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1 Introduction

Let (Ω,F , P ) be a random space. We consider the Cauchy problem for the
systems of differential equations with stochastic perturbations :

∂X(t, x)

∂t
= A

(
i
∂

∂x

)
X(t, x) +BW(t, x), t ∈ [0, T ], x ∈ R, (1)

X(0, x) = f(x), (2)

where A
(
i ∂∂x
)

is a matrix operator: A
(
i ∂∂x
)

=
{
Ajk

(
i ∂∂x
)}m
j, k=1

generating

different type systems in the Gelfand-Shilov classification [3], Ajk
(
i ∂∂x
)

are lin-
ear differential operators in L2(R) of finite orders; W = {W(t), t ≥ 0} is a ran-
dom process of white noise type in Ln2 (R): W(t) = (W1(t, x, ω), . . .Wn(t, x, ω)),
x ∈ R, ω ∈ Ω; B is a bounded linear operator from Ln2 (R) to Lm2 (R); f is an
Lm2 (R)-valued random variable; X = {X(t), t ∈ [0, T ]} is an Lm2 (R)-valued
stochastic process X(t) = (X1(t, x, ω), . . . Xm(t, x, ω)), x ∈ R, ω ∈ Ω, which is
to be determined.
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This problem usually is not well-posed for several reasons. The first one
is caused by the fact that the differential operators A

(
i ∂∂x
)

generally do not
generate semigroups of class C0 and the corresponding homogeneous Cauchy
problem is not uniformly well-posed in Lm2 (R), they generate only some regu-
larized semigroups. By this reason we look for a regularized solution of (1)–(2).
The second reason is the irregularity of a white noise process, because of this
we need to consider not the original equation (1) but the integrated one, that is
an equation in the Ito form with a Wiener process W being a kind of primitive
of white noise W:

X(t, x) = f(x) +

∫ t

0

A

(
i
∂

∂x

)
X(τ, x) dτ +BW (t, x), t ∈ [0, T ], x ∈ R. (3)

In addition, we can not expect the stochastic inhomogeneity be in the domain
of A

(
i ∂∂x
)
, by this reason we have to explore weak regularized solutions to the

integrated problem (3).

2 Necessary definitions and preliminary results

We consider the problem (1)–(2) as an important particular case of the abstract
Cauchy problem

X ′(t) = AX(t) +BW(t), t ∈ [0, T ], X(0) = f, (4)

and the problem (3) as that of the abstract integral one (written as usually in
the form of differentials):

dX(t) = AX(t)dt+BdW (t), t ∈ [0, T ], X(0) = f, (5)

with A being the generator of a regularized semigroup in a Hilbert space H, es-
pecially an R-semigroup (see, exp., Melnikova[4], Melnikova and Anufrieva[6]).
Thus, we continue investigations of Da Prato[2], Melnikova et al. [5], Alshan-
skiy and Melnikova[1]. We assume in this paper H = Lm2 (R).

Definition 1. Let A be a closed operator and R be a bounded linear operator
in Lm2 (R) with a densely defined R−1. A strongly continuous family S :=
{S(t), t ∈ [0, τ)}, τ ≤ ∞, of bounded linear operators in Lm2 (R) is called an
R-regularized semigroup (or R-semigroup) generated by A if

S(t)Af = AS(t)f, t ∈ [0, τ), f ∈ domA, (6)

S(t)f = A

∫ t

0

S(τ)f ds+Rf, t ∈ [0, τ), f ∈ Lm2 (R). (7)

The semigroup is called local if τ <∞.

