rate set in the probabilistic form ( QXC ), nodal pressure
( PXC ), and hydraulic characteristics of branches ( VC ).

Probabilistic calculation of dynamics of hydraulic
operating parameters. Stochastic boundary conditions initiate the change in
hydraulic operating parameters with time. As a result we face the problem of
probabilistic modeling and analysis of operating parameter dynamics

( ), 0R t t T   as a random process for the calculation period T .
Figure 2 presents the graphs of realization-frequency distribution of

two hydraulic operating parameters (the nodal flow rate and the nodal pressure).
The first parameter can be considered as a disturbance, the second – as a
response. Figure 2a shows the graph of water flow rate frequencies for an



102  Novitsky  and Vanteyeva

Fig. 3. Statistical characteristics of change in the nodal pressure as a random process
а) Dynamics of mathematical expectation;

b) Graph of the autocorrelation function of pressure in the reservoir
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individual residential building in the water supply system that is constructed
based on the experimental data. Figure 2b shows the graph of pressure
frequencies at the connection node of the reservoir in the water supply system in
one of the Irkutsk districts that is obtained by processing the data of the
dispatching department for 490 days.

Analysis of both processes in Fig. 2 indicates that: 1) the frequency
distribution at any cross-section of both processes is approximated by the normal
(Gaussian) distribution satisfactorily enough; 2) the variance of every process

2( )  is practically invariable. The root-mean-square deviation ( )  for daily
water flow rate changes negligibly, i.e. within 10 per cent (Table 1), for pressure
 within 7 per cent; 3) the mathematical expectation for both processes changes
during a day (Fig. 3a); 4) the autocorrelation function stabilizes at the zero value
(for the nodal value in Fig. 3b) fast enough.

The hydraulic operating parameters vary in time in response to three
main disturbing actions (boundary conditions): 1) random actions of regular
character (consumer loads); 2) deterministic actions of regular character (control
actions); 3) random actions of irregular character (fires, accidents).  The second
type of disturbances is taken into account algorithmically on the basis of the
specified control rules. Analysis of the consequences of relatively rare
disturbances of the third type is the subject of the reliability theory of pipeline
systems and is not carried out here.
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Table 1. Values of mathematical expectations and root-mean-square deviations
of the nodal flow rate during day hours for the conditions in Fig. 2а.

Day hour Q , m3/h  100%


1 4.60 2.14 3.11
2 2.32 1.94 6.52
3 1.88 1.99 4.12
4 1.66 1.94 6.52
5 1.87 1.84 7.97
6 3.28 2.2 6.00
7 7.88 2.02 2.67
8 10.80 2.08 0.22
9 10.88 1.96 5.56

10 12.40 2.26 8.89
11 12.48 2.02 2.67
12 12.13 2.28 9.86

Day hour Q , m3/h  100%


13 11.97 2.25 8,41.
14 11.77 2.2 6.00
15 11.28 2.15 3.59
16 11.16 2.07 0.26
17 11.53 2.0 3.63
18 12.32 2.09 0.70
19 12.35 2.17 4.56
20 13.34 2.05 1.22
21 13.68 2.04 1.71
22 14.34 2.02 2.67
23 12.51 1.85 10.86
24 9.10 2.18 5.04

Dynamics of hydraulic operating parameters ( ), 0R t t T   may be
considered as a random process with the discrete time (a quasidynamic
approach). At each time instant of the process the operating parameters obey the
normal distribution. Variation of the operating parameters at the adjacent
instants may be considered as insignificant and the flow distribution – as steady.
Thus, the problem of probabilistic calculation of hydraulic operating parameter
dynamics is reduced to the determination of T T T T[ (0) , (1) ,..., ( ) ]R R R TR and

T
R RE     RC based on the specified parameters
T T T T[ (0) , (1) ,..., ( ) ]X X X TX , XC  and the conditions ( ) ( ) ( , )A t x t Q t P ,

