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Dynamics of multiple pendula without gravity
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Abstract. We present a class of planar multiple pendula consisting of mathematical
pendula and spring pendula in the absence of gravity. Among them there are systems
with one fixed suspension point as well as freely floating joined masses. All these
systems depend on parameters (masses, arms lengths), and possess circular symmetry
S1. We illustrate the complicated behaviour of their trajectories using Poincaré sec-
tions. For some of them we prove their non-integrability analysing properties of the
differential Galois group of variational equations along certain particular solutions of
the systems.
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1 Introduction

The complicated behaviour of various pendula is well known but still fascinating,
see e.g. books [2,3] and references therein as well as also many movies on youtube
portal. However, it seems that the problem of the integrability of these systems
did not attract sufficient attention. According to our knowledge, the last found
integrable case is the swinging Atwood’s machine without massive pulleys [1]
for appropriate values of parameters. Integrability analysis for such systems is
difficult because they depend on many parameters: masses mi, lengths of arms
ai, Young modulus of the springs ki and unstretched lengths of the springs.
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Fig. 1. Simple double pendulum.

In a case when the considered system has
two degrees of freedom one can obtain many
interesting information about their behaviour
making Poincaré cross-sections for fixed values
of the parameters.

However, for finding new integrable cases
one needs a strong tool to distinguish values of
parameters for which the system is suspected
to be integrable. Recently such effective and
strong tool, the so-called Morales-Ramis theory
[5] has appeared. It is based on analysis of dif-
ferential Galois group of variational equations

Received: 29 March 2013 / Accepted: 23 October 2013
c© 2014 CMSIM ISSN 2241-0503



58 Szumiński

obtained by linearisation of equations of motion along a non-equilibrium par-
ticular solution. The main theorem of this theory states that if the considered
system is integrable in the Liouville sense, then the identity component of the
differential Galois group of the variational equations is Abelian. For a precise
definition of the differential Galois group and differential Galois theory, see, e.g.
[6].

The idea of this work arose from an analysis of double pendulum, see Fig. 1.
Its configuration space is T2 = S1 × S1, and local coordinates are (φ1, φ2)
mod 2π. A double pendulum in a constant gravity field has regular as well as
chaotic trajectories. However, a proof of its non-integrability for all values of
parameters is still missing. Only partial results are known, e.g., for small ratio
of pendulums masses one can prove the non-integrability by means of Melnikov
method [4]. On the other hand, a double pendulum without gravity is integrable.
It has S1 symmetry, and the Lagrange function depends on difference of angles
only. Introducing new variables θ1 = φ1 and θ2 = φ2 − φ1, we note that θ1 is
cyclic variable, and the corresponding momentum is a missing first integral.

The above example suggests that it is reasonable to look for new integrable
systems among planar multiple-pendula in the absence of gravity when the S1
symmetry is present. Solutions of such systems give geodesic flows on product
of S1, or products of S1 with R1. For an analysis of such systems we propose
to use a combination of numerical and analytical methods. From the one side,
Poincaré section give quickly insight into the dynamics. On the other hand,
analytical methods allow to prove strictly the non-integrability.

In this paper we consider: two joined pendula from which one is a spring
pendulum, two spring pendula on a massless rod, triple flail pendulum and
triple bar pendulum. All these systems possess suspension points. One can also
detach from the suspension point each of these systems. In particular, one can
consider freely moving chain of masses (detached multiple simple pendula), and
free flail pendulum. We illustrate the behaviour of these systems on Poicaré
sections, and, for some of them, we prove their non-integrability. For the double
spring pendulum the proof will be described in details. For others the main
steps of the proofs are similar.

In order to apply the Morales-Ramis method we need an effective tool
which allows to determine the differential Galois group of linear equations. For
considered systems variational equations have two-dimensional subsystems of
normal variational equations. They can be transformed into equivalent second
order equations with rational coefficients.
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Fig. 2. Double spring pendulum.

For such equations there exists an algo-
rithm, the so-called the Kovacic algorithm
[7], determining its differential Galois groups
effectively.

2 Double spring pendulum

The geometry of this system is shown in Fig. 2.
The mass m2 is attached to m1 on a spring
with Young modulus k. System has S1 symmetry, and θ1 is a cyclic coordinate.
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The corresponding momentum p1 is a first integral. The reduced system has two
degrees of freedom with coordinates (θ2, x), and momenta (p2, p3). It depends
on parameter c = p1.

