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Abstract. It is admissible that most of the plasma literature is concerned with the plasma 

instabilities and the inevitable plasma waves, which remain standard obstacles to the 

thermonuclear fusion process. Many experimental data on the plasma waves (growth or 

damping) and their accompanied theoretical interpretations have been published during 

the last five decades; lots of them have been identified and justified as well, some not yet. 

Among them our previous research on the plasma waves is included, which originates in 

the early 80’s at the Plasma Physics Laboratory of the NCSR ‘’ Demokritos’’. As the 

wave rising is defined by the growth rate (or the damping on the extinguishment), these 

important wavy quantities have been studied in detail in the present paper. Three 

examples have been used from our previous theoretical results, and the first observation 

reveals that the involved quantities are complicated enough to be studied themselves. So, 

the use of suitable approaching models, which may interpret the experimental wavy 

quantities, is the central idea of the present attempt. Furthermore, calculations with a 

little change of the initial conditions have been repeated, to determine that the plasma 

behaves as a chaotic medium.  

 

1.  Introduction  

 

It is common experience that the plasma wave growth rate or  damping has almost 

always a complicated form [1-3], as the involved physical quantities are multi-parametric 

and very hard to be considered as separate, and also influence one another through the 

feed-back process [4,5]. Such plasma waves have been observed in the early 60’s [6-9] 

and their growth has been studied as well; as time passed their wavy properties have been 

studied extensively and the plasma waves have been recognized and  classified as 

electrostatic waves [10,11], drift waves [12,13], Alfven waves [14], short-wavelength 

electron plasma waves [15], long-wavelength waves [10-14, 16], ion-sound waves [17], 

e.t.c. All the above mentioned cases have been researched and their results have been 
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carried out by considering and finding an exponential change on time of the plasma 

quantities (plasma density, plasma potential, ions and electrons velocity e.t.c.). If the 

thoughts are extended in the other areas of Physics, then we can find many examples 

with exponential change on the time usually and, sometimes, on the space dimension as 

well. For the first case the extinguishing of the oscillations by considering a resistance 

proportional to the vibrated mass velocity [18, 19], the charge and discharge law of the 

capacitor from a d.c. generator through a resistance and the establishment or interruption 

of the d.c. current on a wrapper (the known time-circuits), the radioactive conversions 

Law from the Nuclear Physics [20] are mentioned. Afterwards, for the second case it is 

enough to mention the absorption law of the radiation from an absorbent material.  

The need for an approaching solution of the differential equations for every problem, 

which describes the change on time or space, is indispensable and the proposed 

mathematical models have the ambition to alleviate the  problem. In the first approach, 

the solution of such kind of problems is limited in the exponential known forms- 

functions, where the equalization factor is considered as ‘’constant’’, and this convenient 

and easy acceptance results in direct deductions. However, the stability of this kind of 

‘’constants’’ must be put under scrutiny as some results of this acceptance may rise 

doubts. So, the equalization factor must not be considered as a constant, but as lightly 

changeable in different ways.   

In the present work three such examples have been given [21, 22], although the purpose 

of our team is to shape a full list of the models, which may be useful and easy for the 

experimental and theoretical researchers. So, the completion of the model list is the 

immediate future work, since the experimental confirmation is the difficult part of the 

completed research; this difficulty is caused by the little amount of time in the growth 

establishment, which is very large at the nuclear decays, as the making of the 

measurements must be methodical. 

These examples that are mentioned above were selected from the previous work on the 

plasma waves, which has been carried out at the our Plasma Laboratory  [23-25] and 

presented as the first involvement with the topic.  

 . 

The paper is organized as following: A brief description of our experimental device, the 

plasma production and the wave appearance is given in Sec.2. In Sec.3 the weakness of 

the simple radioactivity problem are given in detail. Afterwards, three characteristic 

models are studied in Sec.4, whereas the discussions and conclusions are made in Sec.5. 

Finally, in the two Appendix sections more details of the mathematical elaboration are 

given. 

 

 2. Plasma production – Waves Appearance 

 

A.  Experimental Set-Up Description 

A nearly 4m long  semi-Q machine has been installed in the Plasma Physics Laboratory 

of the NCSR  ‘Demokritos’ since four decades ago and many studies on the rf produced 

plasma have been carried out [21-25]. A steady steel cylindrical cavity of 6 cm internal 

diameter, with its’ length adaptable to any purpose, is used almost always, as it is 

preferable due to its’ cylindrical symmetry simplicity. The argon-plasma is usually 

produced due to the argon atoms inertia and its’ low penetration. A d.c. generator 

supplies the Q-machine with constant current into a wide value region and with high 

accuracy. So, the produced magnetic field along the cylindrical cavity axis has an 

inclination from the constant value smaller than 4% if the Q-machine electro-magnets are 

placed correctly. 