T T( ) ( ) ( )A t P t y t ,  ( ) ( ), ( )y t f x t t , 0,...,t T . In this case the
suggested analytical probabilistic models and the calculation methods can be
applied to each calculation instant, which will sharply decrease computational
efforts. The computing experiments in Table 2 have shown the decrease in
running time by tens of times.
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Table 2. Time required for probabilistic calculation by the Monte Carlo and
analytical methods [7]

Time for methodNumber of scheme
nodes and branches Analytical Monte Carlo - .M C Analytt t

6 nodes and 8
branches 3.2 s 3 min 56.25

12 nodes and 19
branches 4.8 s 28.5 min 356.25

12 nodes and 29
branches 16.2 s 1.25 h 277.77

In some cases such as availability of  reservoirs it is important to take
account of the lagging factor of internal responses of pipeline systems, when the
successive operating condition depends on the prehistory of conditions.
Availability of reservoirs can be taken into account by using the additional
dynamic relation , , 1 ,( / )j k j k j k jP P g t F Q   , where t – duration of the k -
th condition; jF – liquid surface area in the reservoir; j – index of the node
with a reservoir; g – gravitational acceleration;  – liquid density. The
reservoir operation can be modeled by insertion of a dummy branch connected
to a dummy node with zero (or air) pressure. The hydraulic characteristic of
such a branch has the form: , , , ,i k i k i k i ky s x H  , where , , 1i k j kH P  ,

, /i k js g t F  .  Let f
kH  be a vector of dummy pressure rises in the branches

that represent all the reservoirs. The covariance matrix of vector f
kH  that is

used at the k-th calculation step will have the form: *
1( ) ( )

fH k PY kC t C t  , where
*

Y 1( )P kC t  – block of covariance matrix PYC  that was calculated at the previous
step and is attributed to the pressures at the nodes with reservoirs.

Calculation of probabilistic operating parameters of
pipeline systems. The suggested approach to the calculation of statistical
parameters of pipeline system operation offers an opportunity  to  obtain
probabilistic estimates of virtually any operating parameters of  pipeline systems
depending on their operating conditions by the known formulas of the
probability theory. For example the probability that any “nondegenerate” subset
of operating parameters belongs to a given range at the time kt   will be
determined by the formula

   
1

1

T 1
1

1 1... exp C
2(2 )

n

n

v v

Rk k k Rk k k nn
v vRk

p R R R R dR dR
C

     
    ,  (4)

where kR – n-dimensional vector (subvector) of operating parameter values at

the time instant kt ; kR – n-dimensional vector  of mathematical expectation

kR ; RkC  ( n n )-dimensional covariance matrix for kR ; Rkp   probability
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that kR  belongs to  a specified range [ ,v v ]; T
1[ ,..., ]nv v v  and

T
1[ ,..., ]nv v v  vectors of upper and lower boundaries of the studied range,

whose components can take infinite values to take account of one-sided intervals
or their absence.
The assessment of probability that kR  belongs to a specified range [ ,r rv v ]
during period Т will be determined by the formula

   
1 1 1

K K K

RT Rk k k Rk k
k k k

p p t t p t T
  

       , (5)

where K – the number of calculated periods over period
1

K

k
k

T t


  ; kt 

duration of the k -th condition.
Equations (4) and (5) can be applied to estimate the operation of pipeline

system, its fragments or individual components in a definite operating condition
or over the period of time, for example in terms of the extent  to which they are
loaded, consumer demand is satisfied, or process constraints are met, etc.

Numerical example
Let us consider a numerical example of calculating the stochastics of the

hydraulic operating parameters for the network presented in Fig.4. The network
consists of 7 nodes and 11 branches of which: one node has a fixed pressure;
two nodes have lumped loads; two nodes are nonfixed loads depending on
pressure; one branch represents a pumping station with an increasing head
Н0=21 m; one dummy branch simulates a reservoir (water level in the reservoir
Н f=16.4 m); two dummy branches simulate nonfixed loads, their resistances are
random values. Thus, this example illustrates the possibilities of the suggested
approach in terms of the random composition of boundary conditions.