The Poincaré cross sections of the reduced system shown in Fig. 3 suggest
that the system is not integrable. The main problem is to prove that in fact

(a) E=0.00005 (b) E=0.001

Fig. 3. The Poincaré sections for double spring pendulum. Parameters: m1 = m2 =
a1 = a2 = 1, k = 0.1, p1 = c = 0 cross-plain x = 1.

the system is not integrable for a wide range of the parameters. In Appendix
we prove the following theorem.

Theorem 1. Assume that a1m1m2 6= 0, and c = 0. Then the reduced sys-
tem descended from double spring pendulum is non-integrable in the class of
meromorphic functions of coordinates and momenta.

3 Two rigid spring pendula
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Fig. 4. Two rigid spring pendula.

The geometry of the system is shown in
Fig. 4. On a massless rod fixed at one end
we have two masses joined by a spring; the
first mass is joined to fixed point by an-
other spring. As generalised coordinates
angle θ and distances x1 and x2 are used.
Coordinate θ is a cyclic variable and one
can consider the reduced system depend-
ing on parameter c - value of momentum p3 corresponding to θ. The Poincaré
cross sections in Fig. 5 and in Fig. 6 show the complexity of the system. We
are able to prove non-integrability only under assumption k2 = 0.

Theorem 2. If m1m2k1c 6= 0, and k2 = 0, then the reduced two rigid spring
pendula system is non-integrable in the class of meromorphic functions of
coordinates and momenta.
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Moreover, we can identify two integrable cases. For c = 0 the reduced Hamilton
equations become linear equations with constant coefficients and they are
solvable. For k1 = k2 = 0 original Hamiltonian simplifies to

H =
1

2

(
p21
m1

+
p22
m2

+
p23

m1x21 +m2x22

)
and is integrable with two additional first integrals F1 = p3, F2 = m2p2x1 −
m2p1x2.

(a) E=0.12, (b) E=0.2.

Fig. 5. The Poincaré sections for two rigid spring pendula. Parameters: m1 = m2 =
a1 = a2 = 1, k1 = k2 = 1/10, p3 = c = 1/10, cross-plain x1 = 0, p1 > 0.

(a) E=0.15, (b) E=4

Fig. 6. The Poincaré sections two rigid spring pendula. Parameters: m1 = 1, m2 = 3,
k1 = 0.1, k2 = 1.5, a1 = a2 = 0, p3 = c = 0.1, cross-plain x1 = 0, p1 > 0
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4 Triple flail pendulum
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Fig. 7. Triple flail pendulum.

In Fig. 7 the geometry of the system is shown.
Here angle θ1 is a cyclic coordinate. Fixing value
of the corresponding momentum p1 = c ∈ R, we
consider the reduced system with two degrees of
freedom. Examples of Poincaré sections for this
system are shown in Fig. 8 and 9. For more plots
and its interpretations see [11]. One can also
prove that this system is not integrable, see [9].

(a) E=0.01, (b) E=0.012.

Fig. 8. The Poincaré sections for flail pendulum. Parameters: m1 = 1,m2 = 3,m3 =
2, a1 = 1, a2 = 2, a3 = 3, p1 = c = 1, cross-plain θ2 = 0, p2 > 0.

(a) E=0.0035, (b) E=0.0363.

Fig. 9. The Poincaré sections for flail pendulum. Parameters: m1 = 1,
m2 = m3 = 2, a1 = 2, a2 = a3 = 1, p1 = c = 1

2
, cross-plain θ2 = 0, p2 > 0.
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Theorem 3. Assume that l1l2l3m2m3 6= 0, and m2l2 = m3l3. If either (i)
m1 6= 0, c 6= 0, l2 6= l3, or (ii) l2 = l3, and c = 0, then the reduced flail
system is not integrable in the class of meromorphic functions of coordinates
and momenta.