A low power Magnetron generator operates at constant value of the signal frequency 
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( GHz45.2 ) and supplies the plasma production with the indispensable energy into a 

wide region of the external magnetic field values (Table 1). 

Electrical probes, disk probes, double probes and probe arrays, which can be moved 

accordingly or not, provide the possibility of measuring the plasma quantities (plasma 

density, plasma temperature, plasma potential, plasma wave form, e.t.c.) in every point of 

the plasma column. Figure 1(a) shows a drawing of the Set-Up for better understanding 

and Fig.1 (b) presents a photograph of a similar experimental device.  

 

   

 
 

 
                              (a)                                   (b) 

 

 

 

Fig.1  The plasma cavity with probes is presented in (a), whereas a photo of the 

experimental device is shown in (b). 

 

 

 

B. Plasma production-Plasma Waves 

By using a combination of a rotary and a diffusion pump (Balzers type) connected with 

the cylindrical cavity, the argon pressure can be adjusted in order for the plasma to light 

within a wide region of values. In a previous publication [25], a complete study of the 

plasma external parameters , such as gas pressure, rf wave power and magnetic field 

intensity, has been given. In the present paper, the external parameters and the plasma 

quantities are summarized in Table 1. 
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   Table 1. The plasma parameters and plasma quantities ranging values 

Parameters Minimum value Maximum value 

Argon pressure p  Pa001.0  Pa1.0  

Argon number density, gn  315102 −× m  
317102 −× m  

Magnetic field intensity, B  mT10  mT200  
Microwaves’ power, P  

Frequency of the rf power (standard 

value) 

Watt20  

GHz45.2  

Watt120  
 

Electron density, 0n  315102 −× m  
315106.4 −× m  

Electron temperature, eT  eV5.1  eV10  

Ion temperature, iT  eV025.0  eV048.0  

Ionization rate %1.0  %90  
Electron - neutral collision frequency, eν  17102.1 −× s  

19103 −× s  

 

Among the other noteworthy findings of the thus produced plasma, are its’ stability, 

repetition, and the persistently rising low frequency electrostatic waves, many of which 

have become audible through the suitable conversion. The waves may have wave-vector 

component along the three axis originally, but, as the steady state is established, standing 

waves are seeking at the radial and cylinder axis direction, and the waves propagate only 

azimouthally.  

The study of these waves has been done theoretically [21,22,24] by using the fluid 

mechanics equations and its’ dispersion relation, the growth rate and damping have been 

also found. So, three types of dispersion relations and their growth rate are mentioned 

here; the first dispersion relation is the following, 

1
22

−+−Ω−Ω+Ω≅
D

R
s

i
DRil

U

U
Csjj

l
l

ν
ω )(  

with the growth rate, 

2
1 i

D

R
si

U

U
Cs

ν
ω −−=                  (2-1) 

where, DRi ΩΩΩ ,,  are the angular (circular) velocities for ions due to d.c. potential 

gradient, the rf field and the plasma density gradient, respectively.  In addition, there is 

i

eB
s

m

TK
C ≡2

 and
ρd

dn

n
s

0

0

.
1

≡ . 

Afterwards, the second one is, 

2

2222

2

2
)(

.

ce

cis

pi

pe

ee

Cuk
jku

ω

ω

ω

ω
νω

−−
+≅  

with the growth rate, 

2

2222

2

2
)(

.
ce

cis

pi

pe
ei

Cuk

ω

ω

ω

ω
νω

−−
=               (2-2) 



Chaotic Modeling and Simulation (CMSIM)  1:  109-128,  2014 113 

 

where,  eν are the electron-neutral collisions ,
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The first kind of waves is caused by the radial rf –field gradient [21,23], since the second 

and third kind are identified as electron-neutral and ion-neutral collisional waves, 

respectively [22]. 

Figure 2 shows a wave form and the frequency spectra of two electrical plasma waves; 

each spectrum consists of the fundamental frequency and its’ upper harmonics, in full 

accordance with the dispersion relations (2-1) and (2-2). Figure 2 (a) is the waveform 

[21], spectrum (b) for the wave caused by the rf-field radial gradient and spectrum (c) for 

the collisional wave. 

