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Abstract: The kINPen MED atmospheric pressure plasma jet is now undergoing clinical 

studies that are designed to investigate its suitability as a device for use in plasma 

medicine treatments. This paper describes dimensionless studies of the synchronizing 

oscillatory gas flow through the nozzle followed by electro-acoustic measurements 

coupled with the discharge photo emission. The plasma jet operates in the burst mode of 

2.5 KHz (duty cycle = 50%), within a neutral argon Strouhal number of 0.14 to 0.09 and 

Reynolds number of 3570 to 5370. In this mode the jet acts like a plasma actuator with 

an anisotropic far field noise pattern that is composed of radiated noise centered at 17.5 

kHz; +20 dB. It is found that the argon passing through the plasma plume expand with a 

solid angle of 20 degree to produce a corresponding ‘spillover’ effect on a PET surface 

up to 15 mm from the nozzle. 

Keywords: atmospheric pressure plasma jet, plasma medicine, gas flow dynamics, 

acoustic resonance. 

 

1. Introduction 
Cold atmospheric plasmas have shown enormous potential in Plasma Medicine 

for surface sterilization, for wound healing, for blood coagulation and in cancer 

treatment [1, 2]. This paper is focused on an atmospheric pressure plasma jet 

(APPJ) system called kINPen MED, which is being targeted for use in Plasma 

Medicine [3]. However to keep the medical device safe and easy to handle the 

fixed repetitive pulsed power source is used and the gas supply is limited to 

argon flow rate of 4-6 standard liters per minute (SLM). To help underpin the 

ongoing clinical trials this paper presents dimensionless analysis of the jet along 

with the jets electro-acoustic and polychromic emission.  

It has been shown that within the cold limit of ions that the speed of sound can 

be approximated to the neutral gas molecular temperature [4, 5], see equation 1. 

Here the fluctuation in the speed of neutrals and ions generate both sound waves 

and an oscillatory electric field, both of which contribute to the overall local 

sound pressure level. In the plasma production zone the difference between 

neutrals and ions, is that the latter (and electrons) absorb electrical energy from 

the electrical electro-magnetic field as the plasma gas expands and loses 

electrical energy, when the electrical power is turned off. Whereas the neutral 

gas gains energy thereby allowing radicals and metastable species to be formed 



V. J. Law, A. Chebbi, F. T. O’Neill and D. P. Dowling 4 

from the electron-neutral energy transfer per second in the plasma volume and 

so the electron-neutral reaction acts as an acoustic source. In The kinPen09 [3] 

and the Med version an argon plasmas comprises Ar
+
 ions and hydroxyl (OH) 

radicals. 

M

RT
c

gas

sound

γ
=    (1) 

 

Where Csound is the speed of sound in the gas medium, R is the gas constant 

(8.314 J K
-1

 mol
-1

), Tgas is the gas temperature in Kelvin, M is the molar mass in 

kilograms per mole of the gas (argon = 0.03994 kg mole
-1

), and γ adiabatic 

constant of the gas (argon and helium = 1.6).  

The Strouhal number (St) [11, 12] of the kINPen MED was compared with 5 

other commercial APPJs: the kINPen09 [3], the PVA Tepla air Plasma-Pen
TM

 

[6], the air-PlasmaTreat
TM

 [7, 8], and two helium linear jets [9, 10]. The St is a 

dimension-less measure as defined in equation (2), where fd is the drive 

frequency, and D is the length scale of the nozzle diameter and v is the gas (in 

this argon) velocity. Thus for St ~ 1, the drive frequency is synchronized 

through the nozzle orifice to the velocity of the gas exiting the nozzle. For low 

St, the quasi steady state of the gas dominates the oscillation. And at high values 

of St the viscosity of the gas dominates fluid flow (“fluid plug”). Thus St acts as 

a comparator when the jets have similar values of D. Of the 5 plasma jets 

studied only the kINPen MED has a compound nozzle (double open-end 

ceramic tube within a stainless-steel outer body with a central electrically driven 

wire electrode. The linear jets are configured as double open-ended glass tubes. 
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Fig 1: St numbers for 6 air and helium APPJs as a function of fd and D: 1.7 to 4 

mm. 
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Figure 1 shows the log-log graph relationship between St and fd for the 6 APPJs, 

which have a D value between 1.7 to 4 mm. There are two observations of note 

within the plot. First, the gas type (air, argon and helium) are normalized 

through their gas velocities (equation 2) and thus there is gas correlation; 

Second using the Plasma-Pen as references point two interpolation lines are 

used to map the upper and lower boundary of the data points with the kINPen 

forming the lower rate boundary (exp
0.6

) and the PlasmaTreat
TM

 forming the 

upper rate boundary (exp
0.9

). From these observations and an examination of 

equation 1, it can be deduced that the rates corresponded to the length scale D. 

 

2. Experiments 
As with aircraft jet engines, low frequency driven APPJs produce two types of 

acoustic emission patterns within the overall radiated noise emission. The 

acoustic noise patterns originate from the jet nozzle and from axially aligned jet 

turbulence. To measure the aircraft jet engine noise patterns the jet engine is 

normally placed within an anechoic chamber and both near-field microphones 

and a linear array of far field microphones in are used to measure the noise 

pattern [11, 12]. In contrast the acoustic noise of APPJs has been measured with 

a single microphone in some preferred position with the result that the boundary 

between the two acoustic production sources is ill-defined. Furthermore there 

has no report of an APPJ being employed as plasma actuator, where the St is an 

indicator of the acoustic spectrum is attenuation. 

For the purpose of this study, a single condenser mini-microphone is used to 

measure both the electro-magnetic emission and acoustic emission from kINPen 

MED which uses argon as the ionization gas. The microphone acts as both an E-

probe and a sound energy sensor, where both measured quantities are distance 

dependent. In ordered to capture the nozzle Omni-directional sound energy and 

sound energy being propagated along the discharge axis, acoustic far field 

measurement is scaled to a distance of 20 x the jet diameter between 90
o
 

perpendicular to the jet exit nozzle to 180
o
 where the microphone is facing the 

gas flow. From a process control perspective 90
o
 position has a number of 

advantages; (a) the microphone measures the radiated plasma sound energy 

emanating from the nozzle; (b) the microphone does not mechanically interfere 

with the movement of the jet over the treatment surface and; (c) the 90
o
 allows 

capture of the deflected sound energy from the treated surface to be used as a 

nozzle to surface height indicator [7, 8], thus by inference the treated surface 

temperature. In addition to the electro-acoustic measurements, a photodiode 

(PD) is used to evaluate the jets time-dependent polychromic emission and 

acoustic pattern is correlated with “spillover” [13] of the plasma jet on treated 

Polyethylene-terephthalate (PET) polymer using water contact angle 

measurements. Finally the electro-acoustic and PD measurements where 

digitally processed using LabVIEW software and correlated as previously 

described [7, 14]. 

 

3. Results 
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3.1. Electro-acoustic analysis 
Figure 2 shows the typical electro-acoustic from the APPJ at a microphone 

angle 90
o
 with the plasma turned-off, and on, with the argon flowing at 5 SLM 

(nozzle velocity = 36.78 m.s
-1

) in both cases. For the plasma conditions the first 

feature of note is that the fd (2.5 kHz) has Q-factor (f/∆f ~ 100) followed by its 

harmonics: here observed up to20 kHz. The second feature of note is that 5
th

 and 

6
th

 harmonic of the fd straddle the broad asymmetric structure (f/∆f ~ 35) 

centered on 17.5 kHz. Turning off the electric power to the nozzle not only 

removes the drive frequency component but also reduces the broadband 

structure at 17.5 kHz by 20 dB. An independent measurement using a sound 

pressure level meter (YF-20) indicates this reduction equates a drop of 4 to 6 dB 

in the audible range. A photo of the argon discharge and ceramic nozzle is 

shown as an insert in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Argon plasma formed using the kINPen MED along with the associated 

plasma acoustic response. 

 

Using the 2 electro-acoustic traces and the knowledge of the nozzle geometry it 

possible to model the acoustic response (fn) and it overtones (fn) of the nozzle of 

as either an open-ended gas column (equation 3) or as a Helmholtz resonator 

(equation 4) [7]. At room temperature (20
o
C) the speed of sound (c) in argon 

and air equates to 323 to 346 m.s
-1

. 
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In equations 3: L is the length of the ceramic tube beyond the drive electrode 

(0.01 m), and r is the tube radius end-correction (0.0005 m). Lastly m denotes 

the resonate mode within the tube (1 = fullwave and 2 = halfwave resonant 

mode etc...) and n is the overtone number. Whereas in equation 4: A is the area 

of nozzle, and Vo is the volume of the nozzle. 

Equations 3 yields a value range of fn between 16.5 to 17.7 kHz for a halfwave 

resonant mode (m =2). This calculation agrees well with the broad acoustic peak 

at 17.5 kHz which is enhanced in amplitude by onset of the plasma. By 

comparison equation 4 yields a fo range between 2.57 and 2.75 kHz which is a 

factor of 5-6 times lower than the observed broadband response. This 

comparison of the two mathematical models suggests that the open ended nozzle 

model provides the most representative and robust visualization of the nozzle 

acoustic response. 

 

3.2. Photodiode analysis 
Using a Hamamatsu MPPC photo diode (PD) with a rise time of 10 ns and a 

spectral range between 320 and 900 nm we now turn to the examining the effect 

of 2.5 kHz pulse drive frequency on the time-dependent plasma polychromic 

emission. Discharge emission was collected via a fibre optic and collimating 

lens focused at the plasma discharge at 1 mm downstream of the nozzle exit.  
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 Fig 3: kINPen MED polychromic emission at 1 mm from nozzle. 
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The measurement results for 5 SLM of argon is shown in figure 3. Here it can 

be seen that the polychromic emission has a 2.5 kHz pulse; with a periodic duty 

cycle of 50% response (duration of the emission to the total period of a repeat 

signal) with an envelope rise- and fall-time of microseconds. Within the 

emission envelope four dips in emission can be also seen. Experimental 

observations using different jet orientations (vertical and horizontal) and the 

addition of 0.5% (by flow) of nitrogen indicate that the irregular flat top of the 

pulse enveloped represents both spatial and temporal instabilities in the plasma 

plume. For limited range investigated, varying the argon flow rate from 4 to 6 

SLM does not alter the height of the envelope  but the addition of 0.55 by flow 

of nitrogen reduce the noise within the measurement which may suggest that the 

plasma jets become more spatially stable. 

 

3.3. Anisotropic acoustic emission pattern 
With the drive frequency and its harmonics isolated from the acoustic emission 

response, the next sets of measurements are aimed to delineate the radiated 

sound energy from the jet turbulence sound energy. The delineation is achieved 

by recording electro-acoustic measurement between 90 and 180
o
 (in-line) in 

steps of 10
o
 degrees. The results of these measurements are shown in figure 4.  

Here it can be seen that the sound radiation energy does not alter significantly 

from 90 to 160
o
. The 170

o
 measurement however increases in amplitude and 

exhibits a number of additional resonances peaks. In the case of the 180
o
 the 

measurement acoustic noise amplitude has increased above the electrical 

emission resulting in the loss of electrical information. In this position, 

resonance information is also lost and noise amplitude becomes inversely 

proportional to frequency at a rate of -1.7 dB.kHz-1. The peak at 1.5 kHz varies 

by ± 1 kHz due to the jet gas flow dynamics over the microphone body. 
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The measurements reveal that the neutral argon flow forms an expanding cone 

with internal angle of 10 degrees to the jet axis. This is in contrast to the 10 mm 

in length visible pencil-like plasma plume, see figure 2 picture insert. 

An investigation was carried out to determine the correlation between the area / 

diameter treated by the kINPen MED gas plume and the water contact angle of 

the PET placed under the jet. Measurements were obtained 1 hour after plasma 

treatment as a function of the gap distance (5, 10, and 15 mm) between the jet 

and the PET substrate. The contact angle obtained for the untreated PET was 

85
o
. Table 1 shows the results of the measurements and the computed internal 

cone angel for the treatment gap. This limited gap distance analysis reveals that 

the treated diameter is much larger than the pencil-like diameter of the plasma 

plume (~ 2 mm), with an ‘spillover’ ratio (plasma/treatment diameter) of 8 to 

10. The treatment becomes less effective with gap distance. Correlating these 

results with the acoustic mapping it appears that the argon gas passing through 

the plasma zone and entering the expanding argon cone has a chemical 

‘spillover’ effect on the surface properties of PET thus possibly differentiating 

between ion exposure and radicals and metastable treatment mechanisms. 

 

Table 1: WCA data showing the effect of PET surface to jet orifice gap distance. 

The centre region of the photograph demonstrates the increased water droplet 

width obtained after the kINPen MED jet treatment (2 mm scale bar) 

 No Plasma 5 mm 10 mm 15 mm 20 mm 

WCA 85
o
 45

o
 59

o
 70

o
  

Spillover diameter N/A 16 mm 20 mm 18 mm  

Treatment angle N/A 160 90 62  

Spillover ratio N/A 8 10 9  

 
 

4. Conclusion 
This paper has examined the kINPen MED argon flow dynamics using 

dimensionless analysis, electro-acoustic and photodiode measurements. The St 

analysis of the plasma jet (with 5 other APPJs with similar nozzle diameters (D 

= 1.6 to 4 mm) reveal similar nozzle oscillating flow mechanisms that produce 

St values that are proportionally to Hz 
(0.6 to 0.9)

 between 100 Hz to 1.1 MHz 

where the rate is defined by the scale length of the nozzle. Electro-acoustic and 

polychromic emission measurements reveal the APPJ nozzle is operating with a 

low St < 0.5 for an argon flow of 4-6 SLM. The nozzle resonant frequency can 

be modeled as a closed end column where resonance amplitude undergoes 

amplification when plasma is applied. One possible mechanism for this acoustic 

amplification may be due to electric winds [4] that are generated by the positive 

and negative edges of the drive pulse and which are synchronized to the neutral 

argon velocity to produce an enhanced molecular vibration at the nozzle exit. 