Definition 2. LetQ be a symmetric nonnegative trace class operator in Ln2 (R).
An Ln2 (R)-valued stochastic process {W (t), t ≥ 0} is called a Q-Wiener process
if

(W1) W (0) = 0 Pa.s. ;
(W2) the process has independent increments W (t)−W (s), 0 ≤ s ≤ t,

with normal distribution N (0, (t− s)Q);
(W3) W (t) has continuous trajectories Pa.s.
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Definition 3. Let {Ft, t ≤ ∞} be a filtration defined by W . An Lm2 (R)-valued
Ft-measurable process X = {X(t), t ∈ [0, T ]} is called a weak R-solution of
the problem (3) with A

(
i ∂∂x
)

generating an R-semigroup {S(t), t ∈ [0, τ)} in
Lm2 (R) if the following conditions are fulfilled:

1) for each t ∈ [0, T ], k = 1,m,
∫ t
0
‖Xk(·, τ)‖L2(R) dτ <∞ Pa.s.;

2) for each g ∈ domA∗, X satisfies the weak regularized equation :

〈X(t), g〉 = 〈Rf, g〉+

∫ t

0

〈X(τ), A∗g〉 dτ + 〈RBW (t), g〉 Pa.s. , t ∈ [0, T ]. (8)

It is proved by Melnikova and Alshanskiy[1] that a weak R-solution of the
abstract stochastic Cauchy problem (5) with densely defined A being the gener-
ator of an R-semigroup and W being a Q-Wiener process exists and is unique.
In the case of the problem (3) this result is as follows.

Theorem 1. Let {W (t), t ≥ 0} be a Q-Wiener process in Ln2 (R) and A
(
i ∂∂x
)

be the generator of an R-semigroup {S(t), t ∈ [0, τ)} in Lm2 (R) satisfying the
condition ∫ t

0

‖S(τ)B‖2HS dτ <∞, (9)

where ‖ · ‖HS is the norm in the space of Hilbert-Schmidt operators acting from

the space Q
1
2Ln2 (R) to Lm2 (R). Then for each F0-measurable Lm2 (R)-valued

random variable f

X(t) = S(t)f +

∫ t

0

S(t− τ)B dW (τ), t ∈ [0, T ], (10)

is the unique weak R-solution of (5).

We see in (10) that the main part of constructing an R-solution is con-
structing an R-semigroup generated by A. It is not an easy task to construct
R-semigroups generated by given operators A in the general case. But for dif-
ferential operators A

(
i ∂∂x
)

such semigroups can be constructed and we describe
a way to do this in the present paper.

Our methods are based on investigations of the differential systems:

∂u(t, x)

∂t
= A

(
i
∂

∂x

)
u(t, x), t ∈ [0, T ], x ∈ R, (11)

provided by the generalized Fourier transform technique in [3]. So, let us apply
the Fourier transform to the system (11) and consider the dual one:

∂ũ(t, s)

∂t
= A(s)ũ(t, s), t ∈ [0, T ], s ∈ C. (12)

Let the functions λ1(·), . . . , λm(·) be characteristic roots of the system (12)
and Λ(s) := max

1≤k≤m
<λk(s), s ∈ C. Then solution operators of (12) have the

following estimation

etΛ(s) ≤
∥∥∥etA(s)

∥∥∥
m
≤ C(1 + |s|)p(m−1)etΛ(s), t ≥ 0, s ∈ C. (13)
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Definition 4. A system (11) is called
1) correct by Petrovsky if there exists such a C > 0 that Λ(σ) ≤ C, σ ∈ R;
2) conditionally–correct if there exist such constants C > 0, 0 < h < 1,

C1 > 0 that Λ(σ) ≤ C|σ|h + C1, σ ∈ R;
3) incorrect if the function Λ(·) grows for real s = σ in the same way as for

complex ones: Λ(σ) ≤ C|σ|p0 + C1, σ ∈ R.

Finally, note that the operator i ∂∂x is self-conjugate in L2(R):
(
i ∂∂x
)∗

= i ∂∂x .
Hence the differential operator of (1) has the following conjugate one

A∗
(
i
∂

∂x

)
=

{
Akj

(
i
∂

∂x

)}m
k,j=1

,

obtained of {Ajk
(
i ∂∂x
)
}mj,k=1 by replacing components with conjugate operators

and by further transposition.