 

 

           
Fig.2. The wave form is shown in (a), whereas the wave spectra are presented in (b) and 

(c) for rf-drift and collisional wave, respectively. 

 

C. Experimental Data 

Although many phenomena appear on the plasma waves, most of which have been 

presented in the previous publications [21-25], in the present paper only the influence of 

the gas pressure on the wavy frequency and amplitude is mentioned; this is considered to 

be enough for the first fitting between an experimental given fact and a suitable model.  

The indispensable measurements were taken using an electrical probe placed in the 

middle of the cylinder radius and the argon was lighted in the following values of the  

external plasma parameters; magnetic field  intensity B=72 mT and microwave power 
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P=45Watts. The examined wave is the collisional one, which is described by the 

dispersion relation (2-2), and its' frequency and amplitude was taken from the spectrum 

on every pressure value. So, Table 2 is completed and the graphic is presented in Fig. 3. 

 

Table 2. The wave Frequency and Amplitude with Pressure values B=72mT, P=45Watts 

Gas Pressure (Pa) Wave Frequency (kHz) Wave Amplitude 

(Arbitrary Units 

0.001
 

122 2.9 

0.01 102 2.6 

0.02 85 2.3 

0.03 

0.04 

77 

65 
2.0 

1.8 

0.05 58 1.6 

0.06 50 1.4 

0.07 46 1.2 

0.08 46 1.2 

0.09 46 1.2 

0.1 46 1.1 

              

 

 
Fig.3. The wave frequency, and the wave amplitude by the gas pressure  increase, are 

presented in (a) and (b) curves, respectively. 

 

3. Physical Quantities with Exponential Changing-Models  

Many examples have been taken from other areas of Physics and not only to state the 

models for the exponentially changed quantities, which is the topic of the present study; 

the known Radioactive Conversion (Change) Law  is taken from the Nuclear Physics and 

the mortality problem is a clearly statistical subject. 
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The simple solution of the transitive problems 

An easily perceptible example is the solution of the radioactively-law problem. Although 

the solution of this problem is known since the early university lessons, let us repeat its’ 

solution here, for two basic reasons: i) to give the physical interpretation of every 

mathematical hypothesis or operation (action) and ii) to study the terms of  this simple 

problem, such as the conversion rate, sub-duplication time, semi-life time e.t.c. 

 

The problem situation:   

At the time 0=t , the unbroken radioactive nucleus are 0N . How many unbroken 

nucleus N  will still exist after the passing of the time t ? 

Starting by the given fact that in the moment of the time t the remaining unbroken 

nucleuses are N , an infinitesimal increase of the time by dt is considered. A 

consequence of this is the breaking off dN from the unbroken nucleuses (the 

infinitesimal increase of the time causes, infinitesimal decrease of the unbroken 

nucleuses). 

The next step is the seeking of the dependences of the dN change of the unbroken 

nucleuses on the other physical quantities. (the whole physical interest of the issue is 

concentrated on this point of the solution proceedings). These influences are the 

following: i) the dN  change is proportional to the time increase dt  (why?), ii) the dN  

change is proportional to the available quantity of the unbroken nucleuses N in that 

moment t . The change dN is proportional to the product of these two factors 

consequently, and in accordance with the following relation,  

 

                                              dtNdN .∝           (3-1) 

 

If it is considered that there are no other changeable physical quantities that influence 

the dN , an analogy constant λ (for the quantities units equalization) must be introduced 

to the above relation (3-1). So, the following differential equation is resulted, which fits 

the problem, 

dtNdN ..λ−=              (3-2) 

 

The constant λ , is named breaking off constant, depends on the breaking nuclear 

material, and its’ unit is the
1sec−

 . Το sign (-) is simply put due to the decrease of the 

remained unbroken nucleuses. 

Although the differential equation (3-2) is solved very easily, at the end of the paper 

Appendix A gives more details; its’ solution is the known relation, 

 

teNN .
0 . λ−=        (3-3) 
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The  Law’s (3-3) study 

 

1. sub-doubling time:  as sub-duplication time is defined the time
2

1tt =  at which 

the remaining unbroken nucleuses are half of the original ones,
2

0N
N =  . With the 

replacement of the pair of the values ( )
2

,
0

2
1

N
t on the relation (3-3)  it is found that, 
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and finally,                                  
λ
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In the same way the time of the sub-quadruplication
4

1t , for which the remaining 

unbroken nucleuses are
4

0N
N = , can be found. With the same mathematical thoughts, 

the following is resulted, 
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For the sub-eight time 
8

