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Abstract: A novel application of nonlinear time series analysis was developed thanks to 
the high-quality almost-continuous Kepler Space Telescope data. It makes it possible to 
distinguish  truly  random  from  under-sampled  signals  and  to  ascertain  whether  the 
selected sampling time is short enough to access all the complexity of the light curve 
using nonlinear time series analysis. This is true irrespective of whether the data are 
acquired in space or from the ground and the methodology is independent of the details 
of the data acquisition. 
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1   Introduction 
 

Gravity reigns in our Universe. And even in its Newtonian form, gravity is a 
nonlinear force. So one would expect astronomy to be the playground of the 
nonlinear time series analysis practitioner. (For a more detailed introduction to 
the methodology see Jevtic et al. (2005).) However, for nonlinear time series 
analysis, the requirements on the data are very stringent [7]: 

 
a) The observable has to couple all the active degrees of freedom. Thus energy, 

power and hence, in astronomy, brightness and luminosity are “good” 
variables. 

b) Data must be sampled uniformly. 
c) Data must be continuous. 
d) Data sets have to be as long as possible since the longer the data set the more 

efficient the methodology. 
e) The data should be finely digitized. 
f)  Data should yield access to a large dynamic range. 
g) There should be as little additive noise as possible. 
h) The nature of the process should not change during observation. 
 
As luck would have it brightness, the observable of choice in astronomy, is a 
“good” observable (a). Requirement (b) (with the exception of valiant efforts 
such as the Whole Earth Telescope) and requirements (c)  and  (d) are almost 
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never satisfied for astronomical data collected from the ground.  It has been 
possible to satisfy requirements (e) and (f) since the advent of CCDs which do 
single-photon counting and can accommodate large dynamic ranges with no 
difficulty.  The issue of noise (g) is a complex one, the distinction between 
dynamic and additive noise being a whole subfield. Dynamic noise can span the 
whole range of frequencies present and its identification is crucial to 
understanding such processes as granulation. The last requirement, (h), is 
completely out of our control. At best, all we can hope for is that the nature of 
the process does not change over the observation time. 

 
2  The Kepler Space Telescope as a source of variable-star data 

 
Launched  in  2009,  The  Kepler  Space  Telescope  was  designed  to  detect 
extrasolar Earth-like planets using the transit method.  The telescope has a 
modest 1.4 meter diameter mirror and 21 CCD modules with 2200x1024 pixel 
resolution. It is in a heliocentric Earth-trailing orbit with a period of 372.5 days 
that is slightly more eccentric (ε=0.03188) than that of the Earth.  With Kepler’s 
105 square-degree field-of-view (FOV), it is able to continuously monitor the 
brightness of nearly 200,000 stars [3,12] in our spiral arm of the Milky Way 
Galaxy in the direction of the constellation Cygnus with a search area extending 
about 3,000 light years and covering ~0.28 % of the sky. Though designed 
primarily for observing 9th  to 16th  magnitude stars, it can also collect data on 
stars outside this range with a bandpass of 430-890 nm. The photometric 
precision for the telescope is ~50 parts per million for a Kp = 12 magnitude 
G2V star when integrating for 30 minutes. 

 
Kepler’s observations are subdivided into quarters.  Two binning modes are 
available: “long cadence” (LC) with 28.5 min  (“30 min”)  bins and “short 
cadence” (SC) with 58.85 s (“one-minute”) bins [13]. 

 
Because the Kepler Space Telescope gives long, continuous data sets of large 
S/N for a wide range of variable stars processed in the same manner it is 
easy to make comparisons. Kepler Space Telescope data have been instrumental 
in our work on nonlinear time series analysis and were used to analyze the NGC 
6826 light curve in Jevtic at al. (2012) and (2011). 

 
3  Time-Delay Portrait and Reconstruction Parameters 

 
A standard method to explore nonlinear systems is a time-delay phase-space 
reconstruction. According to the embedding theorems [16, 17, 18] the geometry 
of this time-delay phase-space portrait is diffeomorphic to the geometry of the 
phase-space representation that would be obtained if the equations governing 
the system were known. This object can serve as a surrogate for the system. To 
obtain a time-delay phase-space portrait of a uniformly-sampled time series, the 
phase-space dimension and the time delay are first determined from the data. 
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3.1 Dimension of the Phase Space - False Nearest Neighbours 
 

The dimension of the reconstructed phase space is obtained using the False 
Nearest Neighbor (FNN) method [11]. This dimension is important because it is 
related to the number of degrees of freedom needed to model the system. 