3 Construction of R-semigroups generated by A
(
i ∂
∂x

)
Since for the problem (12) solution operators of multiplication by etA(·), t ≥ 0,
generally have an exponential growth (13), one can not obtain propagators of
the problem (11) in the framework of the classical inverse Fourier transform.
That is why we introduce an appropriate multiplierK(·) into the inverse Fourier
transform :

GR(t, x) :=
1

2π

∫ ∞
−∞

eiσxK(σ)etA(σ) dσ, (14)

providing the uniform convergence of this integral with respect to t ∈ [0, T ] in
Lm2 (R)× Lm2 (R) =: Lm2 . For this purpose we require K(·)etA(·) ∈ Lm2 .

The matrix-function GR(t, x) obtained in (14) is a regularized Green func-
tion. If its convolution with f is well-defined, then the convolution gives a
regularized solution of (11). In addition to the above condition, we introduce
K(·) providing∫ ∞

−∞
eiσxK(σ)etA(σ)f̃(σ) dσ ∈ Lm2 (R), t ∈ [0, T ], (15)

for each f̃ ∈ Lm2 (R). These conditions hold, for example, if K(·)etA(·) ∈ Lm2
and is bounded.

Now we show that the family of convolution operators with GR(t, x):

(S(t)f)(x) := GR(t, x) ∗ f(x), t ∈ [0, τ), (16)

forms a local R-semigroup in Lm2 (R) for any τ <∞. To begin with, we verify
the strong continuity property of the family {S(t), t ∈ [0, T ]}, T < ∞ : for
arbitrary f ∈ Lm2 (R) we show that ‖S(t)f − S(t0)f‖Lm

2 (R) → 0 as t→ t0.

‖S(t)f − S(t0)f‖2Lm
2 (R) =



Chaotic Modeling and Simulation (CMSIM) 1: 49–56, 2014 53

=

∫
R

(
1

2π

∫ ∞
−∞

eiσxK(σ)
[
etA(σ)f̃(σ)− et0A(σ)f̃(σ)

]
dσ

)2

dx.

Let us split the inner integral into the three integrals:∫
|σ|≥N

eiσxK(σ)etA(σ)f̃(σ) dσ −
∫
|σ|≥N

eiσxK(σ)et0A(σ)f̃(σ) dσ

+

∫
|σ|≤N

eiσxK(σ)
[
etA(σ) − et0A(σ)

]
f̃(σ) dσ. (17)

Note that the functions hN (x, t) :=

∫
|σ|≥N

eiσxK(σ)etA(σ)f̃(σ) dσ and

gN (x, t) :=

∫
|σ|≤N

eiσxK(σ)
[
etA(σ) − et0A(σ)

]
f̃(σ) dσ

are elements of Lm2 (R) for all t ∈ [0, T ] as the inverse Fourier transform of the
functions from Lm2 (R)

h̃N (σ, t) =

{
0, |σ| ≤ N,

K(σ)etA(σ)f̃(σ), |σ| > N,

and g̃N (σ, t) = K(σ)etA(σ)f̃(σ) − h̃N (σ, t), respectively. Further, since

K(·)etA(·) ∈ Lm2 and f̃(·) ∈ Lm2 (R), the integral (15) is convergent uniformly
with respect to x ∈ R and t ∈ [0, T ], then for any ε > 0

|hN (x, t)| < ε/4, x ∈ R, t ∈ [0, T ],

by the choice of N . So, sum of absolute values of the first two integrals in (17)
is less than ε/2. Now fix N . Since

(
e(t−t0)A(σ) − 1

)
→ 0 as t → t0 uniformly

with respect to σ ∈ [−N,N ], we can take

|gN (x, t)| < ε/2, x ∈ R, t ∈ [0, T ].

To obtain the estimate for

‖S(t)f − S(t0)f‖2Lm
2 (R) =

1

4π2

∫
R

(hN (x, t)− hN (x, t0) + gN (x, t))
2
dx

we consider the difference hN (x, t)− hN (x, t0) =: ∆N (x, t, t0), t, t0 ∈ [0, T ], as
a single function, then ∆N (·, t, t0) ∈ Lm2 (R) and for a fixed N by the choice of
t0, |∆N (x, t, t0)| < ε/2, x ∈ R. In these notations we have:

4π2‖S(t)f − S(t0)f‖2Lm
2 (R) =

=

∫
R
∆2
N (x, t, t0) dx+ 2

∫
R
∆N (x, t)gN (x, t, t0) dx+

∫
R
g2N (x, t) dx.