5 Triple bar pendulum
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Fig. 10. Triple bar pendulum.

Triple bar pendulum consists of sim-
ple pendulum of mas m1 and length
a1 to which is attached a rigid weight-
less rod of length d = d1 + d2. At the
ends of the rod there are attached two
simple pendula with masses m2,m3, re-
spectively, see Fig.10. Like in previous
cases fixing value for the first integral
p1 = c corresponding to cyclic variable
θ1, we obtain the reduced Hamiltonian
depending only on four variables (θ2, θ3, p2, p3). Therefore we are able to make
Poincaré cross sections, see Fig. 11, and also to prove the following theorem [10].:

(a) E=0.008, (b) E=0.009.

Fig. 11. The Poincaré sections for bar pendulum. Parameters: m1 = m2 = 1,
m3 = 2, a1 = 1, a2 = 2, a3 = 1, d1 = d2 = 1, p1 = c = 1

2
, cross-plain θ2 = 0, p2 > 0.

Theorem 4. Assume that l2l3m1m2m3 6= 0, and m2l2 = m3l3, d1 = d2. If
either (i) c 6= 0, l2 6= l3 or (ii) l2 = l3, and c = 0, then the reduced triple bar
system governed by Hamiltonian is not integrable in the class of meromorphic
functions of coordinates and momenta.
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6 Simple triple pendulum
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Fig. 12. Simple triple pendulum.

Problem of dynamics of a simple triple pen-
dulum in the absence of gravity field was nu-
merically analysed in [8]. Despite the fact that
θ1 is again cyclic variable, and the correspond-
ing momentum p1 is constant, the Poincaré
sections suggest that this system is also non-
integrable, see Fig.13. One can think, that the
approach applied to the previous pendula can
be used for this system. However, for this pen-
dulum we only found particular solutions that
after reductions become equilibria and then
the Morales-Ramis theory does not give any
obstructions to the integrability.

(a) E=0.0097 (b) E=0.011

Fig. 13. The Poincaré sections for simple triple pendulum: m1 = 2, m2 = 1, m3 =
1, a1 = 2, a2 = a3 = 1, p1 = c = 1, cross-plain θ2 = 0, p2 > 0.

7 Chain of mass points
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Fig. 14. Chain of mass points

We consider a chain of n mass points in a plane.
The system has n+ 1 degrees of freedom. Let
ri denote radius vectors of points in the center
of mass frame. Coordinates of these vectors
(xi, yi) can be expressed in terms of (x1, y1)
and relative angles θi, i = 2, . . . , n. In the
centre of mass frame we have

∑
miri = 0, thus we can expressed (x1, y1) as

a function of angles θi. Lagrange and Hamilton functions do not depend on
(x1, y1), (ẋ1, ẏ1), and θ2 is a cyclic variable thus the corresponding momentum
p2 is a first integral. The reduced system has n−2 degrees of freedom. Thus the
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chain of n = 3 masses is integrable. Examples of Poincaré sections for reduced
system of n = 4 masses are given in Fig. 15. In the case when m3a4 = m2a2
a non-trivial particular solution is known and non-integrability analysis is in
progress.

(a) E=0.04, (b) E=0.045.

Fig. 15. The Poincaré sections for chain of 4 masses. Parameters: m1 = m3 = 1,
m2 = 2,m4 = 3, a2 = 1, a3 = 1, a4 = 3, p2 = c = 3

2
, cross-plain θ3 = 0, p3 > 0.

8 Unfixed triple flail pendulum
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Fig. 16. Chain of mass points

One can also unfix triple flail pendulum de-
scribed in Sec.4, and allow to move it freely.
As the generalised coordinates we choose coor-
dinates (x1, y1) of the first mass, and relative
angles, see Fig. 16. In the center of masses
frame coordinates (x1, y1), and their derivatives
(ẋ1, ẏ1) disappear in Lagrange function, and θ2 is a cyclic variable. Thus we
can also consider reduced system depending on the value of momentum p2 = c
corresponding to θ2. Its Poincaré sections are presented in Fig. 17. One can
also find a non-trivial particular solution when a3 = a4. The non-integrability
analysis is in progress.

9 Open problems

We proved non-integrability for some systems but usually only for parameters
that belong to a certain hypersurface in the space of parameters. It is an
open question about their integrability when parameters do not belong to
these hypersurfaces. Another problem is that for some systems we know only
very simple particular solutions that after reduction by one degree of freedom
transform into equilibrium. There is a question how to find another particular
solution for them.
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(a) E=0.24, (b) E=0.3.