1t  it is found that, 

2
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8
1 .3

2ln38ln
tt ===
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Thinking that going from  
4

0N
 unbroken nucleuses to

8

0N
 is actually a sub-doubling, it 

is valid that, 

 

2
1

2
1

2
1

4
1

8
1 .2.3 ttttt =−=−          (3-7) 

 

 b) Broken nucleuses 

The broken nucleuses 
'N  are: )1.(. 0

.
000

' tt eNeNNNNN λλ −− −=−=−=   or  

 

)1.( .
0

' teNN λ−−=          (3-8) 

The drawing of the relations )(tNN =  (3-3) and  )('' tNN =  (3-8) is presented in 

Fig.4. 
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Fig.4. The )(tNN =   and  )('' tNN = drawing is presented 

 

c) Conversion rate 

The quotient
dt

dN
 is defined as conversion rate.  Consequently, the derivation of the 

relation (3-3) gives the conversion rate as following, 

 

NeN
dt

dN t
.)..(

.
0 λλ λ −=−= −

 

 

or     N
dt

dN
.λ−=      (3-9) 

 In  Fig.5 the conversion rate versus the time is presented graphically. 

 

Fig.5.  The conversion rate 
dt

dN
 versus the time t  is shown. 
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Observations-Comments:  

1.  The sub-doubling time remains constant, apart from the quantity of the unbroken 

radioactive nucleuses. 

2.  In accordance with the radioactively law (relation 3-3), when ∞=t  , the remaining 

unbroken nucleuses are nullified. 

3.  Τhe drawings of the remaining nucleuses 
teNN .

0 . λ−=  and the already broken ones 

)1( .
0

' teNN λ−−=  are symmetrical to the straight line
2

0N
=ψ  (Fig.3). 

 

3.  Cases-Models with no constant  λ  

In most cases the factor λ is not constant, but changeable by the time (quantities 

changeable by the time), sometimes in a small rate and other times in a big one. Let us 

consider the radioactively conversion again: two disputes of the results found from the 

previous solution can be placed here: i) the stability of the sub-life time 
2

1t , apart from 

the available number of the unbroken nucleuses N , and ii)  the total breaking off  all the 

available nucleuses. 

The physical perception obtained from the observation of related physical phenomena 

expects the sub-life time to decrease as the available unbroken nucleuses diminish, while 

the conversion proceedings have to stop leaving a small quantity of unbroken nucleuses. 

 

Nuclear breaking off with decreased factor λ  

Ι. Case 

Let us now consider that the factor λ   is not constant, but it has the following influence 

from the time, 

         

tµλλ −= 0       (4-1) 

 

where µ  is a constant measured in  
2sec−

. 

Repeating the formulation of the previous problem, where λ is considered as a constant, 

and, if at the moment t  the remaining unbroken nucleuses  are N , then, within the 

infinitesimal time dt , the change of the unbroken nucleuses dN  is given from the 

following relation, 

 

dtNdN ..λ−=    or      dtNtdN .).( µλ −−= 0    or                                                                      

                                   dtt
N

dN
).( µλ −−= 0          (4-2) 

The integration of the relation (4-2) gives the influence of time for the unbroken 

nucleuses evolution,  
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 The law's (4-3) study 

 

a) Semi-life time:  by putting 
2

1tt =   when
2

0N
N = , the equation  

02ln2.2.
2

10
2

2
1 =+− tt λµ   is obtained and its’ solution gives the semi-life time, 
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If it is put that 
4

1tt =  when
4

0N
N =  , in the same way as above the sub-quadruplication 

time is obtained,  

µ

µλλ 2ln42
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4
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From the last two relations (4-4) and (4-5) and by using the mathematical inducement 

method, it is easily proved that,  

2
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4
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b) Broken nucleuses: The broken nucleuses 
'N  are calculated from the difference       

NNN −= 0
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The drawing of the relations )(tNN =  (4-3) and the )('' tNN =  (4-7) is presented in 

Fig 6. 

c) Conversion rate:   The conversion rate 
dt
dN  is defined from the derivative of the 

relation (4-3). This derivative of the time is, 

2
0 .

2
.

00 )..(
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Fig.6. The )(tNN = (relation 4-3) and  )('' tNN = (relation 4-7) drawings are 

presented. 