The plasma jet therefore appears to act like a dielectric barrier discharge plasma 

actuator. Electro-acoustic far field pattern measurements reveal an anisotropic 
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acoustic emission which is composed of sound radiation energy from the nozzle 

and the axially aligned gas jet pressure. It has been shown that gas passing 

through the visible plasma zone expands out in warm with a solid cone angle of 

20 degree and alters the hydrophobicity of PET surface up a distance of 15 mm. 
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Abstract: A novel application of nonlinear time series analysis was developed thanks to 
the high-quality almost-continuous Kepler Space Telescope data. It makes it possible to 
distinguish  truly  random  from  under-sampled  signals  and  to  ascertain  whether  the 
selected sampling time is short enough to access all the complexity of the light curve 
using nonlinear time series analysis. This is true irrespective of whether the data are 
acquired in space or from the ground and the methodology is independent of the details 
of the data acquisition. 
Keywords: Nonlinear time series analysis, Phase-space portrait, Average mutual 
information, Kepler Space Telescope, Variable stars 

 
 

1   Introduction 
 

Gravity reigns in our Universe. And even in its Newtonian form, gravity is a 
nonlinear force. So one would expect astronomy to be the playground of the 
nonlinear time series analysis practitioner. (For a more detailed introduction to 
the methodology see Jevtic et al. (2005).) However, for nonlinear time series 
analysis, the requirements on the data are very stringent [7]: 

 
a) The observable has to couple all the active degrees of freedom. Thus energy, 

power and hence, in astronomy, brightness and luminosity are “good” 
variables. 

b) Data must be sampled uniformly. 
c) Data must be continuous. 
d) Data sets have to be as long as possible since the longer the data set the more 

efficient the methodology. 
e) The data should be finely digitized. 
f)  Data should yield access to a large dynamic range. 
g) There should be as little additive noise as possible. 
h) The nature of the process should not change during observation. 
 
As luck would have it brightness, the observable of choice in astronomy, is a 
“good” observable (a). Requirement (b) (with the exception of valiant efforts 
such as the Whole Earth Telescope) and requirements (c)  and  (d) are almost 

Received: 17 September 2013 / Accepted: 10 January 2014                                                  
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never satisfied for astronomical data collected from the ground.  It has been 
possible to satisfy requirements (e) and (f) since the advent of CCDs which do 
single-photon counting and can accommodate large dynamic ranges with no 
difficulty.  The issue of noise (g) is a complex one, the distinction between 
dynamic and additive noise being a whole subfield. Dynamic noise can span the 
whole range of frequencies present and its identification is crucial to 
understanding such processes as granulation. The last requirement, (h), is 
completely out of our control. At best, all we can hope for is that the nature of 
the process does not change over the observation time. 

 
2  The Kepler Space Telescope as a source of variable-star data 

 
Launched  in  2009,  The  Kepler  Space  Telescope  was  designed  to  detect 
extrasolar Earth-like planets using the transit method.  The telescope has a 
modest 1.4 meter diameter mirror and 21 CCD modules with 2200x1024 pixel 
resolution. It is in a heliocentric Earth-trailing orbit with a period of 372.5 days 
that is slightly more eccentric (ε=0.03188) than that of the Earth.  With Kepler’s 
105 square-degree field-of-view (FOV), it is able to continuously monitor the 
brightness of nearly 200,000 stars [3,12] in our spiral arm of the Milky Way 
Galaxy in the direction of the constellation Cygnus with a search area extending 
about 3,000 light years and covering ~0.28 % of the sky. Though designed 
primarily for observing 9th  to 16th  magnitude stars, it can also collect data on 
stars outside this range with a bandpass of 430-890 nm. The photometric 
precision for the telescope is ~50 parts per million for a Kp = 12 magnitude 
G2V star when integrating for 30 minutes. 

 
Kepler’s observations are subdivided into quarters.  Two binning modes are 
available: “long cadence” (LC) with 28.5 min  (“30 min”)  bins and “short 
cadence” (SC) with 58.85 s (“one-minute”) bins [13]. 

 
Because the Kepler Space Telescope gives long, continuous data sets of large 
S/N for a wide range of variable stars processed in the same manner it is 
easy to make comparisons. Kepler Space Telescope data have been instrumental 
in our work on nonlinear time series analysis and were used to analyze the NGC 
6826 light curve in Jevtic at al. (2012) and (2011). 

 
3  Time-Delay Portrait and Reconstruction Parameters 

 
A standard method to explore nonlinear systems is a time-delay phase-space 
reconstruction. According to the embedding theorems [16, 17, 18] the geometry 
of this time-delay phase-space portrait is diffeomorphic to the geometry of the 
phase-space representation that would be obtained if the equations governing 
the system were known. This object can serve as a surrogate for the system. To 
obtain a time-delay phase-space portrait of a uniformly-sampled time series, the 
phase-space dimension and the time delay are first determined from the data. 
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3.1 Dimension of the Phase Space - False Nearest Neighbours 
 

The dimension of the reconstructed phase space is obtained using the False 
Nearest Neighbor (FNN) method [11]. This dimension is important because it is 
related to the number of degrees of freedom needed to model the system. 

 
3. 2 Time Delay - Average Mutual  Information 

 
The  optimal  time  delay  ensures  the   greatest  possible  independence  of 
coordinates in phase-space. It is chosen at a minimum of average mutual 
information [5].  Average mutual information (AMI) is the information-theory 
analog to the autocorrelation function that is more general in the statistical sense 
and represents the expectation of the average degree of interdependence 
incorporating all higher orders.  It is the amount of information (in bits) shared 
by the signal and its time shifted value averaged over the orbit. 

 
For a uniformly sampled time series such as a stellar light curve AMI is defined 
as: 

 

AMI (τ ) =
 

P(s(t ), s(t + τ )) log  
 P(s(t ), s(t + τ ))   

∑ 
s (t ), s (t +τ ) 

2  P(s(t )) P(s(t + τ ))  
 
(1) 

 
Here “s” is the sampled scalar time series and τ is the time delay. The range of 
the time series is divided into m sub-intervals and a histogram is obtained that 
yields the probability pi for a point to be in the interval i, the probability pj for a 
point to be in the interval j, and the joint probability pi,j that if sk is in interval i 
then sk+τ is in interval j. Whether the first, local, minimum or the global 
minimum best determine the optimal delay is still open to discussion. 

 
The optimal time delay for time-delay embeddings is at the minimum of AMI 
and ensures the greatest possible independence of axes in phase space. This 
ensures the greatest possible ”unfolding” i.e. the greatest amount of information 
about the system. However, AMI’s probabilistic nature gives it even wider 
applicability [4]. One such application is the use of AMI to preview the 
power spectrum under the noise as a guide for nonlinear noise reduction, This 
was discussed in Jevtic et al (2011).   We shall focus on a novel application 
unique to astronomy: estimating whether the sampling time is short enough to 
distinguish random from under-sampled signals. 

 
4  Distinguishing  Truly Random  from Under-Sampled Signals 

 
Space telescopes such as Kepler and Corot and the future TESS provide us with 
well-sampled  almost  noise-free  light  curves.  However,  for  the  foreseeable 
future, we sill continue to combine data from space and ground-based telescopes. 
It is not uncommon that the question arises whether the sampling rate 
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with which we are observing variable targets is short enough to sample all the 
complexity of a process. Though an inspection of the light curve can often 
answer this question for stars whose light curves do not suffer from significant 
noise, a more general answer based on nonlinear dynamics may be obtained 
using phase-space reconstruction.  
 
Traditionally, time is not an explicit variable in phase-space. However, time on 
the order of the sampling time can be estimated  [10]  using  nonlinear  time  
series  analysis.  Initially  nonlinear  time series analysis developed in the search 
for chaotic systems where the focus was on finding dynamically related 
phenomena and avoiding time-correlations. This resulted in the prescription to 
select the time delay at the minimum of AMI and the injunction to avoid delay 
times that are too short for which time correlations dominate. The objective is 
to obtain an unfolded phase-space portrait so as to maximize the amount of 
information obtained.  In this context “unfolded” refers to a portrait that fills the 
largest fraction of phase space possible. If instead we focus on the shortest 
delays on the order of the sampling time, we obtain a tool to distinguish truly 
random from under-sampled signals. If a delay of the shortest available 
sampling time results in a phase-space portrait that is “unfolded” [7, 15]   i.e. 
fills a significant fraction of the phase space available, the sampling time is too 
long. If on the other hand, the points in phase space fall along one of the 
diagonals, the sampling time is short enough to properly sample the process. 

 
The two available sampling rates, long and short cadence available for the 
Kepler Space Telescope data have allowed us to explore and develop a tool that 
may be used to determine if the sampling time is short enough to sample the 
dynamics properly. 

 
 
 

5  Under-sampled vs. Optimally  Sampled Light Curves 
 

5.1 The Central Star of Planetary Nebula NGC 6826 
 

The central star of planetary nebula NGC 6826 [10, 6] (KIC 12071221) was 
observed by the Kepler Space Telescope in both long and short sequence. The 
phase-space portrait for one month of long-cadence data with nonlinear noise 
reduction for a delay of one is shown in Fig. 1.a. The 3D phase-space portrait is 
unfolded indicating that the sampling time of ~30 min is too long. The time- 
delay phase space portrait of a month of short-cadence data with a delay of one 
sampling time is shown in Fig. 1.b. The points lie along a diagonal, indicating 
that the short-cadence sampling rate is short enough to capture all the dynamics. 



Chaotic Modeling and Simulation (CMSIM) 1: 11-19, 2014 15  
 

 
Fig. 1.a Unfolded phase-space portrait 
of a month of nonlinear noise reduced 
long-cadence data with a delay of one 
sampling time 

Fig. 1.b Time-delay phase space 
portrait of a month of short-cadence 
data with a delay of one sampling time 

 
 

The difference between the long and short cadence light curves, due to 
contributions at the higher frequencies, is observable due to the higher 
resolution of the latter.  For the range of frequencies accessible for the long-
cadence  data,  the  power  spectra  are  comparable  for  the  two sampling 
times. 

 
5. 2 A δ-Scuti Star in a Triple-Star System 

 
A starker example is that of KIC 4840675, a triple system with a rapidly- 
rotating A-type δ-Scuti variable and two solar-type fainter companions [2]. 

 
A section of the light curve for the long-cadence data is shown in Fig. 2.a. The 
fact that the sampling time is too long can easily be observed. The three- 
dimensional portrait of this data is shown in Fig. 2.b. where the phase-space 
portrait looks unfolded. 

 
A section of the light curve for the short-cadence data during the same month is 
shown in Fig. 3.a. The three-dimensional portrait of this data is shown in Fig. 
3.b. where all the points are clustered around the diagonal. When Fig.2 and 3 are 
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Fig. 2.a Section of long-cadence light 
curve 

 
 

 
 
 
 
 
 
 
 

 
Fig. 2.b Time-delay phase space 
portrait of a month of long-cadence 
data with a delay of one sampling time 
(~30 min). 

 
 
 
 

 
Fig. 3.a Section of short-cadence light 
curve 

Fig.  3.b  Time-delay  phase  space 
portrait of a month of short-cadence 
data with a delay of one sampling time 

 
 

compared, it is easy to observe that in the short-cadence data the sampling time 
is sufficiently short to access the variations on all the time scales. 
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5. 3 The Only Kepler White Dwarf – KIC 8626021 
 
 

 
 
Fig.4.a  Time-delay  phase  space 
portrait of a month of long-cadence 
data with a delay of one sampling time 
(~30 min).  

 
 
 
 
 
 
 
 
 
 
 
Fig. 4.b Time-delay phase space 
portrait of a month of noise reduced 
short-cadence data with a delay of one 
sampling time (~ 1min) 

 
 

For comparison, we also look at the magnitude Kp=18  KIC 8626021, the only 
identified pulsating white dwarf in the Kepler Space Telescope [14] field. 
Pulsating, white dwarfs can pulsate with frequencies on the order of 1 min. 
This is the case for KIC 8626021 that has a dominant period of 3.2 minutes. 
The three-dimensional portraits of the long and short cadence data are shown in 
Fig. 4.a and Fig. 4.b, respectively. However, here for the short cadence data the 
points do not line up along the diagonal. No structure can be observed either. 
One possible interpretation is that even the short cadence time is still too long to 
properly access information. However, this target has a magnitude of 18 so a 
significant noise contribution can’t be ruled out. 

 
6  From the Ground: Observations of PG1351+489 

 
As a test case we look at Whole Earth Telescope XCov12 observations of 
PG1351+489 [1] with two binning times of 30s (WET) and 10s (A. Kaanan). 
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Fig.  5.a  Phase-space  portrait  for  a 
delay of one of the 10s binning with 
noise  reduction  (pca  eigenvalues 
1:27:370) 

Fig.  5.b  Phase-space  portrait  for  a 
delay of one of the 30s binning with 
noise  reduction  (pca  eigenvalues 
1:4:106). 

 
 

The phase-space portraits for a delay of one in three dimensions for 10s and 30s 
binning with noise reduction are shown in Fig. 5.a and 5.b, respectively.  These 
light curves were obtained at different observatories and normalized differently 
requiring a principle component decomposition for the comparison. For the 10s 
binned data the eigenvalues in respect to the largest component are 1:27:370. For 
the 30s binned data the eigenvalues in respect to the largest component are 
1:4:106 indicating that the 10s binning may still be too long. 

 
7  Conclusions 

 
When data are collected from a controlled experiment in the laboratory, it is 
easy to choose the optimal sampling time.  When observing stellar objects, we a 
priori do not know down to what time scale is needed to access all the 
information about the source. The Kepler Space Telescope light curves have 
allowed us to explore this problem. On an example of ground-based data 
obtained at different observatories with different processing we show that time- 
delay reconstruction can be used to reliably estimate when sampling time is 
short enough to capture all the complexity of a signal. Since it is based on the 
dynamics at the source, this approach will particularly be useful for longer-term 
periodic targets observed from the ground. 
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Abstract: Recently, a simple, very fast and easy to compute qualitative indicator of the 

chaotic or ordered nature of orbits in dynamical systems was proposed by Waz et al 

(2009), the so-called “Asymmetry coefficients”. The indicator has been obtained from an 

analysis of the statistical behavior of an ensemble derived from the time dependence of 

selected quantities characterizing the system’s motion. It was found that for an ordered 

orbit the indicator converges to zero while for a chaotic orbit no sign of convergence can 

be observed. Using the Henon-Heiles Hamiltonian system and the Smaller Alignment 

Index method, in our paper we proposed a numerical criterion in order to quantify the 

results obtained by the “Asymmetry coefficients” method. This criterion helped us to 

define threshold values between regularity and chaoticity and to construct detailed phase-

space portraits, where the ordered and chaotic regions are clearly distinguished. 

Additionally, exploiting the rapidity of the method, we showed how it can be used to 

identify “sticky” orbits or tiny regions of order and chaos. 

Keywords: asymmetry coefficients, ordered and chaotic orbits, hamiltonian systems.  