 
3. 2 Time Delay - Average Mutual  Information 

 
The  optimal  time  delay  ensures  the   greatest  possible  independence  of 
coordinates in phase-space. It is chosen at a minimum of average mutual 
information [5].  Average mutual information (AMI) is the information-theory 
analog to the autocorrelation function that is more general in the statistical sense 
and represents the expectation of the average degree of interdependence 
incorporating all higher orders.  It is the amount of information (in bits) shared 
by the signal and its time shifted value averaged over the orbit. 

 
For a uniformly sampled time series such as a stellar light curve AMI is defined 
as: 

 

AMI (τ ) =
 

P(s(t ), s(t + τ )) log  
 P(s(t ), s(t + τ ))   

∑ 
s (t ), s (t +τ ) 

2  P(s(t )) P(s(t + τ ))  
 
(1) 

 
Here “s” is the sampled scalar time series and τ is the time delay. The range of 
the time series is divided into m sub-intervals and a histogram is obtained that 
yields the probability pi for a point to be in the interval i, the probability pj for a 
point to be in the interval j, and the joint probability pi,j that if sk is in interval i 
then sk+τ is in interval j. Whether the first, local, minimum or the global 
minimum best determine the optimal delay is still open to discussion. 

 
The optimal time delay for time-delay embeddings is at the minimum of AMI 
and ensures the greatest possible independence of axes in phase space. This 
ensures the greatest possible ”unfolding” i.e. the greatest amount of information 
about the system. However, AMI’s probabilistic nature gives it even wider 
applicability [4]. One such application is the use of AMI to preview the 
power spectrum under the noise as a guide for nonlinear noise reduction, This 
was discussed in Jevtic et al (2011).   We shall focus on a novel application 
unique to astronomy: estimating whether the sampling time is short enough to 
distinguish random from under-sampled signals. 

 
4  Distinguishing  Truly Random  from Under-Sampled Signals 

 
Space telescopes such as Kepler and Corot and the future TESS provide us with 
well-sampled  almost  noise-free  light  curves.  However,  for  the  foreseeable 
future, we sill continue to combine data from space and ground-based telescopes. 
It is not uncommon that the question arises whether the sampling rate 



14 Jevtic et al.  
 

with which we are observing variable targets is short enough to sample all the 
complexity of a process. Though an inspection of the light curve can often 
answer this question for stars whose light curves do not suffer from significant 
noise, a more general answer based on nonlinear dynamics may be obtained 
using phase-space reconstruction.  
 
Traditionally, time is not an explicit variable in phase-space. However, time on 
the order of the sampling time can be estimated  [10]  using  nonlinear  time  
series  analysis.  Initially  nonlinear  time series analysis developed in the search 
for chaotic systems where the focus was on finding dynamically related 
phenomena and avoiding time-correlations. This resulted in the prescription to 
select the time delay at the minimum of AMI and the injunction to avoid delay 
times that are too short for which time correlations dominate. The objective is 
to obtain an unfolded phase-space portrait so as to maximize the amount of 
information obtained.  In this context “unfolded” refers to a portrait that fills the 
largest fraction of phase space possible. If instead we focus on the shortest 
delays on the order of the sampling time, we obtain a tool to distinguish truly 
random from under-sampled signals. If a delay of the shortest available 
sampling time results in a phase-space portrait that is “unfolded” [7, 15]   i.e. 
fills a significant fraction of the phase space available, the sampling time is too 
long. If on the other hand, the points in phase space fall along one of the 
diagonals, the sampling time is short enough to properly sample the process. 

 
The two available sampling rates, long and short cadence available for the 
Kepler Space Telescope data have allowed us to explore and develop a tool that 
may be used to determine if the sampling time is short enough to sample the 
dynamics properly. 

 
 
 

5  Under-sampled vs. Optimally  Sampled Light Curves 
 

5.1 The Central Star of Planetary Nebula NGC 6826 
 

The central star of planetary nebula NGC 6826 [10, 6] (KIC 12071221) was 
observed by the Kepler Space Telescope in both long and short sequence. The 
phase-space portrait for one month of long-cadence data with nonlinear noise 
reduction for a delay of one is shown in Fig. 1.a. The 3D phase-space portrait is 
unfolded indicating that the sampling time of ~30 min is too long. The time- 
delay phase space portrait of a month of short-cadence data with a delay of one 
sampling time is shown in Fig. 1.b. The points lie along a diagonal, indicating 
that the short-cadence sampling rate is short enough to capture all the dynamics. 
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Fig. 1.a Unfolded phase-space portrait 
of a month of nonlinear noise reduced 
long-cadence data with a delay of one 
sampling time 

Fig. 1.b Time-delay phase space 
portrait of a month of short-cadence 
data with a delay of one sampling time 

 
 

The difference between the long and short cadence light curves, due to 
contributions at the higher frequencies, is observable due to the higher 
resolution of the latter.  For the range of frequencies accessible for the long-
cadence  data,  the  power  spectra  are  comparable  for  the  two sampling 
times. 