On the way described above one can show that every of these three integrals is
an infinitesimal value. That is the integrals over the infinite intervals |x| > M
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are small by the choice of M because of their uniform convergence with respect
to t ∈ [0, T ]. Integrals on compacts [−M,M ] are small because the integrands
are small, that provided by the sequential choice of M and t ∈ [0, T ]. This
completes the proof that operators of the family (16) are strongly continuous.

Next, we show that the obtained operators commute with A
(
i ∂∂x
)

on f ∈
domA

(
i ∂∂x
)
. By properties of convolution, a differential operator may be ap-

plied to any components of convolution, so we applyA
(
i ∂∂x
)

to f ∈ domA
(
i ∂∂x
)
:

A

(
i
∂

∂x

)
(S(t)f)(x) = GR(t, x) ∗A

(
i
∂

∂x

)
f(x) = S(t)A

(
i
∂

∂x

)
f(x).

Hence, the equality (6) holds. In conclusion, we show the R-semigroup equation
(7). For an arbitrary f ∈ domA

(
i ∂∂x
)

consider the equality:

∂

∂t
(S(t)f)(x) =

∂

∂t
[GR(t, x) ∗ f(x)] =

1

2π

∂

∂t

∫ ∞
−∞

eiσxK(σ)etA(σ)f̃(σ) dσ.

Since the integral converges uniformly with respect to t ∈ [0, T ], we can differ-
entiate under the integral sign :

∂

∂t
(S(t)f)(x) =

1

2π

∫ ∞
−∞

eiσxK(σ)etA(σ)A(σ)f̃(σ) dσ.

The condition f ∈ domA
(
i ∂∂x
)

provides A(·)f̃(·) ∈ Lm2 (R), hence the inverse

Fourier transform of A(σ)f̃(σ) is A
(
i ∂∂x
)
f(x) and

∂

∂t
(S(t)f)(x) = GR(t, x) ∗A

(
i
∂

∂x

)
f(x) =

= A

(
i
∂

∂x

)
[GR(t, x) ∗ f(x)] = A

(
i
∂

∂x

)
(S(t)f)(x).

Integration with respect to t gives the equality

(S(t)f)(x)− (S(0)f)(x) =

∫ t

0

A

(
i
∂

∂x

)
(S(τ)f)(x) dτ.

Since A
(
i ∂∂x
)

is closed in Lm2 (R) and differentiable functions are dense there,
this equality holds for any f ∈ Lm2 (R) :

(S(t)f)(x)− (S(0)f)(x) = A

(
i
∂

∂x

)∫ t

0

(S(τ)f)(x) dτ, t ∈ [0, T ].

Put operator R in Lm2 (R) equal to S(0), then by the strong continuity property,

Rf(x) =
1

2π

∫ ∞
−∞

eiσxK(σ)f̃(σ) dσ.

So, we have an R-semigroup generated by A
(
i ∂∂x
)

constructed in Lm2 (R).
Now for all types of systems (11) – correct by Petrovsky, conditionally-

correct and incorrect – we introduce appropriate correcting functions K(σ) as
follows:
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- for systems correct by Petrovsky we take K(σ) = 1
(1+σ2)d/2+1 , where d =

p(m− 1),

- for conditionally-correct systems we take K(σ) = e−a|σ|
h

, where a > const·T ,
- for incorrect systems — K(σ) = e−a|σ|

p0
, where a > const · T .

4 Some remarks on generalized solutions and solutions
of quasi–linear equations

In the previous section we have studied R-solutions to the problem (5) with dif-
ferential operators A

(
i ∂∂x
)

that are generators of R-semigroups in H = Lm2 (R),
and we focused ourselves on the construction of these R-semigroups. If not a
regularized, but a genuine solution of the problem is needed, then we have to
construct the solution in spaces, where operator R−1 is bounded.