 

1. Introduction 
A long-standing fundamental issue in nonlinear dynamics is to determine 

whether an orbit is regular or chaotic. This distinction is of great interest 

because in the case of regular orbits we have predictability in time whereas for 

chaotic orbits we are unable to predict the time evolution of the dynamical 

system after a short time period. There are many methods and indicators for 

chaotic motions. The well-known are the phase space method, the time series 

method, bifurcation diagram, the Poincare section of surface, Frequency-map 

analysis, Lyapunov characteristic exponents, and most recently the Fast 

Lyapunov indicator, the 0-1 test, the Dynamic Lyapunov indicator, and the 

Smaller alignment Index [1-6]. However, none of the methods has the merits to 

be beyond any doubt. Most of them, especially the so-called “traditional” tools, 

work hard in systems with many degrees of freedom, where phase space 

visualization is no longer easily accessible. The recent tools seem to be more 

efficient and faster than the older ones, but each of them has its weak points. 

This is the reason that motivates the researchers in the field to search better 

methods. 

In 2009, Waz et al. proposed an alternative, very simple and related to the 

observational data, statistical indicator of chaos [7]. In their approach the values 
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of a time dependent function describing the studied motion are recorded in a 

sequence of time intervals and each of these recordings are considered statistical 

distributions. Then, the “asymmetry coefficients” of these distributions are 

defined and their behavior for ordered and chaotic orbits is analyzed. Their 

qualitative indicator was applied only in the simple case of the damped driven 

pendulum. In present paper we have attempted to improve their work by 

proposing a numerical criterion associated to asymmetry coefficients, which 

helped us to reveal the detailed structure of the dynamics in the phase space of 

the Henon-Heiles Hamiltonian system. 

The organization of rest of the paper is as follows. Section 2 contains that 

information strictly required for understanding the “Asymmetry coefficients” 

and SALI methods. All calculations and numerical results are given in Section 

3. The final remarks and conclusions are presented in Section 4. 

 

2. Description of methods 
For the sake of completeness let us briefly recall the definition of the 

“Asymmetry coefficients” and of the “Smaller Alignment Index (SALI)” and 

their behavior for regular and chaotic orbits. The interested reader can consult 

[7, 8] to have a more detailed description of the methods. 

 

2.1. Method of the Asymmetry Coefficients 

Let )(tX  be a function characterizing the motion we are going to analyze. 

Usually, in practical applications, )(tX is known as a part of the solution of a 

differential system of equations or from experimental measurements, so its 

values are given in a discrete set of points }{ iX . Let us define a time series 

( ){ }KkTTttXtX
kfk ,...,2,1/,),()( 0 =∈=  with a fixed 0T  and <<

21 ff TT  

KfT<... . The terms of the series are treated as statistical distributions. The 

starting time 0T  and the final one 
KfT  denote the beginning and the end of the 

k- th distribution )(tX k . 

The asymmetry coefficients of the discrete k- th distribution kX  are defined as 
 

( ) ( ) ( )

( ) ( )
∑
= 
















−

−








+⋅=

kN

i

q

kk

k
k
i

k
itkkq

NkMNkM

NkMt
cXNkSNkA

1
2
12

1

,,

,
,,  

                                    ( )
1

1

,

−

= 





















+= ∑

kN

i
k
it

k cXNkS                                (1) 

( ) ( ) ( ) }2,1{,,,

1

∈⋅







+⋅= ∑

=

ntcXNkSNkM
nk

i

kN

i

k
it

kkn                                 

 



Chaotic Modeling and Simulation (CMSIM)  1:  21-28,  2014 23 

 

,...3,2,1,12 =+= jjq  and c is a constant. kN  is the number of points in the k- 

th distribution, i.e. KkNit ki
k
i ,..,2,1,,...,2,1, === τ , with ,01

Tt k =  

kf
k

kN
Tt = , KNNN <<< ...21 . Since 0T  is the same for all k, the length of 

the k- th distribution is proportional to kN . 

Waz et al shown that the qualitative results are the same for all c chosen so 

0)( ≥+ ctX k . Using the damped driven pendulum, they demonstrated that for 

a periodic motion the asymmetry coefficients approach zero while fT  

approaches infinity. For a chaotic orbit no regular asymptotic behaviour was 

observed. It results a qualitative indicator regarding the nature of an orbit. We 

proceeded one step further by introducing a quantitative criterion. Calculating 

for about one thousand orbits the maximum value of 7,5,3, =qA q  when 

[ ]sst 1000,500∈ , we proposed for every asymmetry coefficient a threshold 

value between regularity and chaoticity, as Section 3 will demonstrate. 
 

2.2. Method of the Smaller Alignment Index 
Consider a n- dimensional phase-space of a dynamical system and an orbit in 

that space. In order to determine if this orbit is ordered or chaotic we follow the 

evolution in time of two different initial deviation vectors )0(),0( 21 ξξ . In 

every time step, we compute the parallel/ anti-parallel alignment index (ALI) , 
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+=+ , where ⋅  denotes 

the Euclidean norm of a vector. The Smaller Alignment Index (SALI) is defined 

as the minimum value of the above alignment indices at any point in time 
 

                                        ( ))(),(min)( tdtdtSALI +−=                                      (2) 
 

Skokos shows that the two deviation vectors tend to coincide or become 

opposite for chaotic orbits, i.e. the SALI tends to zero. For ordered orbits, which 

lie on a torus, the two deviation vectors eventually become tangent to the torus, 

but in general converge to different directions, so the SALI does not tend to 

zero. Its values fluctuate around a positive value. 

 

3. Numerical results 
We consider the two degrees of freedom Henon-Heiles Hamiltonian 
 

             ( ) ( ) ( ) 322222
2

3

1

2

1

2

1
,,, yyxyxppppyxH yxyx −++++=              (3) 

where yx, , and yx pp , are the coordinate and conjugate moments respectively. 

The equations of motion derived from the Hamiltonian are 
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and yields solutions (orbits) of the system evolving in a four dimensional phase 

space. In our study we keep the value of the Hamiltonian fixed at 125.02=H . 

We consider first two representative orbits: an ordered (quasi-periodic) orbit 

with initial conditions ( ) ( )0.0,2417.0,55.0,0.0,,, =yx ppyx  and a chaotic 

orbit with initial conditions ( ) ( )0.0,49974.0,016.0,0.0,,, −=yx ppyx .  

Figure 1a shows the Poincare surface of section (PSS) of the two orbits defined 

by 0,0 ≥= xpx . The points of the ordered orbit (blue points) form a set of 

smooth curves while the points of the chaotic orbit (red points) appear randomly 

scattered. The )(log10 SALI of the ordered orbit (blue line in Figure 1b) 

fluctuates around 0.05, indicating the regular character of the orbit, while the  

)(log10 SALI  of the chaotic orbit (red line in Figure 1b) falls abruptly reaching 

the limit of the accuracy of the computer precision )10( 16−
 after about 1700 

time units.   
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Fig.1. a) The PSS of an ordered orbit (blue points) and a chaotic orbit (red 

points); b) The time evolution of the SALI for the same orbits 

 

The calculations of the asymmetry coefficients have been performed in 

equidistant points of the time interval [ ]sst 4000,0∈ . The origin of each 

distribution corresponds to the initial time 00 =T  whereas the final points of 

the distributions have been selected as .20000,..,2,1,2.0 == kkT
kf  The time 

step on each interval was equal to 0.02 s and c was taken as )(min tX k− . In 

addition, )()( txtX = .  
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Figure 2 depicts the asymmetry coefficients 7,5,3, =qAq  as function of time. 

For the periodic orbit (blue lines) the coefficients qA  converge to 0, after a  

short transition period (about 300s). A irregular behaviour of  qA could be seen 

for the chaotic orbit (red lines). As it was proved in [8], the qualitative results 

are the same for all c that satisfy the condition 0)( ≥+ ctX k , for all t, and for 

any other component of the dynamical system (here, xpy,  or yp ). 
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Fig. 2. The asymmetry coefficients 7,5,3, =qAq for the ordered orbit (blue 

lines) and for the chaotic orbit (red lines) discussed in Figure 1 
  
In order to present the effectiveness of the quantitative indicator proposed in 

Section 2 (the maximum value of 7,5,3, =qA q  when [ ]sst 1000,500∈ , 

hereafter noted by qAmax ) in detecting regions of chaos and order we 

computed it for a large grid of equally distributed initial conditions on the axis 

of PSS ( )ypy,  of the Henon-Heiles system. To do this, we chose 440 initial 

conditions on the line 0=yp  of the PSS, between 43.0−=y  and 67.0=y  

with step 0025.0=∆y , and 400 initial conditions on the semi-line 

0,0 >= ypy  (because of symmetry)  of the PSS, between 0=yp  and 

5.0=yp  with step 00125.0=∆ yp . Figure 3 shows the SALI values for these 

orbits. The running time for every orbit was T = 1,000 time units. We assigned a 

coloured circle to every individual initial condition according to the value of the 

SALI: if it was smaller than 
810−  the circle was coloured red (the orbit is 

chaotic beyond any doubt). If SALI [ )48 10,10 −−∈  the circle was coloured 

yellow (the orbit is probably “sticky” chaotic) and finally, if SALI [ )2,10 4−∈  it 

was coloured bleu (the orbit is ordered). To clear up the nature of the orbits 
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having SALI [ )48 10,10 −−∈  and to verify if the running time T = 1,000 time 

units is sufficient for asymmetry coefficients to reveal the type of the orbits we 

computed the 7,5,3,max =qA q for T = 1,000 and T = 4,000, respectively. 

The results for  7max A  only are presented in Figure 4 (for semi-line 

0,0 >= ypy ) and Figure 5 (for line 0=yp ).  

There are some observations that are worth mentioning. Firstly, the CPU time 

needed to obtain the results plotted in Figure 3 was twenty times greater than for 

the results depicted in Figures 4a and 5a. Secondly, comparing Figure 3 with 

Figures 4b and 5b a similitude between them is easy to observe. In fact, every 

orbit with 1.0max 7 ≥A  has 410−≤SALI  (therefore is chaotic) and all orbits 

having 1.0max 7 <A  are characterized by 410−>SALI  (they are ordered). 

Finally, we point out that a too short running time (here, T = 1,000) might give 

erroneous results concerning the “sticky” orbits. 
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Fig. 3. The SALI values for initial conditions chosen on the semi-line 

0,0 >= ypy  (left panel) and on the line 0=yp  (right panel) 
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Fig. 4. The 7max A  values for initial conditions chosen on the semi-line 

0,0 >= ypy  (T=1,000 - left panel; T=4,000 - right panel) 
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Fig. 5. The 7max A  values for initial conditions chosen on the line 0=yp  

(T=1,000 - left panel; T=4,000 - right panel) 
 

The same remarks are valid for the others asymmetry coefficients, 3A  and 5A . 

We propose as threshold values between regularity and chaoticity the value 

0.005 for 3max A  and 0.025 for 5max A . 

Let us now return to the “sticky” orbits that make the difference between the 

two panels of Figures 4 and 5. In order to illustrate the capability of the 

asymmetry coefficients to identify these kinds of orbits we considered a set of 

three orbits with very closely initial conditions on the axis 0=yp  and 

computed the coefficient 7A  for T=12,000 time units. Figures 6 and 7 present 

our findings. When T=4,000 time units, one can see that the PSSs of these orbits 

are practically indistinguishable and indicate ordered orbits. The first visible 

deviations from these smooth curves appeared for 000,5≅T  time units, as 

Figure 7 shown. When T=12,000 time units two of these orbits clearly entered 

in the chaotic sea, while the third remained ordered.  
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Fig. 6. The PSS of an ordered orbit (green points) and two “sticky” orbits (black 

and red points); T=4,000 – left panel, T=12,000 – right panel 
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Fig. 7. The asymmetry coefficient 7A for the ordered orbit (green line) and for 

the “sticky” orbits (black and red lines) discussed in Figure 6 

 

3. Conclusions 
In this paper we have illustrated the capability of the “Asymmetry coefficients” 

method in distinguishing between order and chaos in Henon-Heiles Hamiltonian 

system. Besides the fact that our calculations have validated the qualitative 

results obtained by Waz et al, we proposed a numerical criterion in order to 

quantify these results. Exploiting the rapidity of the method, we constructed 

detailed phase-space portraits and defined threshold values between regularity 

and chaoticity. Additionally, we showed how it can be used to identify “sticky” 

orbits or tiny regions of order and chaos. 
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Abstract. It is shown, that a dissipative soliton is strongly affected by a quantum
noise, which confines its energy scalability. There exists some bifurcation point inside
a soliton parametric space, where the energy scalability of dissipative soliton changes
drastically so that an asymptotically unlimited accumulation of energy becomes im-
possible and the so-called “dissipative soliton resonance” disappears.
Keywords: Dissipative soliton, Quantum noise, Dissipative soliton resonance.

1 Introduction

In the last decade, the concept of a dissipative soliton (DS), that is a strongly
localized and stable structure emergent in a nonlinear dissipative system far
from the thermodynamic equilibrium was actively developing and became well-
established [1]. The unique feature of DS is its capability to accumulate the
energy without stability loss [2]. As a result, the DS is energy-scalable. This
phenomenon resembles a resonant enhancement of oscillations in environment-
coupled systems so that it was proposed to name it as a “dissipative soliton
resonance” (DSR) [3]. A capacity of DS to accumulate the energy is of interest
for a lot of applications. For instance, it provides the energy scaling of ultra-
short laser pulses and brings the high-field physics on table-tops of a mid-level
university lab [4].

Nevertheless, the noise properties of DS remain practically unexplored.
Such properties promise to be nontrivial because, as was found, the DS can
contain the internal perturbation modes, which reveal themselves as the spec-
trum distortions and the peak power jitter [5]. Moreover, the parametric space
of DS and, as a result, the DSR can be modified substantivally under action of
gain saturation and another dynamic factors [6–8].

In this work, a numerical analysis of DS parametric space taking into ac-
count the quantum noise is presented. It is demonstrated, that the noise mod-
ifies the DS parametric space substantially and reduces the soliton energy scal-
ability. The different scenarios of DS destabilization are explored. It is found,
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that such scenarios are soliton explosion, multipulsing and appearance of rogue
DSs. The noise causes a chaotization of multiple soliton complexes so that DS
cannot exist above some critical energy level.

2 Concept of the DS and the DS parametric space

DS is a strongly localized and stable structure, which develops in a non-
equilibrium system and, thus, has a well-organized energy exchange with an
environment. This energy exchange forms a non-trivial internal structure of
DS, which provides the energy redistribution inside it (e.g., see [1]). In this
respect, DS is a primitive analogue of cell.

One may think, that a simplest and, simultaneously, sufficiently comprehen-
sive mathematical framework for a DS modeling is provided by the so-called
nonlinear Ginzburg-Landau equation (NGLE) [9]. Here, we shall explore the
NGLE with the cubic-quintic nonlinearity, which is appropriate, e.g., to mod-
eling of the nonlinear optical and laser systems [10,11]:

∂a (z, t)

∂z
=

[
−σ + (α+ iβ)

∂2

∂t2
+ (κ− iγ) |a (z, t)|2 − κζ |a (z, t)|4

]
a (z, t) .