The input information specified in the probabilistic form is:
T T T T

4 5 7 9 10( , , ) ( , , , , )X X XX Q P Q Q P s s  = (5.2, 1.8, 0, 0.30359, 1.2407); XC – a
diagonal matrix with nonzero elements (1.065, 0.3969, 0.0001, 0,059, 0.51564).
Resistances in the dummy branches 9 and 10, that simulate nonfixed flow rates
at consumers are determined by the formula [1, 2] 2/( )r r

i j js P Q , and variances

–  2 2 6 2
, ,4( ) /( )r r

s i j j Qr jP Q  , where ,r r
j jP Q – design (required) pressures and

flow rates for this consumer, j – index of the initial node of the i-th branch.
Correspondingly in the example 2

rQ  7.7, 2
2  9.61, 2

rP  18, 3
rQ  7.11,

2
3  0.81, 3

rP  12.
Resistances in the branches that were specified deterministically are:

1s  0.00257, 2s  0.8996, 3s  0.00408, 4s  0.095, 5s  0.67, 6s  0.067,

7s  0.0957, 8s  0.00646, 11s  0.014.
The calculation results for nodes are presented in Table 3 and for

branches – in Table 4.
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Table 3. Calculation results for nodes Table 4. Calculation results for branches

Figure 5 presents a graphical interpretation of the calculated probability
of providing consumers with a required flow rate. For example for the consumer
at the second node 2 2(0 )rp Q Q   0.3442 or 2 2( )rp Q Q    0.64446,
and at the third node 3 3(0 )rp Q Q   0.71914 or 3 3( )rp Q Q    0.28083,
where rQ is the required flow rate.

Parameters
j Рj,

 Mwc
,P j Qj,

m3/h
,Q j

1 18.22 0.89 – –
2 17.11 1.25 9.19 4.03
3 14.96 1.21 6.48 1.08
4 16.70 1.25 – –
5 16.01 0.83 – –
6 16.37 0.02 – –
7 – – 22.67 9.07

Parameters
i xi, m3/h 2

,x i
1 20.75 3.29
2 1.54 0.02
3 10.01 0.03
4 -3.32 0.59
5 -1.61 0.02
6 3.20 0.98
7 -1.92 2.21
8 20.75 3.29
9 9.19 4.03
10 6.48 1.08
11 1.82 0.66

Fig.4. Example of the calculated scheme of the pipeline system for the general

case of boundary conditions

Real section; dummy branch simulating nonfixed consumer

loads; dummy branch simulating reservoir; dummy

branch simulating pumping station; node with the specified nodal loads;

           node with the specified pressure.7
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Conclusions
1. The paper presents:
- a technique for apriori calculation of statistical characteristics of a

probabilistic process of the transported medium consumption as a
queuing process;

- a general scheme for probabilistic calculation of pipeline system
hydraulic operating parameters. The calculation suggests determining
statistical characteristics of the operating parameters by specified
characteristics of boundary conditions and flow distribution model. It is
shown that such a calculation is reduced to solving a traditional problem
of flow distribution at the point of mathematical expectation of boundary
conditions in combination with an additional procedure for calculating
covariance matrices of operating parameters;

- a technique for obtaining the analytical expressions for covariance
matrices of operating parameters as well as the expressions for the
general case of specifying boundary conditions;

- a technique for probabilistic modeling of  changes in the hydraulic
operating parameters on the basis of developed analytical probabilistic
flow distribution models. This technique provides a considerable
reduction in computational efforts against the known methods of
simulation modeling.

2. The suggested technique for modeling pipeline systems provides the
possibility of obtaining probabilistic estimates of practically any pipeline
system operating parameters that depend on operating conditions.

Figure 5. Illustration to the calculation of probability of providing consumer with a
required flow rate: a) at node  2, b) at node 3.

Q – Calculated value of mathematical expectation of consumer flow rate considering
its dependence on nodal pressure, Qr– required value of consumer  flow rate.

Qr Q

a)p

QrQ

b)p
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3. A numerical example of probabilistic calculation of the steady flow
distribution in the pipeline system is given for the general case of
boundary conditions. The example illustrates the suggested probabilistic
approach.
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