How difficult it is to construct R-semigroups in general, we have noted.
Constructing the required spaces in the general case, the same challenge. Nev-
ertheless, in the case of the differential operators A

(
i ∂∂x
)

suitable spaces can be
chosen among those constructed by Gelfand[3] on the basis of the generalized
Fourier transform technique. If to take f being an Lm2 (R)-valued random vari-
able, for systems correct by Petrovsky we can construct a generalized solution
X(t, ·, ω) = (X1(t, ·, ω), . . . Xm(t, ·, ω)), t ∈ [0, T ], ω ∈ Ω, in S ′×· · ·×S ′, where
S ′ is known as the space of tempered distributions. For conditionally-correct

systems these are spaces
(
Sα,Aβ,B

)′
of distribution increasing exponentially with

order 1/β dual to Sα,Aβ,B — the space of all infinitely differentiable functions
satisfying the condition : for any ε > 0, δ > 0

|xkϕ(q)(x)| ≤ Cε, δ(A+ ε)k(B + δ)qkkαqqβ , k, q ∈ N0, x ∈ R,

with a constant Cε, δ = Cε, δ(ϕ). And for incorrect systems the required space
is Z ′, that is dual to the space Z of all entire functions ϕ(·) of argument z ∈ C,
satisfying the condition

|zkϕ(z)| ≤ Ckeb|y|, k ∈ N0, z = x+ iy ∈ C,

with some constants b = b(ϕ), Ck = Ck(ϕ).

Now consider the Cauchy problem for a quasi–linear equation :

dX(t) = AX(t)dt+ F (t,X)dt+BdW (t), t ∈ [0, T ], X(0) = f, (18)

with A being the generator of an R-semigroup in a Hilbert space H, in par-
ticular with A = A

(
i ∂∂x
)

generating one of the constructed R-semigroups in
H = Lm2 (R). Here F (t,X) is a nonlinear term satisfying the following condi-
tions:

(F1) ‖F (t, y1) − F (t, y2)‖H ≤ C‖y1 − y2‖H , t ∈ [0, T ], y1, y2 ∈ H (the
Lipschitz condition);

(F2) ‖F (t, y)‖2H ≤ C‖1 + y‖2H , t ∈ [0, T ], y ∈ H (the growth condition).

Let us introduce a definition of a mildR-solution for the quasi–linear Cauchy
problem (18). In the sense of this paper terminology it will be a strong solution.
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Definition 5. An H-valued Ft-measurable process {X(t), t ∈ [0, T ]}, X(t) =
X(t, ω), ω ∈ Ω, is called a mild R-solution of the problem (18) with A gener-
ating an R-semigroup S := {S(t), t ∈ [0, τ)} if

1)
∫ T
0
‖X(τ)‖H dτ <∞ Pa.s.;

2) for each t ∈ [0, T ], X(t) satisfies the following equation

X(t) = S(t)f +

∫ t

0

S(t− s)F (s,X(s)) ds+

∫ t

0

S(t− s)B dW (s) ds Pa.s. (19)

A unique mild R-solution to (18), in particular to the problem with A =
A
(
i ∂∂x
)

and with F satisfying the conditions (F1)–(F2), can be constructed
by the method of successive approximations, similarly to the case of strongly
continuous semigroups considered by Da Prato[2] and Ogorodnikov[8].

As for mild solutions, they can be obtained only in spaces, where operator
R−1 is defined, and similarly to the case of the linear problem above, these
spaces must be special spaces of generalized functions or even more general
spaces, where nonlinear operations on generalized functions are possible. That
is the problem for further investigations. The beginning to the investigations
of generalized solutions to quasi-linear problems

X ′(t) = AX(t) + F (t,X) +BW(t), t ≥ 0, X(0) = f,

was laid in the paper Melnikova and Alekseeva[7] due to construction of abstract
stochastic Colombeau spaces.
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