(1)
Here, a(z, t) is a complex “field amplitude” describing the DS profile (e.g., it
is a “slowly-varying” field amplitude for an optical DS or an effective “wave
function” for a Bose-Einstein (BE) condensate [12]), t is a “local time” (that
is a coordinate along which a DS is localized, e.g., it is a co-moving time-frame
for an optical DS or a transverse spatial coordinate for a BE DS), z is a DS
“propagation coordinate” (e.g., it is a number of cavity round-trips for a laser
or a time for a BE condensate). The β−coefficient is a group-delay dispersion
(GDD) coefficient (or a “kinetic-energy” term for a BE condensate), α is a
squared inverse bandwidth of a spectral filter (e.g., it can be a squared inverse
laser gain bandwidth or a “runaway” coefficient for a BE condensate). The
γ− coefficient defines a self-phase modulation (SPM) in a nonlinear optical
system (a “strength” of three-bosons interaction), κ is a dissipative correction
to it (a self-amplitude modulation (SAM) coefficient or a “strength” of boson
creation in three-bosons interactions), and ζ is a higher-order correction to SAM
coefficient. The σ−coefficient is a saturated net-loss coefficient, which defines
the energy exchange with an environment (generally speaking, this exchange
depends on the DS energy).

Only a sole analytical DS solution for Eq. (1) is known [10] but there
are the powerful approximate techniques, which allow exploring the solitonic
properties of NGLE [2]. These techniques demonstrate that a DS “lives” in
the parametric space with reduced dimensionality. For instance, the DS of
Eq. (1) has a two-dimensional parametric space [11] and its representation was
called as the “DS master diagram” [2,11,13]. Such a diagram demonstrates
some asymptotic corresponding to an infinite DS energy growth E →∞ (e.g.,
E can be associated with an ultrashort pulse laser energy or a mass of BE
condensate). This asymptotic was named later as the DSR [3].
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The structure of the master diagram is crucial for a DS characterization.
The most interesting is the so-called “zero isogain curve”, where σ ≡ 0 that
corresponds to a “vacuum stability” of Eq. (1) and defines the DS stability
border. Such a DS stability border obtained from the adiabatic theory of
chirped DS developing in the range of normal GDD (β > 0) [2] is shown by the
solid curve (1) in Fig. 1. The DS is stable below this curve.

Fig. 1. Master diagram (parametric space) of DS. Solid curve (1) corresponds to the
stability border of chirped DS obtained from the adiabatic theory (β > 0). For com-
parison, dashed curve (2) shows the stability border of chirp-free DS obtained on the
basis of the variational approximation (β < 0). The solitons are stable below the
corresponding curves. One has note, that the abscissas (i.e. the energy normaliza-
tions) differ for two types of solitons (arrows point to the corresponding abscissa).
DS evolutions for the parameters corresponding to the points A, B and C are shown
in Figs. 2, 3 and 4, respectively.

The dimensionless coordinates in Fig. 1 represent a true parametric space
of DS and demonstrate the DSR existence for a chirped DS: limC→2/3E =∞.
Physically, the DSR corresponds to a perfect scalability of DS energy that is the
DS energy can grow without a change of system parameters (i.e. parameters of
Eq. (1)). Of course, the energy inflow is required for such a scaling. This inflow
is provided by the energy-dependence of σ−parameter: σ ≈ ξ (E/E′ − 1) (here
E′ corresponds to the energy of a t−independent solution of Eq. (1); ξ is a
parameter, which is irrelevant for a further consideration) [11].

For comparison, the dashed curve (2) in Fig. 1 shows the stability border
for a chirp-free DS obtained on the basis of the variational approximation. The
important feature of such a soliton, which develops in the range of anomalous
dispersions (β < 0) is an absence of DSR, so that the energy scaling requires
the corresponding scaling of parameters of Eq. (1): E →

√
5 |β|/ζγ for a large

E.
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Such a difference in the energy scalability has a simple explanation. The

DS of Eq. (1) is power-bounded: max
(
|a|2
)
≤ 1/ζ. Hence, the energy scaling

can be provided by only soliton stretching. But, from the area theorem for a
soliton of the nonlinear Schrödinger equation, such a stretching requires the
GDD growth or the SPM reduction: E = 2

√
2 |β|/ζγ. On the other hand, for

the chirped DS, such a stretching results from the chirp growth so that manip-
ulations with the parameters of Eq. (1) are not necessary for an asymptotical
energy growth. At the same time, a stretching of chirped DS is reversible due
to a posterior chirp-compensation so that the minimum soliton width is defined
by the energy-independent value of

√
3α/2.

3 Scenarios of DS destabilization

Numerical simulations of Eq. (1) reveal three main scenarios of chirped DS
destabilization. The first one corresponding to low energies (point A in Fig.
1) is the so-called soliton explosion (Fig. 2) [14]. The explosion results from
the interaction with slowly growing vacuum perturbations causing aperiodic
destruction of DS with a subsequent its recreation. Vacuum is unstable in this
case (σ < 0).

  

Fig. 2. Explosive chirped DS (|a(z, t)|2-profile) corresponding to the point A in Fig.
1. The propagation coordinate z and the local time t are given in arbitrary units.

In a middle range of DS energies (point B in Fig. 1), a very interesting
regime of destabilization appears (Fig. 3). There are the rogues DSs [15]. In
this regime, there exists some localized complex of strongly and chaotically
interacting, decaying and emerging solitons. The peaks appearing in such a
complex can exceed substantially the mean power and the statistics of their
appearance is not Gaussian. Vacuum is unstable in this case, as well.
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Fig. 3. Rogue chirped DSs (|a(z, t)|2-profile) corresponding to the point B in Fig. 1.

At last, the most typical scenario of a high-energy DS destabilization (point
C in Fig. 1) is the multipulsing (Fig. 4). This regime corresponds to a gen-
eration of several stable solitons, which can be bounded within multisoliton
complexes. Such a regime is typical also for the chirp-free DSs. The main
mechanism causing multipulsing is the growth of spectral dissipation that de-
creases the DS energy [16]. As a result, σ parameter becomes negative that
destabilizes vacuum and the new solitons develop. After formation of several
additional solitons with the reduced spectral widths, the spectral dissipation
decreases and the vacuum becomes stable again. Under some conditions, the
strong interactions between DSs inside a complex can result in strongly un-
steady dynamics including formation of rogue DSs.

4 Chirped DS under the noise action

The quantum noise can be included in Eq. (1) in the form of an additive
complex stochastic term ψ(z, t) with the correlation:

〈ψ (z, t)ψ∗ (z′, t′)〉 = Γδ (z − z′) δ (t− t′) ,

where Γ describes the noise “power”. For the spontaneous noise in a laser gain
medium, one has [17]:

Γ = 2σθ
hν

∆t
,

where θ is the enhancement factor due to incomplete inversion in an active
medium, ∆t is the time step in subdividing of time window representing a(t).

The inclusion of such a term in Eq. (1) transforms the master diagram
drastically. Solid curve in Fig. 5 demonstrates the DS stability border in this
case. Its noiseless analog is the solid curve 1 in Fig. 1. One can see, that the DS
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Fig. 4. Multi-DS complex (|a(z, t)|2-profile) corresponding to the point C in Fig. 1.

stability conditions change after some bifurcation point (Eκ3/2ζ1/2/γα1/2 ≈ 20
in our case) so that the energy scaling needs a substantial decrease of the
C−parameter. For a mode-locked laser, this corresponds to a substantial GDD-
growth or/and a SPM-reduction required for the DS stabilization. Thus, the
DSR disappears under the noise action.

Fig. 5. Master diagram of the chirped DS in the presence of quantum noise. Γ =
10−10/γ. DS evolutions for the parameters corresponding to the points A and B are
shown in Figs. 6 and 7, respectively.
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Fig. 6. Chaotic multi-DS complex (|a(z, t)|2-profile) corresponding to the point A in
Fig. 5.

Moreover, the DS becomes completely unstable above some critical energy
(Eκ3/2ζ1/2/γα1/2 ≈ 100 in our case). Only completely chaotic regimes exist
starting from this limit.

Fig. 6 demonstrates, that the multipulsing regime in high-energy limit with
noise becomes completely chaotic with the elements of rogue soliton dynamics.

A further energy growth enhances chaotization (Fig. 7) so that eventually
the DS becomes completely “dissolved” in a sea of amplified noise.

Another important feature of a high-energy DS in the presence of noise
is that the soliton emergence is random, that is it depends on both a random
sample of initial noise conditions and their evolution. Thus, the stability border
for a high-energy DS becomes “fuzzy”.

5 Conclusion

The numerical analysis of NGLE has demonstrated that the main scenarios of
chirped DS destabilization are i) exploding instability for low soliton energies,
ii) rogue soliton generation for middle- and high energy levels, and iii) mul-
tipulsing. It was found, that the energy scalability of chirped DS is affected
strongly by quantum noise so that a noise destroys the DSR and the soliton
energy scaling requires a substantial GDD increase. Starting from some energy
level, a noise prevents the DS formation at all so that a zoo of chaotic regimes
appears. This confines a reachable maximum of DS energy.

The research was funded by the Austrian Science Fund (FWF): Project
#P24916.
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Abstract: We apply the health state function theory to explore the health status 

of the USA States for the period 1989-1991. The data are from the official 

decennial life tables. We first use the New Hampshire data for the first 

application presented in the next figure and then we apply the same theory to 50 

USA States and give comparative results. 

 

Figure 1. Main health state and mortality characteristics 

Figure 1 above illustrates the main futures of the human health state and 

mortality theory. Three main graphs are present: the Death Distribution, the 

Health State Function and the Mortality Curve. The example used is for New 

Hampshire U.S. decennial life tables for 1989–91 provided by the US 

Department of Health and Human Services, National Center for Health 

Statistics, Centers for Disease Control and Prevention, Division of Vital 
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Statistics. For the three graphs presented two main futures are given: the 

estimates from the data provided and the estimates after the fitting by using the 

SKI-1995 model and the related program in Excel provided in the 

http://www.cmsim.net website. The fitting is almost perfect.  

From the data sets we form and present the death distribution (The scale of the 

graph is adapted). Few important futures are illustrated in the above graph. The 

related theory is presented in [1-5] . 

1. The maximum number of deaths appear at 83.5 years of age 

2. The death distribution around this year of age is of a non-symmetric 

bell-shaped form. The main task of future studies is to explore the 

mechanisms related to the form of this distribution and on how we can 

expand the region around of the peak of the deaths to the right. 

3. A 33.3% of the total number of deaths appear in the age interval +-5 

years from the maximum (78-88 years of age). This is 33.2% for USA 

1990 data. 

4. A 58.1% of the total number of deaths appear in the age interval +-10 

years from the maximum (73-93 years of age). The related value for 

USA 1990 is 57.0%. This part of the death data, almost the 2/3 of the 

total deserves special attention. Any improvement by shifting the death 

distribution to the right will provide valuable help in millions of 

people. 

5. The number of deaths from 100+ is only a 1.9% of the total number of 

deaths. (For USA 1990 is 1.1%). This is a very small amount 

distributed at the right hand part of the tail of the death distribution so 

that it is very difficult to collect any reliable information. That is why 

the studies on centenaries and super-centenaries face problems. 

6. The number of deaths from 0-25 is only a 1.9% of the total number of 

deaths. It is similar to the number of deaths for 100+ years of age. This 

is 2.6% for USA 1990 data. 

The Life Expectancy at Birth (LEB) is estimated at 76.2 years of age (red line in 

the graph). LEB is the most popular indicator as it is used by actuaries and 

insurance companies to calculate the pension funds. However, LEB is a statistic 

indicator and the large public confuses this indicator with the year of the 

maximum number of deaths. LEB is always several years lower than the age 

year of the maximum death rate as is illustrated in the graph. For earlier time 

periods when infant mortality was extremely high LEB differs significantly 

from the age year of the maximum death rate. The use of the force of mortality 

µx and its logarithmic form ln(µx) do not help much as it provides a linear form 

for the age years higher than 30. 

The theory of the health state of a population instead includes the empirical 

observations related to the health state starting from lower values at birth, 

increasing until maturity and then decreasing at higher ages. The theory includes 

many theoretical and technical details developed last decades and based on the 
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modern theory of the first exit time of a stochastic process from a barrier. 

Although the full knowledge of the theory requires high level mathematics and 

statistics the applications are feasible by using the Excel software provided in 

the http://www.cmsim.net website. The health state function Hx for New 

Hampshire is presented in the above figure 1. The main futures of the health 

state function are the following: 

1. The health state function is zero at the age year of the maximum death 

rate. 

2. The health state function provides a maximum at a specific age ranging 

from 30-45 years. The level of this maximum can be used to rank 

countries and regions. For New Hampshire it is 37 years of age at a 

level of 18.54. It is 37.52 years of age for USA in 1990 at a level of 

17.56. 

3. A more accurate estimate related to this maximum is the expected 

healthy age. For New Hampshire is 38.41 years of age. It is 38.97 years 

for USA in 1990. 

4. Calculating the area under the health state function from zero age until 

the age of zero health state we have a clear estimate of the health 

condition of a population. The related number of the Total Health State 

is 1130 for New Hampshire (1989-1991) and 1110 for USA in 1990. 

Estimates for Sweden for a period of the last 250 years follow (Table 

I). The Total Health State improved and the Life Expectancy at Birth as 

well; the later increasing by 40.9 years of age in 250 years. Instead the 

age of the maximum death rate increased by only 12 years from 74 

years in 1751 to 86 years in 2000. Contrary to the general opinion the 

maximum death rate of the population of Sweden was at the relatively 

high age of 74 years in 1751 almost 2 times more than the LEB years 

of age. This is an indication that the governing mechanisms for the 

human life duration are relatively stable and special attention is needed 

in organizing future studies. 

 

Figure 2. The health state differences as the first derivative of the health state 

function 
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5. A local maximum of the health state appears in 12 years of age from 

data sets (at 14.59 health level) and at 15 years of age from the fit 

curve (at 14.78 health level) as illustrated in Figure 1. As the case is 

very sensitive we estimate the Health State Differences presented in 

Figure 2. The level of health state achieved in this young age accounts 

for the 78.7% of the maximum health state. Furthermore Figure 2 

provides a clear view of the course of health state changes in a 

population as a function of age. The changes expressed as the first 

derivative of the health state function (dH/dx) are positive but declining 

from birth until the end of the first decade or of the beginning of the 

second decade of the life span when it is close to zero thus providing a 

local maximum for Hx, then increases until a maximum (for New 

Hampshire is estimated at 23 years of age from the data sets and 22 

from the fit curve) and then continuously decline passing from positive 

to negative values. The zero point is achieved at the year of the 

maximum health state.  