 

 

d)  The relation (4-3) study 

  

   The derivative of the relation (4-3) gives the conversion rate, which is, 
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from the relation
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By setting  µ
λ0=t   the relation (4-9) gives,  

 



Chaotic Modeling and Simulation (CMSIM)  1:  109-128,  2014 121 

 

[ ] µ
λ

λ
µ

λµ

λλµµ
λ

0
02

2
0 ..

22
000

0
2

2

.)()(
−

−+== eNt
dt

Nd
      and, finally,                                                                                      

0...)( 2
0

0
2

2
2
0

φµ
λ

µµ
λ −

== eNt
dt

Nd
                                   (4-10) 

 

It is resulted from the relation (4-10) that the remaining unbroken nucleuses N  have a 

minimum value, which is, 

µ
λ

µ
λ 2

0
0

2
0

.)(
−

== eNtN              (4-11) 

In Fig.7 the change by the time of the factor )(tλ ,the unbroken nucleuses )(tN   and the 

conversion rate
dt

dN
 is presented.  

e)  Comments: By considering the conversion factor λ not constant but changeable by the 

time, the following advantages arise from the solution of the problem: 

 

1.  The sub-doubling time 
2

1t  does not remain constant, but it increases as the unbroken 

nucleuses diminish.  

2.  The initially available nucleuses 0N  are not broken in total, but there is a remaining 

quantity
µ

λ
2

0

2
0

.
−

eN  . 

3.  The solution of the problem and its’ results are general and include the results of the 

solution with tcons tan=λ , if it is set on the solution, where 0=µ . 

4.  The suggested change of the factor λ  is linear, which results to the solution being 

relatively simple, although slightly more complicated from what it is considered to be 

tcons tan=λ . 

5.  In the problem the change factor µ appears, which is experimentally determinable.  
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Fig.7. The factor )(tλ , the unbroken nucleuses )(tN  and the conversion rate 
dt

dN
 

versus the time t  is shown. 
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ΙΙ. Case  

Now, let us consider that the constant λ  is influenced by the remaining unbroken 

nucleuses N  (and consequently, indirectly from the time t ), in accordance with the 

relation,  

Nµλλ += 0         (4-12) 

Then the differential equation is written as following: 

dtNNdN .).( 0 µλ +−=       or           dt
NN

dN
−=

+ ).( 0 µλ
 

 

Integrating the last one, it is obtained that, 
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The above relation (4-13) has the solution: 
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 The  law's (4-14) study 

a)  sub-doubling time:   By setting into the (4-14) 
2
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N = , the next 

equation is obtained,  
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the solution of which gives the sub-doubling time, 
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If it is set that  
4

1tt =  when
4
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N =  , in the same way as above the following result is 

obtained again 
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From the last two relations (4-15) and (4-16) and by using the mathematical inducement 

method it is easily proved that, 
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b)   Broken nucleuses: The broken nucleuses
'N  are found from the difference 
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c) Conversion rate:  The conversion rate 
dt
dN  is calculated from the derivative of the 

relation (4-14). This derivative on the time is, 
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d)   The study of the relation (4-14) .  The derivation on time of the relation (4-14) is the 

relation (4-18), which is not zero at any moment except the point ∞=t .  The Ν(t) does 

not have extreme values consequently.  

 

4.  Interpretation of the results-Conclusions 

In Sec.2, Fig.3 represents the plasma wave frequency and wave amplitude decrease by 

the gas pressure increase; with a first look these two changes have exponential form, 

since the scrutiny leads to two significant observations; firstly, the required change of the 

pressure amount for the sub-duplication is not constant, but it increases along with the 

pressure increase; secondly, the wave frequency and amplitude are not nullified, but 

remain a sufficient quantity until the plasma is put out. The above results mean that the 

‘extinguishing factor’ λ is not constant, but changeable in some way. The curves of Fig. 

3 are similar enough to those of  Fig.s  6, 7b. 

Although the mechanism of the wave rising is very complicated and in most cases 

impossible to understand, the difficulty is treated partially by following the thoughts 

below. 

Every wave existence is caused by two antagonism factors. The first one is the cause 

(motive) for which the wave rises and is expressed by the growth rate. In the low 

frequency waves for example, the drift waves are caused in different gradients of the 

plasma quantities (plasma density, plasma temperature, d.c. potential e.t.c.). The second 

antagonism factor involves the wave damping and expresses the different ''resistances'', 

which may interfere with the wave transmission, as the collisions between the plasma 

particles (collision frequency). 