 
5. 2 A δ-Scuti Star in a Triple-Star System 

 
A starker example is that of KIC 4840675, a triple system with a rapidly- 
rotating A-type δ-Scuti variable and two solar-type fainter companions [2]. 

 
A section of the light curve for the long-cadence data is shown in Fig. 2.a. The 
fact that the sampling time is too long can easily be observed. The three- 
dimensional portrait of this data is shown in Fig. 2.b. where the phase-space 
portrait looks unfolded. 

 
A section of the light curve for the short-cadence data during the same month is 
shown in Fig. 3.a. The three-dimensional portrait of this data is shown in Fig. 
3.b. where all the points are clustered around the diagonal. When Fig.2 and 3 are 
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Fig. 2.a Section of long-cadence light 
curve 

 
 

 
 
 
 
 
 
 
 

 
Fig. 2.b Time-delay phase space 
portrait of a month of long-cadence 
data with a delay of one sampling time 
(~30 min). 

 
 
 
 

 
Fig. 3.a Section of short-cadence light 
curve 

Fig.  3.b  Time-delay  phase  space 
portrait of a month of short-cadence 
data with a delay of one sampling time 

 
 

compared, it is easy to observe that in the short-cadence data the sampling time 
is sufficiently short to access the variations on all the time scales. 
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5. 3 The Only Kepler White Dwarf – KIC 8626021 
 
 

 
 
Fig.4.a  Time-delay  phase  space 
portrait of a month of long-cadence 
data with a delay of one sampling time 
(~30 min).  

 
 
 
 
 
 
 
 
 
 
 
Fig. 4.b Time-delay phase space 
portrait of a month of noise reduced 
short-cadence data with a delay of one 
sampling time (~ 1min) 

 
 

For comparison, we also look at the magnitude Kp=18  KIC 8626021, the only 
identified pulsating white dwarf in the Kepler Space Telescope [14] field. 
Pulsating, white dwarfs can pulsate with frequencies on the order of 1 min. 
This is the case for KIC 8626021 that has a dominant period of 3.2 minutes. 
The three-dimensional portraits of the long and short cadence data are shown in 
Fig. 4.a and Fig. 4.b, respectively. However, here for the short cadence data the 
points do not line up along the diagonal. No structure can be observed either. 
One possible interpretation is that even the short cadence time is still too long to 
properly access information. However, this target has a magnitude of 18 so a 
significant noise contribution can’t be ruled out. 

 
6  From the Ground: Observations of PG1351+489 

 
As a test case we look at Whole Earth Telescope XCov12 observations of 
PG1351+489 [1] with two binning times of 30s (WET) and 10s (A. Kaanan). 
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Fig.  5.a  Phase-space  portrait  for  a 
delay of one of the 10s binning with 
noise  reduction  (pca  eigenvalues 
1:27:370) 

Fig.  5.b  Phase-space  portrait  for  a 
delay of one of the 30s binning with 
noise  reduction  (pca  eigenvalues 
1:4:106). 

 
 

The phase-space portraits for a delay of one in three dimensions for 10s and 30s 
binning with noise reduction are shown in Fig. 5.a and 5.b, respectively.  These 
light curves were obtained at different observatories and normalized differently 
requiring a principle component decomposition for the comparison. For the 10s 
binned data the eigenvalues in respect to the largest component are 1:27:370. For 
the 30s binned data the eigenvalues in respect to the largest component are 
1:4:106 indicating that the 10s binning may still be too long. 

 
7  Conclusions 

 
When data are collected from a controlled experiment in the laboratory, it is 
easy to choose the optimal sampling time.  When observing stellar objects, we a 
priori do not know down to what time scale is needed to access all the 
information about the source. The Kepler Space Telescope light curves have 
allowed us to explore this problem. On an example of ground-based data 
obtained at different observatories with different processing we show that time- 
delay reconstruction can be used to reliably estimate when sampling time is 
short enough to capture all the complexity of a signal. Since it is based on the 
dynamics at the source, this approach will particularly be useful for longer-term 
periodic targets observed from the ground. 
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