TABLE I 

Estimates for Sweden 

Year Max Death Rate 
Life Expectancy at 

Birth 
Total Health State 

1751 74 38.7 737 

1800 71 32.9 646 

1850 73 44.5 724 

1900 79 51.9 866 

1950 80 71.0 1076 

2000 86 79.6 1291 
 

The above figures 3A and 3B illustrate the estimates for the Total Health State 

(THS) and the Life Expectancy at Birth (LEB) for the US States for the period 

1989-1991 (Decennial Life Tables). Observing the rank of the particular States 

we found clear connections between THS and LEB. The States presenting 

highest Total Health State show high Life Expectancy at Birth as well. 

The Life Expectancy at Birth versus the Total Health State for the US States 

(1989-1991) is presented in figure 4 along with the linear trend line with 

equation: 061,440283,0 += xy . The relationship is evident. It is further 

demonstrated in the next comparative Table II. The US States are classified 

according to Life Expectancy at Birth and in the next column the Total Health 

State ranking appears. The last column indicates how many places moved up or 

down every State. 6 States are exactly classified. 17 States change only one 

position up or down. 9 States moved to 2 places up or down, 6 States moved to 

3 places, 5 states moved to 4 places up or down, whereas 2 States moved to 5 

places and 2 to 6 places. The remaining three States are New Hampshire (8 

places down), Alaska (9 places up) and Florida (10 places up). USA with 1110 

for the THS will be ranked between Maine (1113) and New Jersey (1106) in a 

place between 25 and 26 in the middle of the US States. Instead according to 

LEB (75.24 years) USA should be ranked in place 35 of 50 States with Illinois. 



The Health State Status of the USA States for the period 1989-1991    43 
 

 

900 950 1000 1050 1100 1150 1200 1250

Mississippi
South Carolina

Alabama
Georgia

West Virginia
Kentucky

Tennessee
North Carolina

Arkansas
Nevada

Delaware
Maryland
Michigan
New York

Illinois
Texas

Virginia
Ohio

Oklahoma
Pennsylvania

Missouri
Indiana
Alaska

New Jersey
Maine

California
Wyoming

New Hampshire
New Mexico

Montana
Vermont

Arizona
Massachusetts

Rhode Island
Oregon
Florida

Connecticut
Colorado

Washington
Wisconsin

Kansas
Nebraska

Iowa
Idaho

South Dakota
Minnesota

North Dakota
Utah

Hawaii

Total Health State

USA States for 1989-1991

 
70 72 74 76 78

Louisiana
South Carolina

Georgia
Alabama

Nevada
West Virginia

Tennessee
Arkansas
Kentucky

North Carolina
New York
Delaware
Maryland

Alaska
Illinois

Michigan
Oklahoma

Texas
Virginia

Missouri
Ohio

Pennsylvania
Indiana

New Jersey
New Mexico

Florida
California

Arizona
Wyoming
Montana

Maine
Oregon

Rhode Island
Vermont

Massachusetts
New Hampshire

Kansas
Washington

Wisconsin
Idaho

South Dakota
Connecticut

Nebraska
Colorado

Iowa
North Dakota

Utah
Minnesota

Hawaii

Life Expectancy at Birth

USA States for 1989-1991

 
Fig. 3A. Total health state estimates Fig. 3B. Life expectancy at birth 
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Fig. 4. The LEB versus THS for 50 USA States 

 

6. The most important futures of the Health State Function of a Population is 

the estimation of the Loss of Health Life Years (LHLY) and then the 

calculation of the Healthy Life Expectancy (HLE) as the difference between 

the Life Expectancy at Birth (LEB) and LHLY that is HLE=LEB-LHLY. 

There are three special cases. In the most important we estimate the loss of 

healthy life years under severe causes and we calculate the healthy life 

expectancy at birth (HLEB) under severe causes. The method used is 

analyzed in the 5
th

 chapter of the book on “The Health State Function of a 

Population” (Skiadas & Skiadas, 2012) and it is applied to the World 

Health Organization (WHO) member states for the years 1990, 2000 and 

2009. The application for USA States (1989-1991) is presented in figure 

5A. Minnesota is ranked first with 71.93 years and Louisiana with 67.44 

healthy life years is in the last place. The gap is 4.49 healthy life years. 

Minnesota, Hawaii, Utah, Connecticut, Iowa, North Dakota, Wisconsin, 

New Hampshire, Nebraska and Massachusetts form the first decade 

whereas West Virginia, Kentucky, Nevada, Georgia, New York, Arkansas, 

Alabama, South Carolina, Mississippi and Louisiana are the last ten states 

in the rank. 
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TABLEII

1 78,22 Hawai i Hawai i 1214 0

2 78,10 Minnes ota Utah 1202 1

3 77,95 Utah North Dakota 1186 1

4 77,76 North Dakota Minnes ota 1185 -2

5 77,63 Iowa South Da kota 1176 4

6 77,47 Colorado Idaho 1172 4

7 77,34 Nebraska Iowa 1167 -2

8 77,34 Connecticut Nebra ska 1160 -1

9 77,28 South Dakota Kansa s 1157 4

10 77,27 Idaho Wis cons in 1157 1

11 77,19 Wis cons in Was hington 1156 1

12 77,19 Washington Colorado 1155 -6

13 77,17 Kans as Connecticut 1152 -5

14 77,15 New Ha mps hire Florida 1146 10

15 77,06 Mass achus etts Oregon 1144 3

16 77,03 Vermont Rhode Is land 1143 1

17 76,96 Rhode Is land Mass achus etts 1141 -2

18 76,79 Oregon Arizona 1140 4

19 76,77 Maine Vermont 1138 -3

20 76,58 Montana Montana 1137 0

21 76,58 Wyoming New Mexico 1136 4

22 76,29 Arizona New Hamps hire 1130 -8

23 76,00 Cal i fornia Wyoming 1129 -2

24 75,91 Florida Cal i fornia 1124 -1

25 75,86 New Mexico Maine 1113 -6

26 75,82 New Jersey New Jers ey 1106 0

27 75,81 Indiana Alas ka 1106 9

28 75,78 Penns ylva nia India na 1103 -1

29 75,76 Ohio Missouri 1103 1

30 75,70 Miss ouri Penns ylvania 1101 -2

31 75,67 Virginia Okla homa 1099 2

32 75,57 Texas Ohio 1097 -3

33 75,55 Oklahoma Virginia 1097 -2

34 75,44 Michigan Texa s 1094 -2

35 75,24 Il l inois I l l inois 1093 0

36 75,23 Alaska New York 1091 3

37 75,19 Maryland Michigan 1091 -3

38 75,02 Dela wa re Maryla nd 1085 -1

39 74,90 New York Delaware 1082 -1

40 74,90 North Ca rol ina Nevada 1082 5

41 74,89 Kentucky Arkans as 1075 1

42 74,82 Arkans as North Carol ina 1072 -2

43 74,72 Tenness ee Tennes see 1071 0

44 74,64 West Vi rginia Kentucky 1064 -3

45 74,22 Nevada Wes t Vi rginia 1060 -1

46 74,02 Alabama Georgia 1052 1

47 73,99 Georgia Alabama 1050 -1

48 73,93 South Carol ina South Carol ina 1041 0

49 73,50 Louis iana Miss is s ippi 1034 1

50 73,45 Miss iss ippi Louis iana 1031 -1

Places             

+up / -down
Rank

LEB and THS rankings for US States

Total Health StateLife Expectancy at Birth
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7. The estimates of the Healthy Life Expectancy at Birth under all causes are 

also presented. This is an indicator including severe, moderate and light 

causes for loss of healthy life years (Figure 5B). As it is expected the 

related indicator for the Healthy Life Expectancy at Birth (HLEB) under all 

causes provides lower values for the expected healthy years of age than the 

previous one. However, it is an important estimator for the health policy 

planers especially when estimate the expenses for the health care system. 

New Hampshire (63.00 years), Maine, Vermont, Iowa, Nebraska, 

Minnesota, Massachusetts, Wisconsin, Colorado and Washington are the 

first ten with the highest healthy life years. The lower ten positions are 

covered by Arkansas, Louisiana, South Carolina, Arizona, Georgia, 

Alabama, New Mexico, Mississippi, New York and Florida (57.12 years). 

The gap from the first to the last one is 5.88 life years. For USA 1990 the 

HLEB (severe causes)) is 68.69 years higher than Missouri (69.54 years) 

and lower than Florida (69.71 years) in a place between 28 and 29. 

 

8. A comparative study is presented in Table III including the estimates for the 

healthy life expectancy at birth under severe and under all causes of 

disabilities for the USA States from 1989-1991. The rankings differ 

significantly in the two estimates. The main reason is that by estimating all 

causes of disabilities (severe, moderate and light) the light causes 

responsible for the loss of several life years of age are higher or lower in 

places with special characteristics for the way of living. The main positive 

changes (+up) were for West Virginia (+25), Delaware (+24), Kentucky 

(+23), Alaska (+22), Maine (+14), Vermont (+14), Indiana (+13), Ohio 

(+11) and Virginia (+10). The main negative changes (-down) were for 

Hawaii (-35), Connecticut (-23), Florida (-22), Arizona (-21), Utah (-21), 

Kansas (-16), New Mexico (-16), North Dakota (-15), California (-14), 

South Dakota (-11) and Rhode Island (-10). For USA 1990 the HLEB (all 

causes)) is 59.37 years higher than South Carolina (59.23 years) and lower 

than Louisiana (59.41 years) in a place between 42 and 43. 
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TABLE III 

1 71,93 Minnesota New Ha mpshire 63,00 7

2 71,42 Ha wa i i Maine 62,67 14

3 71,35 Utah Vermont 62,36 14

4 71,24 Connecti cut Iowa 62,12 1

5 71,18 Iowa Nebraska 61,80 4

6 71,18 North Da kota Minnesota 61,69 -5

7 71,17 Wisconsin Massachusetts 61,65 3

8 71,14 New Ha mpshire Wisconsin 61,64 -1

9 70,95 Nebraska Colorado 61,60 3

10 70,90 Massachusetts Wa shington 61,29 1

11 70,86 Wa shington Ohio 61,29 11

12 70,86 Colorado Dela wa re 61,29 24

13 70,84 Rhode Is la nd India na 61,28 13

14 70,82 Ka nsas Ida ho 61,24 5

15 70,72 Oregon Virginia 61,20 10

16 70,67 Maine West Vi rginia 61,12 25

17 70,61 Vermont Oregon 61,11 -2

18 70,60 South Dakota Ala ska 61,10 22

19 70,37 Ida ho Kentucky 61,10 23

20 70,35 Montana Montana 61,04 0

21 70,25 Wyoming North Da kota 61,01 -15

22 70,00 Ohio Pennsylvania 60,96 5

23 70,00 Ari zona Rhode Is la nd 60,90 -10

24 69,88 Ca l i fornia Utah 60,84 -21

25 69,83 Virginia Wyoming 60,78 -4

26 69,83 India na Michigan 60,75 4

27 69,80 Pennsylvania Connecti cut 60,71 -23

28 69,71 Florida Oklahoma 60,67 7

29 69,54 Missouri South Dakota 60,55 -11

30 69,49 Michigan Ka nsas 60,49 -16

31 69,39 New Mexico New Jersey 60,48 2

32 69,35 Texas Maryla nd 60,48 2

33 69,33 New Jersey I l l inoi s 60,29 4

34 69,30 Maryla nd Nevada 60,13 9

35 69,23 Oklahoma North Carol ina 60,07 3

36 69,18 Dela wa re Missouri 59,97 -7

37 69,10 Il l inoi s Ha wa i i 59,93 -35

38 69,01 North Carol ina Ca l i fornia 59,88 -14

39 68,90 Tennessee Tennessee 59,87 0

40 68,80 Ala ska Texas 59,77 -8

41 68,77 West Vi rginia Arkansas 59,42 5

42 68,77 Kentucky Louis ia na 59,41 8

43 68,68 Nevada South Carol ina 59,23 5

44 68,50 Georgia Ari zona 59,18 -21

45 68,44 New York Georgia 59,16 -1

46 68,40 Arkansas Ala ba ma 59,10 1

47 68,38 Ala ba ma New Mexico 58,72 -16

48 68,15 South Carol ina Miss is s ippi 58,53 1

49 67,57 Miss is s ippi New York 58,50 -4

50 67,44 Louis ia na Florida 57,12 -22

Rank
Healthy Life Expectancy at 

Birth (severe causes)

Healthy Life Expectancy at Birth 

(al l causes)

Places             

+up / -down

Healthy Life Expectancy rankings for US States
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Abstract. The Cauchy problem for systems of differential equations with stochastic
perturbations is studied. Weak regularized solution are constructed for the case of
systems with operators generating R-semigroups; generalized and mild solutions are
introduced.
Keywords: white noise process; Wiener process; weak, regularized, generalized and
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1 Introduction

Let (Ω,F , P ) be a random space. We consider the Cauchy problem for the
systems of differential equations with stochastic perturbations :

∂X(t, x)

∂t
= A

(
i
∂

∂x

)
X(t, x) +BW(t, x), t ∈ [0, T ], x ∈ R, (1)

X(0, x) = f(x), (2)

where A
(
i ∂∂x
)

is a matrix operator: A
(
i ∂∂x
)

=
{
Ajk

(
i ∂∂x
)}m
j, k=1

generating

different type systems in the Gelfand-Shilov classification [3], Ajk
(
i ∂∂x
)

are lin-
ear differential operators in L2(R) of finite orders; W = {W(t), t ≥ 0} is a ran-
dom process of white noise type in Ln2 (R): W(t) = (W1(t, x, ω), . . .Wn(t, x, ω)),
x ∈ R, ω ∈ Ω; B is a bounded linear operator from Ln2 (R) to Lm2 (R); f is an
Lm2 (R)-valued random variable; X = {X(t), t ∈ [0, T ]} is an Lm2 (R)-valued
stochastic process X(t) = (X1(t, x, ω), . . . Xm(t, x, ω)), x ∈ R, ω ∈ Ω, which is
to be determined.
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sities of RF (agreement no. 02.A03.21.0006 from 27.08.2013) and by RFBR, project
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This problem usually is not well-posed for several reasons. The first one
is caused by the fact that the differential operators A

(
i ∂∂x
)

generally do not
generate semigroups of class C0 and the corresponding homogeneous Cauchy
problem is not uniformly well-posed in Lm2 (R), they generate only some regu-
larized semigroups. By this reason we look for a regularized solution of (1)–(2).
The second reason is the irregularity of a white noise process, because of this
we need to consider not the original equation (1) but the integrated one, that is
an equation in the Ito form with a Wiener process W being a kind of primitive
of white noise W:

X(t, x) = f(x) +

∫ t

0

A

(
i
∂

∂x

)
X(τ, x) dτ +BW (t, x), t ∈ [0, T ], x ∈ R. (3)

In addition, we can not expect the stochastic inhomogeneity be in the domain
of A

(
i ∂∂x
)
, by this reason we have to explore weak regularized solutions to the

integrated problem (3).