The above mentioned two factors appear together into the imaginary part iω of the wave 

frequency ω  in the previous three examples. In the equations (2-1) and  

(2-3) it is expressed with a sum,  
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since in the relation (2-2) it is formed as  a product.  
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The balance of the two factors secures the wave stability and the inclination from the 

equilibrium gives the growth or the damping, respectively. 

The problem rises as the calculated imaginary part of the wave frequency iω  is not 

constant but changeable on the time, at least during the wave establishment or 

extinguishing. The mutual-dependence of the plasma quantities which are involved in 

the iω , is impossible to find and express analytically, so the their modeling becomes 

necessary. 

In the present work such a modeling is set out with the ambition to be completed in the 

immediate future in a full list of models applicable on any actual experimental data. This 

approaching fitting between the model and the experimental data must be confirmed by 

using delay-time methods, as the wave establishment time is in most cases very limited. 

With the examples, which are included in the paper and have been taken from the other 

areas of the Physics (Nuclear Physics) the results are much more satisfactory and 

acceptable than those believed until now. 

In the end the conclusion is that; although the experimental confirmation of the present 

study's usefulness is feeble now, the effort for the models' development must continue 

and a list of those models must be composed. This means that the 'Demokritos' team 

haves to do theoretical future work on the same topic and experimental confirmation of 

the mathematic models. 

In any case, the experimental measurements are very difficult to be carried out; firstly, 

because of the very little time required for the establishment of the steady state of the 

plasma waves, and, secondly, due to the great amount of time required for a perceptible 

physical nuclear decay. 
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Appendix A 

Solution of the differential equation (3-2) 

The equation (3-2) is the simplest form of a differential equation with two changeable 

quantities ( tN , ), which can be divided into its’ two parts. So, the following is resulted, 

dt
N

dN
.λ−=            (A1) 
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The relation (A1) is integrated by parts in two ways: i) by defined integrals, if the 

changeable quantities’ limits are known, or ii) by indefinite integrals, adding the 

integration constant C . If the second method is prefered, the following is resulted, 

 

Cdt
N

dN
+−= ∫∫ .λ  

     

or               CtN +−= .ln λ              (A2) 

 

For the finding of the integration constant C , one values pair of the changeable 

quantities N and t  is enough to be known. One known pair of values in this problem is 

the original conditions, where, for 0=t , it is 0NN = . The replacement of the quantities 

t  and N on the equation (A2) with the above known values, gives the value of the 

constant as,  

 

0ln NC =     (A3) 

 

 By the substitution on the relation (A2), the following relation is resulted, 

                             

0ln.ln NtN +−= λ      or 

t
N

N
.ln

0

λ−=              (A4) 

And, finally, the known law of the radioactivity is obtained, 

 

teNN .
0 . λ−=   (A5) 

 

Appendix B 

Solution of the differential equation (4-13) 

By dividing the integral function of the first part of the (4-13) into smaller additives, two 

factors α and β are seeking for the following equality to be valid,  

NNNN .)..(

1

00 µλ
βα

µλ +
+=

+
         (B1) 

Finally, the two factors have the values,  
0

1
λα =  and

0λ
µβ −= , and the last 

relation is written,  

).(
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1

0000 NNNN µλλ
µ

λµλ +
−=

+        (B2) 

 

With the substitution of the relation (B2) into the (B1) one, it is obtained that,  

Cdt
N

dN

N

dN
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or                         ').ln(ln 00 CtNN +−=+− λµλ          (B3) 

 

The initial condition ( 0,0 NNt == ) determines the integration constant C΄ , which 

takes the value,           ).ln(ln' 000 NNC µλ +−=  

With substitution into the relation (B3) and by using suitable mathematical elaboration 

the following is obtained, 
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where is,     
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Captions 

Fig.1  The plasma cavity with probes is presented in (a), whereas a photo of the 

experimental device is shown in (b).  
 
Fig.2.  The wave form is shown in (a), whereas the wave spectra are presented in (b) and 

(c)  for rf-drift and collisional  wave, respectively. 

 

 Fig.3. The wave frequency, and the wave amplitude by the gas pressure  increase, are 

presented in (a) and (b) curves, respectively. 

 

Figure 4. The )(tNN =   and  )('' tNN = drawing is presented 

Fig.5.  The conversion rate 
dt

dN
 versus the time t  is shown. 

Fig.6. The )(tNN = (relation 4-3)  and  )('' tNN = (relation 4-7) drawings are 

presented. 

Fig.7. The factor )(tλ , the unbroken nucleuses )(tN  and the conversion rate 
dt

dN
 

versus the time t  is shown. 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