Fig. 17. The Poincaré sections for unfixed flail pendulum. Parameters: m1 = 2,
m2 = 1,m3 = 2,m4 = 1, a2 = a3 = a4 = 1, p2 = c = 3

2
, cross-plain θ3 = 0, p3 > 0.

10 Appendix: Proof of non-integrability of the double
spring pendulum, Theorem 1

Proof. The Hamiltonian of the reduced system for p1 = c = 0 is equal to

H =
[
m2p

2
2x

2 + 2a1m2p2x(p2 cos θ2 + p3x sin θ2) + a21(m1(p22 + x2(p23

+km2(x− a2)2)) +m2(p2 cos θ2 + p3x sin θ2)2
]
/(2a21m1m2x

2),
(1)

and its Hamilton equations have particular solutions given by

θ2 = p2 = 0, ẋ =
p3
m2

, ṗ3 = k(a2 − x). (2)

We chose a solution on the level H(0, x, 0, p3) = E. Let [Θ2, X, P2, P3]T be
variations of [θ2, x, p2, p3]T . Then the variational equations along this particular
solution are following


Θ̇2

Ẋ

Ṗ2

Ṗ3

 =


p3(a1+x)
a1m1x

0
a2
1m1+m2(a1+x)2

a2
1m1m2x2 0

0 0 0 1
m2

− p2
3

m1
0 −p3(a1+x)

a1m1x
0

0 −k 0 0



Θ2

X
P2

P3

 , (3)

where x and p3 satisfy (2). Equations for Θ2 and P2 form a subsystem of normal
variational equations and can be rewritten as one second-order differential
equation

Θ̈ + PΘ̇ +QΘ = 0, Θ ≡ Θ2, P =
2a1p3(a1(m1 +m2) +m2x)

m2x(a21m1 +m2(a1 + x)2)
,

Q =
k(a1 + x)(x− a2)

m1a1x
− 2a21p

2
3

m2a1x(a21m1 +m2(a1 + x)2)
.

(4)
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The following change of independent variable t −→ z = x(t) + a1, and then a
change of dependent variable

Θ = w exp

[
−1

2

∫ z

z0

p(ζ) dζ

]
(5)

transforms this equation into an equation with rational coefficients

w′′ = r(z)w, r(z) = −q(z) +
1

2
p′(z) +

1

4
p(z)2, (6)

where

p = [a21m1(−4E + k(2a22 + 3a1(a1 − 2z) + 5a2(a1 − z)) + 3kz2) +m2z(2a1a
2
2k

+ a1(−4E + a1k(2a1 − 3z)) + kz3 + a2k(a1 − z)(4a1 + z))]/[(a21m1 +m2z
2)

× (z − a1)(−2E + kz2 − (a1 + a2)k(2z − a1 − a2))],

q =
m2(a21m1(4E − k(2(a1 + a2)− 3z)(a1 + a2 − z)) + km2(a1 + a2 − z)z3)

a1m1(−2e+ k(a1 + a2 − z)2)(z − a1)(a21m1 +m2z2)
.

We underline that both transformations do not change identity component of
the differential Galois group, i.e. the identity components of differential Galois
groups of equation (4) and (6) are the same.

Differential Galois group of (6) can be obtained by the Kovacic algorithm
[7]. It determines the possible closed forms of solutions of (6) and simultanously
its differential Galois group G. It is organized in four cases: (I) Eq. (6) has an
exponential solution w = P exp[

∫
ω], P ∈ C[z], ω ∈ C(z) and G is a triangular

group, (II) (6) has solution w = exp[
∫
ω], where ω is algebraic function of degree

2 and G is the dihedral group, (III) all solutions of (6) are algebraic and G is
a finite group and (IV) (6) has no closed-form solution and G = SL(2,C). In
cases (II) and (III) G has always Abelian identity component, in case (I) this
component can be Abelian and in case (IV) it is not Abelian.

Equation (6) related with our system can only fall into cases (I) or (IV)
because its degree of inifinity is 1, for definition of degree of infinity, see [7].
Moreover, one can show that there is no algebraic function ω of degree 2 such
that w = exp[

∫
ω] satisfies (6) thus G = SL(2,C) with non-Abelian identity

component and the necessary integrability condition is not satisfied.
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