2 Necessary definitions and preliminary results

We consider the problem (1)–(2) as an important particular case of the abstract
Cauchy problem

X ′(t) = AX(t) +BW(t), t ∈ [0, T ], X(0) = f, (4)

and the problem (3) as that of the abstract integral one (written as usually in
the form of differentials):

dX(t) = AX(t)dt+BdW (t), t ∈ [0, T ], X(0) = f, (5)

with A being the generator of a regularized semigroup in a Hilbert space H, es-
pecially an R-semigroup (see, exp., Melnikova[4], Melnikova and Anufrieva[6]).
Thus, we continue investigations of Da Prato[2], Melnikova et al. [5], Alshan-
skiy and Melnikova[1]. We assume in this paper H = Lm2 (R).

Definition 1. Let A be a closed operator and R be a bounded linear operator
in Lm2 (R) with a densely defined R−1. A strongly continuous family S :=
{S(t), t ∈ [0, τ)}, τ ≤ ∞, of bounded linear operators in Lm2 (R) is called an
R-regularized semigroup (or R-semigroup) generated by A if

S(t)Af = AS(t)f, t ∈ [0, τ), f ∈ domA, (6)

S(t)f = A

∫ t

0

S(τ)f ds+Rf, t ∈ [0, τ), f ∈ Lm2 (R). (7)

The semigroup is called local if τ <∞.

Definition 2. LetQ be a symmetric nonnegative trace class operator in Ln2 (R).
An Ln2 (R)-valued stochastic process {W (t), t ≥ 0} is called a Q-Wiener process
if

(W1) W (0) = 0 Pa.s. ;
(W2) the process has independent increments W (t)−W (s), 0 ≤ s ≤ t,

with normal distribution N (0, (t− s)Q);
(W3) W (t) has continuous trajectories Pa.s.
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Definition 3. Let {Ft, t ≤ ∞} be a filtration defined by W . An Lm2 (R)-valued
Ft-measurable process X = {X(t), t ∈ [0, T ]} is called a weak R-solution of
the problem (3) with A

(
i ∂∂x
)

generating an R-semigroup {S(t), t ∈ [0, τ)} in
Lm2 (R) if the following conditions are fulfilled:

1) for each t ∈ [0, T ], k = 1,m,
∫ t
0
‖Xk(·, τ)‖L2(R) dτ <∞ Pa.s.;

2) for each g ∈ domA∗, X satisfies the weak regularized equation :

〈X(t), g〉 = 〈Rf, g〉+

∫ t

0

〈X(τ), A∗g〉 dτ + 〈RBW (t), g〉 Pa.s. , t ∈ [0, T ]. (8)

It is proved by Melnikova and Alshanskiy[1] that a weak R-solution of the
abstract stochastic Cauchy problem (5) with densely defined A being the gener-
ator of an R-semigroup and W being a Q-Wiener process exists and is unique.
In the case of the problem (3) this result is as follows.

Theorem 1. Let {W (t), t ≥ 0} be a Q-Wiener process in Ln2 (R) and A
(
i ∂∂x
)

be the generator of an R-semigroup {S(t), t ∈ [0, τ)} in Lm2 (R) satisfying the
condition ∫ t

0

‖S(τ)B‖2HS dτ <∞, (9)

where ‖ · ‖HS is the norm in the space of Hilbert-Schmidt operators acting from

the space Q
1
2Ln2 (R) to Lm2 (R). Then for each F0-measurable Lm2 (R)-valued

random variable f

X(t) = S(t)f +

∫ t

0

S(t− τ)B dW (τ), t ∈ [0, T ], (10)

is the unique weak R-solution of (5).

We see in (10) that the main part of constructing an R-solution is con-
structing an R-semigroup generated by A. It is not an easy task to construct
R-semigroups generated by given operators A in the general case. But for dif-
ferential operators A

(
i ∂∂x
)

such semigroups can be constructed and we describe
a way to do this in the present paper.

Our methods are based on investigations of the differential systems:

∂u(t, x)

∂t
= A

(
i
∂

∂x

)
u(t, x), t ∈ [0, T ], x ∈ R, (11)

provided by the generalized Fourier transform technique in [3]. So, let us apply
the Fourier transform to the system (11) and consider the dual one:

∂ũ(t, s)

∂t
= A(s)ũ(t, s), t ∈ [0, T ], s ∈ C. (12)

Let the functions λ1(·), . . . , λm(·) be characteristic roots of the system (12)
and Λ(s) := max

1≤k≤m
<λk(s), s ∈ C. Then solution operators of (12) have the

following estimation

etΛ(s) ≤
∥∥∥etA(s)

∥∥∥
m
≤ C(1 + |s|)p(m−1)etΛ(s), t ≥ 0, s ∈ C. (13)
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Definition 4. A system (11) is called
1) correct by Petrovsky if there exists such a C > 0 that Λ(σ) ≤ C, σ ∈ R;
2) conditionally–correct if there exist such constants C > 0, 0 < h < 1,

C1 > 0 that Λ(σ) ≤ C|σ|h + C1, σ ∈ R;
3) incorrect if the function Λ(·) grows for real s = σ in the same way as for

complex ones: Λ(σ) ≤ C|σ|p0 + C1, σ ∈ R.

Finally, note that the operator i ∂∂x is self-conjugate in L2(R):
(
i ∂∂x
)∗

= i ∂∂x .
Hence the differential operator of (1) has the following conjugate one

A∗
(
i
∂

∂x

)
=

{
Akj

(
i
∂

∂x

)}m
k,j=1

,

obtained of {Ajk
(
i ∂∂x
)
}mj,k=1 by replacing components with conjugate operators

and by further transposition.

3 Construction of R-semigroups generated by A
(
i ∂
∂x

)
Since for the problem (12) solution operators of multiplication by etA(·), t ≥ 0,
generally have an exponential growth (13), one can not obtain propagators of
the problem (11) in the framework of the classical inverse Fourier transform.
That is why we introduce an appropriate multiplierK(·) into the inverse Fourier
transform :

GR(t, x) :=
1

2π

∫ ∞
−∞

eiσxK(σ)etA(σ) dσ, (14)

providing the uniform convergence of this integral with respect to t ∈ [0, T ] in
Lm2 (R)× Lm2 (R) =: Lm2 . For this purpose we require K(·)etA(·) ∈ Lm2 .

The matrix-function GR(t, x) obtained in (14) is a regularized Green func-
tion. If its convolution with f is well-defined, then the convolution gives a
regularized solution of (11). In addition to the above condition, we introduce
K(·) providing∫ ∞

−∞
eiσxK(σ)etA(σ)f̃(σ) dσ ∈ Lm2 (R), t ∈ [0, T ], (15)

for each f̃ ∈ Lm2 (R). These conditions hold, for example, if K(·)etA(·) ∈ Lm2
and is bounded.

Now we show that the family of convolution operators with GR(t, x):

(S(t)f)(x) := GR(t, x) ∗ f(x), t ∈ [0, τ), (16)

forms a local R-semigroup in Lm2 (R) for any τ <∞. To begin with, we verify
the strong continuity property of the family {S(t), t ∈ [0, T ]}, T < ∞ : for
arbitrary f ∈ Lm2 (R) we show that ‖S(t)f − S(t0)f‖Lm

2 (R) → 0 as t→ t0.

‖S(t)f − S(t0)f‖2Lm
2 (R) =
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=

∫
R

(
1

2π

∫ ∞
−∞

eiσxK(σ)
[
etA(σ)f̃(σ)− et0A(σ)f̃(σ)

]
dσ

)2

dx.

Let us split the inner integral into the three integrals:∫
|σ|≥N

eiσxK(σ)etA(σ)f̃(σ) dσ −
∫
|σ|≥N

eiσxK(σ)et0A(σ)f̃(σ) dσ

+

∫
|σ|≤N

eiσxK(σ)
[
etA(σ) − et0A(σ)

]
f̃(σ) dσ. (17)

Note that the functions hN (x, t) :=

∫
|σ|≥N

eiσxK(σ)etA(σ)f̃(σ) dσ and

gN (x, t) :=

∫
|σ|≤N

eiσxK(σ)
[
etA(σ) − et0A(σ)

]
f̃(σ) dσ

are elements of Lm2 (R) for all t ∈ [0, T ] as the inverse Fourier transform of the
functions from Lm2 (R)

h̃N (σ, t) =

{
0, |σ| ≤ N,

K(σ)etA(σ)f̃(σ), |σ| > N,

and g̃N (σ, t) = K(σ)etA(σ)f̃(σ) − h̃N (σ, t), respectively. Further, since

K(·)etA(·) ∈ Lm2 and f̃(·) ∈ Lm2 (R), the integral (15) is convergent uniformly
with respect to x ∈ R and t ∈ [0, T ], then for any ε > 0

|hN (x, t)| < ε/4, x ∈ R, t ∈ [0, T ],

by the choice of N . So, sum of absolute values of the first two integrals in (17)
is less than ε/2. Now fix N . Since

(
e(t−t0)A(σ) − 1

)
→ 0 as t → t0 uniformly

with respect to σ ∈ [−N,N ], we can take

|gN (x, t)| < ε/2, x ∈ R, t ∈ [0, T ].

To obtain the estimate for

‖S(t)f − S(t0)f‖2Lm
2 (R) =

1

4π2

∫
R

(hN (x, t)− hN (x, t0) + gN (x, t))
2
dx

we consider the difference hN (x, t)− hN (x, t0) =: ∆N (x, t, t0), t, t0 ∈ [0, T ], as
a single function, then ∆N (·, t, t0) ∈ Lm2 (R) and for a fixed N by the choice of
t0, |∆N (x, t, t0)| < ε/2, x ∈ R. In these notations we have:

4π2‖S(t)f − S(t0)f‖2Lm
2 (R) =

=

∫
R
∆2
N (x, t, t0) dx+ 2

∫
R
∆N (x, t)gN (x, t, t0) dx+

∫
R
g2N (x, t) dx.

On the way described above one can show that every of these three integrals is
an infinitesimal value. That is the integrals over the infinite intervals |x| > M
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are small by the choice of M because of their uniform convergence with respect
to t ∈ [0, T ]. Integrals on compacts [−M,M ] are small because the integrands
are small, that provided by the sequential choice of M and t ∈ [0, T ]. This
completes the proof that operators of the family (16) are strongly continuous.

Next, we show that the obtained operators commute with A
(
i ∂∂x
)

on f ∈
domA

(
i ∂∂x
)
. By properties of convolution, a differential operator may be ap-

plied to any components of convolution, so we applyA
(
i ∂∂x
)

to f ∈ domA
(
i ∂∂x
)
:

A

(
i
∂

∂x

)
(S(t)f)(x) = GR(t, x) ∗A

(
i
∂

∂x

)
f(x) = S(t)A

(
i
∂

∂x

)
f(x).

Hence, the equality (6) holds. In conclusion, we show the R-semigroup equation
(7). For an arbitrary f ∈ domA

(
i ∂∂x
)

consider the equality:

∂

∂t
(S(t)f)(x) =

∂

∂t
[GR(t, x) ∗ f(x)] =

1

2π

∂

∂t

∫ ∞
−∞

eiσxK(σ)etA(σ)f̃(σ) dσ.

Since the integral converges uniformly with respect to t ∈ [0, T ], we can differ-
entiate under the integral sign :

∂

∂t
(S(t)f)(x) =

1

2π

∫ ∞
−∞

eiσxK(σ)etA(σ)A(σ)f̃(σ) dσ.

The condition f ∈ domA
(
i ∂∂x
)

provides A(·)f̃(·) ∈ Lm2 (R), hence the inverse

Fourier transform of A(σ)f̃(σ) is A
(
i ∂∂x
)
f(x) and

∂

∂t
(S(t)f)(x) = GR(t, x) ∗A

(
i
∂

∂x

)
f(x) =

= A

(
i
∂

∂x

)
[GR(t, x) ∗ f(x)] = A

(
i
∂

∂x

)
(S(t)f)(x).

Integration with respect to t gives the equality

(S(t)f)(x)− (S(0)f)(x) =

∫ t

0

A

(
i
∂

∂x

)
(S(τ)f)(x) dτ.

Since A
(
i ∂∂x
)

is closed in Lm2 (R) and differentiable functions are dense there,
this equality holds for any f ∈ Lm2 (R) :

(S(t)f)(x)− (S(0)f)(x) = A

(
i
∂

∂x

)∫ t

0

(S(τ)f)(x) dτ, t ∈ [0, T ].

Put operator R in Lm2 (R) equal to S(0), then by the strong continuity property,

Rf(x) =
1

2π

∫ ∞
−∞

eiσxK(σ)f̃(σ) dσ.

So, we have an R-semigroup generated by A
(
i ∂∂x
)

constructed in Lm2 (R).
Now for all types of systems (11) – correct by Petrovsky, conditionally-

correct and incorrect – we introduce appropriate correcting functions K(σ) as
follows:
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- for systems correct by Petrovsky we take K(σ) = 1
(1+σ2)d/2+1 , where d =

p(m− 1),

- for conditionally-correct systems we take K(σ) = e−a|σ|
h

, where a > const·T ,
- for incorrect systems — K(σ) = e−a|σ|

p0
, where a > const · T .

4 Some remarks on generalized solutions and solutions
of quasi–linear equations

In the previous section we have studied R-solutions to the problem (5) with dif-
ferential operators A

(
i ∂∂x
)

that are generators of R-semigroups in H = Lm2 (R),
and we focused ourselves on the construction of these R-semigroups. If not a
regularized, but a genuine solution of the problem is needed, then we have to
construct the solution in spaces, where operator R−1 is bounded.

How difficult it is to construct R-semigroups in general, we have noted.
Constructing the required spaces in the general case, the same challenge. Nev-
ertheless, in the case of the differential operators A

(
i ∂∂x
)

suitable spaces can be
chosen among those constructed by Gelfand[3] on the basis of the generalized
Fourier transform technique. If to take f being an Lm2 (R)-valued random vari-
able, for systems correct by Petrovsky we can construct a generalized solution
X(t, ·, ω) = (X1(t, ·, ω), . . . Xm(t, ·, ω)), t ∈ [0, T ], ω ∈ Ω, in S ′×· · ·×S ′, where
S ′ is known as the space of tempered distributions. For conditionally-correct

systems these are spaces
(
Sα,Aβ,B

)′
of distribution increasing exponentially with

order 1/β dual to Sα,Aβ,B — the space of all infinitely differentiable functions
satisfying the condition : for any ε > 0, δ > 0

|xkϕ(q)(x)| ≤ Cε, δ(A+ ε)k(B + δ)qkkαqqβ , k, q ∈ N0, x ∈ R,

with a constant Cε, δ = Cε, δ(ϕ). And for incorrect systems the required space
is Z ′, that is dual to the space Z of all entire functions ϕ(·) of argument z ∈ C,
satisfying the condition

|zkϕ(z)| ≤ Ckeb|y|, k ∈ N0, z = x+ iy ∈ C,

with some constants b = b(ϕ), Ck = Ck(ϕ).

Now consider the Cauchy problem for a quasi–linear equation :

dX(t) = AX(t)dt+ F (t,X)dt+BdW (t), t ∈ [0, T ], X(0) = f, (18)

with A being the generator of an R-semigroup in a Hilbert space H, in par-
ticular with A = A

(
i ∂∂x
)

generating one of the constructed R-semigroups in
H = Lm2 (R). Here F (t,X) is a nonlinear term satisfying the following condi-
tions:

(F1) ‖F (t, y1) − F (t, y2)‖H ≤ C‖y1 − y2‖H , t ∈ [0, T ], y1, y2 ∈ H (the
Lipschitz condition);

(F2) ‖F (t, y)‖2H ≤ C‖1 + y‖2H , t ∈ [0, T ], y ∈ H (the growth condition).

Let us introduce a definition of a mildR-solution for the quasi–linear Cauchy
problem (18). In the sense of this paper terminology it will be a strong solution.
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Definition 5. An H-valued Ft-measurable process {X(t), t ∈ [0, T ]}, X(t) =
X(t, ω), ω ∈ Ω, is called a mild R-solution of the problem (18) with A gener-
ating an R-semigroup S := {S(t), t ∈ [0, τ)} if

1)
∫ T
0
‖X(τ)‖H dτ <∞ Pa.s.;

2) for each t ∈ [0, T ], X(t) satisfies the following equation

X(t) = S(t)f +

∫ t

0

S(t− s)F (s,X(s)) ds+

∫ t

0

S(t− s)B dW (s) ds Pa.s. (19)

A unique mild R-solution to (18), in particular to the problem with A =
A
(
i ∂∂x
)

and with F satisfying the conditions (F1)–(F2), can be constructed
by the method of successive approximations, similarly to the case of strongly
continuous semigroups considered by Da Prato[2] and Ogorodnikov[8].

As for mild solutions, they can be obtained only in spaces, where operator
R−1 is defined, and similarly to the case of the linear problem above, these
spaces must be special spaces of generalized functions or even more general
spaces, where nonlinear operations on generalized functions are possible. That
is the problem for further investigations. The beginning to the investigations
of generalized solutions to quasi-linear problems

X ′(t) = AX(t) + F (t,X) +BW(t), t ≥ 0, X(0) = f,

was laid in the paper Melnikova and Alekseeva[7] due to construction of abstract
stochastic Colombeau spaces.
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Dynamics of multiple pendula without gravity

Wojciech Szumiński

Institute of Physics, University of Zielona Góra, Poland
(E-mail: uz88szuminski@gmail.com)

Abstract. We present a class of planar multiple pendula consisting of mathematical
pendula and spring pendula in the absence of gravity. Among them there are systems
with one fixed suspension point as well as freely floating joined masses. All these
systems depend on parameters (masses, arms lengths), and possess circular symmetry
S1. We illustrate the complicated behaviour of their trajectories using Poincaré sec-
tions. For some of them we prove their non-integrability analysing properties of the
differential Galois group of variational equations along certain particular solutions of
the systems.

Keywords: Hamiltonian systems, Multiple pendula, Integrability, Non-integrability,
Poincaré sections, Morales-Ramis theory, Differential Galois theory.

1 Introduction

The complicated behaviour of various pendula is well known but still fascinating,
see e.g. books [2,3] and references therein as well as also many movies on youtube
portal. However, it seems that the problem of the integrability of these systems
did not attract sufficient attention. According to our knowledge, the last found
integrable case is the swinging Atwood’s machine without massive pulleys [1]
for appropriate values of parameters. Integrability analysis for such systems is
difficult because they depend on many parameters: masses mi, lengths of arms
ai, Young modulus of the springs ki and unstretched lengths of the springs.

m

m 1

2

a1

x

y

1

a2

φ

φ 2

Fig. 1. Simple double pendulum.

In a case when the considered system has
two degrees of freedom one can obtain many
interesting information about their behaviour
making Poincaré cross-sections for fixed values
of the parameters.

However, for finding new integrable cases
one needs a strong tool to distinguish values of
parameters for which the system is suspected
to be integrable. Recently such effective and
strong tool, the so-called Morales-Ramis theory
[5] has appeared. It is based on analysis of dif-
ferential Galois group of variational equations
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obtained by linearisation of equations of motion along a non-equilibrium par-
ticular solution. The main theorem of this theory states that if the considered
system is integrable in the Liouville sense, then the identity component of the
differential Galois group of the variational equations is Abelian. For a precise
definition of the differential Galois group and differential Galois theory, see, e.g.
[6].

The idea of this work arose from an analysis of double pendulum, see Fig. 1.
Its configuration space is T2 = S1 × S1, and local coordinates are (φ1, φ2)
mod 2π. A double pendulum in a constant gravity field has regular as well as
chaotic trajectories. However, a proof of its non-integrability for all values of
parameters is still missing. Only partial results are known, e.g., for small ratio
of pendulums masses one can prove the non-integrability by means of Melnikov
method [4]. On the other hand, a double pendulum without gravity is integrable.
It has S1 symmetry, and the Lagrange function depends on difference of angles
only. Introducing new variables θ1 = φ1 and θ2 = φ2 − φ1, we note that θ1 is
cyclic variable, and the corresponding momentum is a missing first integral.

The above example suggests that it is reasonable to look for new integrable
systems among planar multiple-pendula in the absence of gravity when the S1
symmetry is present. Solutions of such systems give geodesic flows on product
of S1, or products of S1 with R1. For an analysis of such systems we propose
to use a combination of numerical and analytical methods. From the one side,
Poincaré section give quickly insight into the dynamics. On the other hand,
analytical methods allow to prove strictly the non-integrability.

In this paper we consider: two joined pendula from which one is a spring
pendulum, two spring pendula on a massless rod, triple flail pendulum and
triple bar pendulum. All these systems possess suspension points. One can also
detach from the suspension point each of these systems. In particular, one can
consider freely moving chain of masses (detached multiple simple pendula), and
free flail pendulum. We illustrate the behaviour of these systems on Poicaré
sections, and, for some of them, we prove their non-integrability. For the double
spring pendulum the proof will be described in details. For others the main
steps of the proofs are similar.

In order to apply the Morales-Ramis method we need an effective tool
which allows to determine the differential Galois group of linear equations. For
considered systems variational equations have two-dimensional subsystems of
normal variational equations. They can be transformed into equivalent second
order equations with rational coefficients.

m

m 1

2

a1

x

y

x

θ 1

2)

2θθ 1
+

k(x −a−

Fig. 2. Double spring pendulum.

For such equations there exists an algo-
rithm, the so-called the Kovacic algorithm
[7], determining its differential Galois groups
effectively.

2 Double spring pendulum

The geometry of this system is shown in Fig. 2.
The mass m2 is attached to m1 on a spring
with Young modulus k. System has S1 symmetry, and θ1 is a cyclic coordinate.
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The corresponding momentum p1 is a first integral. The reduced system has two
degrees of freedom with coordinates (θ2, x), and momenta (p2, p3). It depends
on parameter c = p1.

The Poincaré cross sections of the reduced system shown in Fig. 3 suggest
that the system is not integrable. The main problem is to prove that in fact

(a) E=0.00005 (b) E=0.001

Fig. 3. The Poincaré sections for double spring pendulum. Parameters: m1 = m2 =
a1 = a2 = 1, k = 0.1, p1 = c = 0 cross-plain x = 1.

the system is not integrable for a wide range of the parameters. In Appendix
we prove the following theorem.

Theorem 1. Assume that a1m1m2 6= 0, and c = 0. Then the reduced sys-
tem descended from double spring pendulum is non-integrable in the class of
meromorphic functions of coordinates and momenta.

3 Two rigid spring pendula

x

x

x 1a

a2

m 2

m 1

θ

y

2

1 1(

(

−

−−k

−k )

2)

Fig. 4. Two rigid spring pendula.

The geometry of the system is shown in
Fig. 4. On a massless rod fixed at one end
we have two masses joined by a spring; the
first mass is joined to fixed point by an-
other spring. As generalised coordinates
angle θ and distances x1 and x2 are used.
Coordinate θ is a cyclic variable and one
can consider the reduced system depend-
ing on parameter c - value of momentum p3 corresponding to θ. The Poincaré
cross sections in Fig. 5 and in Fig. 6 show the complexity of the system. We
are able to prove non-integrability only under assumption k2 = 0.

Theorem 2. If m1m2k1c 6= 0, and k2 = 0, then the reduced two rigid spring
pendula system is non-integrable in the class of meromorphic functions of
coordinates and momenta.
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Moreover, we can identify two integrable cases. For c = 0 the reduced Hamilton
equations become linear equations with constant coefficients and they are
solvable. For k1 = k2 = 0 original Hamiltonian simplifies to

H =
1

2

(
p21
m1

+
p22
m2

+
p23

m1x21 +m2x22

)
and is integrable with two additional first integrals F1 = p3, F2 = m2p2x1 −
m2p1x2.

(a) E=0.12, (b) E=0.2.

Fig. 5. The Poincaré sections for two rigid spring pendula. Parameters: m1 = m2 =
a1 = a2 = 1, k1 = k2 = 1/10, p3 = c = 1/10, cross-plain x1 = 0, p1 > 0.

(a) E=0.15, (b) E=4

Fig. 6. The Poincaré sections two rigid spring pendula. Parameters: m1 = 1, m2 = 3,
k1 = 0.1, k2 = 1.5, a1 = a2 = 0, p3 = c = 0.1, cross-plain x1 = 0, p1 > 0
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4 Triple flail pendulum

m

m

θ 3

1

x

y

θ1
+

θ1
+ θ

θ1

m

2

3

2

2

a

a

1

a

2

+
3θ

Fig. 7. Triple flail pendulum.

In Fig. 7 the geometry of the system is shown.
Here angle θ1 is a cyclic coordinate. Fixing value
of the corresponding momentum p1 = c ∈ R, we
consider the reduced system with two degrees of
freedom. Examples of Poincaré sections for this
system are shown in Fig. 8 and 9. For more plots
and its interpretations see [11]. One can also
prove that this system is not integrable, see [9].

(a) E=0.01, (b) E=0.012.

Fig. 8. The Poincaré sections for flail pendulum. Parameters: m1 = 1,m2 = 3,m3 =
2, a1 = 1, a2 = 2, a3 = 3, p1 = c = 1, cross-plain θ2 = 0, p2 > 0.

(a) E=0.0035, (b) E=0.0363.

Fig. 9. The Poincaré sections for flail pendulum. Parameters: m1 = 1,
m2 = m3 = 2, a1 = 2, a2 = a3 = 1, p1 = c = 1

2
, cross-plain θ2 = 0, p2 > 0.
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Theorem 3. Assume that l1l2l3m2m3 6= 0, and m2l2 = m3l3. If either (i)
m1 6= 0, c 6= 0, l2 6= l3, or (ii) l2 = l3, and c = 0, then the reduced flail
system is not integrable in the class of meromorphic functions of coordinates
and momenta.

5 Triple bar pendulum

a

x

y

θ 1 1

m 1 a 3

θ 1
+ θ 2

θ 1
+ θ 2

m 2

a 2 m 3

d

d 1

2

+ θ 3

Fig. 10. Triple bar pendulum.

Triple bar pendulum consists of sim-
ple pendulum of mas m1 and length
a1 to which is attached a rigid weight-
less rod of length d = d1 + d2. At the
ends of the rod there are attached two
simple pendula with masses m2,m3, re-
spectively, see Fig.10. Like in previous
cases fixing value for the first integral
p1 = c corresponding to cyclic variable
θ1, we obtain the reduced Hamiltonian
depending only on four variables (θ2, θ3, p2, p3). Therefore we are able to make
Poincaré cross sections, see Fig. 11, and also to prove the following theorem [10].:

(a) E=0.008, (b) E=0.009.

Fig. 11. The Poincaré sections for bar pendulum. Parameters: m1 = m2 = 1,
m3 = 2, a1 = 1, a2 = 2, a3 = 1, d1 = d2 = 1, p1 = c = 1

2
, cross-plain θ2 = 0, p2 > 0.

Theorem 4. Assume that l2l3m1m2m3 6= 0, and m2l2 = m3l3, d1 = d2. If
either (i) c 6= 0, l2 6= l3 or (ii) l2 = l3, and c = 0, then the reduced triple bar
system governed by Hamiltonian is not integrable in the class of meromorphic
functions of coordinates and momenta.
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6 Simple triple pendulum

m 1

a1

x

y

θ

2a

m 2

m 3

a3

1

θ 2
+

1θ

θ 3
+θ 2

+θ 1

Fig. 12. Simple triple pendulum.

Problem of dynamics of a simple triple pen-
dulum in the absence of gravity field was nu-
merically analysed in [8]. Despite the fact that
θ1 is again cyclic variable, and the correspond-
ing momentum p1 is constant, the Poincaré
sections suggest that this system is also non-
integrable, see Fig.13. One can think, that the
approach applied to the previous pendula can
be used for this system. However, for this pen-
dulum we only found particular solutions that
after reductions become equilibria and then
the Morales-Ramis theory does not give any
obstructions to the integrability.

(a) E=0.0097 (b) E=0.011

Fig. 13. The Poincaré sections for simple triple pendulum: m1 = 2, m2 = 1, m3 =
1, a1 = 2, a2 = a3 = 1, p1 = c = 1, cross-plain θ2 = 0, p2 > 0.

7 Chain of mass points
a

a

m

θ 4

m 4

m n

θ n

a

θ 3

2

2

3

n

m 3 a 4

C

2θ

m 1

,1x y1)(

Fig. 14. Chain of mass points

We consider a chain of n mass points in a plane.
The system has n+ 1 degrees of freedom. Let
ri denote radius vectors of points in the center
of mass frame. Coordinates of these vectors
(xi, yi) can be expressed in terms of (x1, y1)
and relative angles θi, i = 2, . . . , n. In the
centre of mass frame we have

∑
miri = 0, thus we can expressed (x1, y1) as

a function of angles θi. Lagrange and Hamilton functions do not depend on
(x1, y1), (ẋ1, ẏ1), and θ2 is a cyclic variable thus the corresponding momentum
p2 is a first integral. The reduced system has n−2 degrees of freedom. Thus the
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chain of n = 3 masses is integrable. Examples of Poincaré sections for reduced
system of n = 4 masses are given in Fig. 15. In the case when m3a4 = m2a2
a non-trivial particular solution is known and non-integrability analysis is in
progress.

(a) E=0.04, (b) E=0.045.

Fig. 15. The Poincaré sections for chain of 4 masses. Parameters: m1 = m3 = 1,
m2 = 2,m4 = 3, a2 = 1, a3 = 1, a4 = 3, p2 = c = 3

2
, cross-plain θ3 = 0, p3 > 0.

8 Unfixed triple flail pendulum

m 3

a

a 3

4

a 2

m 4
θ 3

m 2

θ 4

θ 2

C

m 1

,y11x( )

Fig. 16. Chain of mass points

One can also unfix triple flail pendulum de-
scribed in Sec.4, and allow to move it freely.
As the generalised coordinates we choose coor-
dinates (x1, y1) of the first mass, and relative
angles, see Fig. 16. In the center of masses
frame coordinates (x1, y1), and their derivatives
(ẋ1, ẏ1) disappear in Lagrange function, and θ2 is a cyclic variable. Thus we
can also consider reduced system depending on the value of momentum p2 = c
corresponding to θ2. Its Poincaré sections are presented in Fig. 17. One can
also find a non-trivial particular solution when a3 = a4. The non-integrability
analysis is in progress.

9 Open problems

We proved non-integrability for some systems but usually only for parameters
that belong to a certain hypersurface in the space of parameters. It is an
open question about their integrability when parameters do not belong to
these hypersurfaces. Another problem is that for some systems we know only
very simple particular solutions that after reduction by one degree of freedom
transform into equilibrium. There is a question how to find another particular
solution for them.
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(a) E=0.24, (b) E=0.3.

Fig. 17. The Poincaré sections for unfixed flail pendulum. Parameters: m1 = 2,
m2 = 1,m3 = 2,m4 = 1, a2 = a3 = a4 = 1, p2 = c = 3

2
, cross-plain θ3 = 0, p3 > 0.

10 Appendix: Proof of non-integrability of the double
spring pendulum, Theorem 1

Proof. The Hamiltonian of the reduced system for p1 = c = 0 is equal to

H =
[
m2p

2
2x

2 + 2a1m2p2x(p2 cos θ2 + p3x sin θ2) + a21(m1(p22 + x2(p23

+km2(x− a2)2)) +m2(p2 cos θ2 + p3x sin θ2)2
]
/(2a21m1m2x

2),
(1)

and its Hamilton equations have particular solutions given by

θ2 = p2 = 0, ẋ =
p3
m2

, ṗ3 = k(a2 − x). (2)

We chose a solution on the level H(0, x, 0, p3) = E. Let [Θ2, X, P2, P3]T be
variations of [θ2, x, p2, p3]T . Then the variational equations along this particular
solution are following


Θ̇2

Ẋ

Ṗ2

Ṗ3

 =


p3(a1+x)
a1m1x

0
a2
1m1+m2(a1+x)2

a2
1m1m2x2 0

0 0 0 1
m2

− p2
3

m1
0 −p3(a1+x)

a1m1x
0

0 −k 0 0



Θ2

X
P2

P3

 , (3)

where x and p3 satisfy (2). Equations for Θ2 and P2 form a subsystem of normal
variational equations and can be rewritten as one second-order differential
equation

Θ̈ + PΘ̇ +QΘ = 0, Θ ≡ Θ2, P =
2a1p3(a1(m1 +m2) +m2x)

m2x(a21m1 +m2(a1 + x)2)
,

Q =
k(a1 + x)(x− a2)

m1a1x
− 2a21p

2
3

m2a1x(a21m1 +m2(a1 + x)2)
.

(4)
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The following change of independent variable t −→ z = x(t) + a1, and then a
change of dependent variable

Θ = w exp

[
−1

2

∫ z

z0

p(ζ) dζ

]
(5)

transforms this equation into an equation with rational coefficients

w′′ = r(z)w, r(z) = −q(z) +
1

2
p′(z) +

1

4
p(z)2, (6)

where

p = [a21m1(−4E + k(2a22 + 3a1(a1 − 2z) + 5a2(a1 − z)) + 3kz2) +m2z(2a1a
2
2k

+ a1(−4E + a1k(2a1 − 3z)) + kz3 + a2k(a1 − z)(4a1 + z))]/[(a21m1 +m2z
2)

× (z − a1)(−2E + kz2 − (a1 + a2)k(2z − a1 − a2))],

q =
m2(a21m1(4E − k(2(a1 + a2)− 3z)(a1 + a2 − z)) + km2(a1 + a2 − z)z3)

a1m1(−2e+ k(a1 + a2 − z)2)(z − a1)(a21m1 +m2z2)
.

We underline that both transformations do not change identity component of
the differential Galois group, i.e. the identity components of differential Galois
groups of equation (4) and (6) are the same.

Differential Galois group of (6) can be obtained by the Kovacic algorithm
[7]. It determines the possible closed forms of solutions of (6) and simultanously
its differential Galois group G. It is organized in four cases: (I) Eq. (6) has an
exponential solution w = P exp[

∫
ω], P ∈ C[z], ω ∈ C(z) and G is a triangular

group, (II) (6) has solution w = exp[
∫
ω], where ω is algebraic function of degree

2 and G is the dihedral group, (III) all solutions of (6) are algebraic and G is
a finite group and (IV) (6) has no closed-form solution and G = SL(2,C). In
cases (II) and (III) G has always Abelian identity component, in case (I) this
component can be Abelian and in case (IV) it is not Abelian.

Equation (6) related with our system can only fall into cases (I) or (IV)
because its degree of inifinity is 1, for definition of degree of infinity, see [7].
Moreover, one can show that there is no algebraic function ω of degree 2 such
that w = exp[

∫
ω] satisfies (6) thus G = SL(2,C) with non-Abelian identity

component and the necessary integrability condition is not satisfied.
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6.M. van der Put, M. F. Singer. Galois theory of linear differential equations. Springer-
Verlag, Berlin, 2003.

7.J. J. Kovacic. An algorithm for solving second order linear homogeneous differential
equations. J. Symbolic Comput., 2(1):3–43, 1986.

8.V. N. Salnikov. On numerical approaches to the analysis of topology of the phase
space for dynamical integrability. arXiv:1206.3801 [math.DS].
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Abstract: This paper presents a peak-valley segmentation procedure for the wavelet-

based extraction of acceleration data. A 60-second acceleration signal was measured on a 

McPherson frontal coil spring of a 2000 cc Proton sedan car, and the data was used for 

the simulation. The Morlet wavelet-based analysis was used to extract higher amplitude 

segments in order to produce a shortened signal that has an equivalent behaviour. Using 

this process, it has been found that the Morlet wavelet was able to summarise the original 

data up to 49.45% with less than 10% difference with respect to statistical parameters. 

This clearly indicates that the Morlet wavelet can be successfully applied to compress the 

original signal without changing the main history as well. Finally, it has been proven that 

the Morlet wavelet successfully identified the higher amplitudes in the acceleration data. 

Keywords: Acceleration data, Peak-valley extraction, Morlet wavelet, Modified data.  

 

1. Introduction 
Control and stability of a car entirely depend on the contact between the road 

surface and the tires [1]. The dynamic interaction between vehicle and road 

surface causes problems with respect to the vehicle structure and the ride 

quality. Collision between uneven road surfaces and tires gives a certain amount 

of vibration which contributes to mechanical failure of car components due to 

fatigue as the car structure was subjected to cyclic loading. This vibration also 

interfaces the function of the car suspension system and gives a great impact on 

the performance of the car [2-5]. 

According to Jinhee [6], car suspension systems experience vibration when is 

subjected to variable driving conditions leading to strain at this component. If 

this condition continues it will increase the probability of fatigue failure for the 

car suspension system. The problems arising have been solved by simulating the 

dynamic behaviour of a structural component on which the dynamic forces are 
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acting. Measured road surface profiles are generally considered as external 

disturbances acting through the automotive suspension system onto the vehicle 

body. Road surface profiles are usually used to describe the bumpiness of the 

road. Because of weakness of measuring equipment used, there is noise in the 

road surface profile data. Thus, the accuracy and reliability of the road surface 

profile is reduced. If the signal trends are not extracted from the input signal 

used, it will directly affect the test results, leading to inappropriate judgments 

and conclusions. Therefore, it is an important task that the signal trend is 

extracted and separated from the noise during road surface data processing [7]. 

Based on this background, methods for the signal trend extraction of road 

surface profile are introduced. At present, the popular methods for the signal 

trend extraction are: least-squares fitting, low-pass filtering, wavelet 

decomposition, empirical mode decomposition, etc., as reported in [7]. The 

objective of this work is to extract acceleration data in order to remove white 

noise in the data. In order to address the objective of the research, acceleration 

data is edited to produce shorter data while retaining its original characteristics. 

Therefore, a data editing technique is necessary for producing new modified 

signals as required. Continuous wavelet transform (CWT) has been applied to 

the digital signal processing algorithm. An algorithm for signal trend extraction 

of road surface profile has been developed by adopting a fatigue feature 

algorithm developed by Putra et al [8]. It is hypothesized that the pattern of an 

acceleration data is similar to the pattern of a fatigue signal. 

 

2. Literature Overview 
2.1. Global signal statistics 

Statistical parameters are used for random signal classification and pattern 

monitoring. Common statistical parameters that are directly related to the 

observation of the data behaviour are the mean value, standard deviation (SD), 

the root-mean square (r.m.s.), skewness, kurtosis and the crest factor (CF). From 

these parameters, the r.m.s. and kurtosis give significant effects to evaluate the 

randomness of the data [9]. The r.m.s. calculates the energy distribution, 

wherein higher r.m.s. indicates a higher energy content, which in turn indicates 

higher fatigue damage in the signal. On the other hand, kurtosis represents the 

continuity of peaks in a time series loading. The peaks also reveal higher fatigue 

damage, suggesting that a higher kurtosis indicates higher fatigue damage.  

The r.m.s. is the second statistical moment used for determining the total energy 

contained in a signal. The r.m.s. of signals with zero mean value is equal to the 

SD. The r.m.s. of discrete data can be calculated as follows: 
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In addition, kurtosis is the fourth statistical moment that is very sensitive to 

spikes and it represents the continuation of peaks in a time series loading. The 

kurtosis value of a Gaussian normal distribution is close to 3.0. Higher kurtosis 
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shows that the value is higher compared to the appropriate value in the Gaussian 

normal distribution, indicating that only a small proportion of data is closer to 

the mean value [10]. The kurtosis for a set of discrete data is formulated as: 
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2.2. Continuous Morlet Wavelet Transform 

The continuous wavelet transform (CWT) is conducted on each reasonable 

scale, producing a lot of data and is used to determine the value of a continuous 

decomposition to reconstruct the signal accurately [11]. The Morlet wavelet is 

one of the mother wavelets that are involved in the CWT, and it can be 

described by the following equation: 

 

( ) ( ) ( )πttt  cos 2exp 22βψ −=  

 

By dilation with a (scale factor) and translation with b (position), a son wavelet 

can be acquired [12]: 
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Wavelet decomposition calculates the resemblance index, also called the 

coefficient, between the signal being analyzed and the wavelet. Generally, the 

wavelet coefficient is expressed with the following integral [11]: 

 

( ) ( )( )∫
+∞

∞−
= dtttfC baba ,, ψ  

 

The Morlet wavelet coefficient indicates the distribution of the internal energy 

of the signal in the time-frequency domain [13]. The signal internal energy e can 

be expressed as: 

 

( ) ( )
2

,, baba Ce =  

 

2.3. Peak-valley segmentation-based signal extraction 

Fatigue damage is very sensitive to peak and valley in a time series loading. 

Thus, in the extraction, time series data needs to be converted in the form of 

peak-valley. For the development of the extraction algorithm, the input required 

was the distribution of the magnitude in the time domain obtained by the time-

frequency method. The distribution was decomposed into the time domain 

spectrum by taking the magnitude cumulative value for an interval of time. 



Abdullah et al. 72 

A gate value was used for the extraction of the damage feature. The gate value 

was the energy spectrum variable that maintains the minimum magnitude level. 

Segments with magnitudes exceeding the minimum magnitude value were 

maintained, whereas the segments with magnitudes less than the minimum 

magnitude value were removed from the signal. The concept refers to the 

concept of the cut-off level used in the extraction in the time domain [14]. 

To obtain the optimum of the gate value, the maintained segments then were 

merged with each other to form a shorter modified signal, compared to the 

original signal. In the case of global signal statistical parameters, a difference of 

10% is used considering that at least 10% of the original signal contains a lower 

amplitude cycle leading to the minimum structural damage to obtain a final 

signal corresponding to the original signal [15]. 

 

3. Methodology 
Acceleration data measured at a McPherson frontal coil spring of a 2.000 cc 

Proton Wira sedan car was used for the current study. At the same time, strain 

data on the component was measured as well. The behaviour of both the 

acceleration and strain data was to be observed. According to Gillespie [16], the 

coil spring of a car at the similar brand of this research was made from 

SAE5160 alloy steel. Its properties are tabulated in Table 1 [17].  

 

Table 1. The mechanical properties of the SAE5160 alloy steel. 

 

Properties Values 

Modulus of elasticity, E (GPa) 207 

Density, ρ (kg/m
3
) 7.85 

Poisson’s ratio, ρ 0.27 

 

An accelerometer was placed at the location of the coil spring showing the 

highest stress concentration which was obtained through finite element analysis. 

The car was driven on a highway road surface at a velocity of 70 km/h. The 

original signal produced by the accelerator was a variable amplitude load 

sampled at 500 Hz and recorded using a data acquisition setup, as shown in 

Figure 1. 

 

 
Fig. 1. The data acquisition setup: (a) accelerometer, (b) PXI system. 

(b) (a) 
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4. Results and Discussion 
4.1. Acceleration data 

The collected data contained many small amplitudes and higher frequency 

patterns in the signal background. The data is a time domain signal measured at 

the coil spring sampled at 500 Hz for 30,000 data points. Therefore the total 

record length was 60 seconds. Based on the acceleration obtained, the data 

obtained revealed parts with higher amplitudes because the vehicle was driven 

on a bumpy surface. The original acceleration data, the Morlet wavelet 

coefficient and the signal internal energy are shown in Figure 2. 

 

 
Fig. 2. (a) acceleration data, (b) wavelet coefficient, (c) internal energy. 

 
4.2. Acceleration data extraction 

Various gate values were used in this extraction. The values were chosen 

because most of the magnitudes were below the gate value, whereas if the lower 

magnitude section was removed, it did not affect the damage relevance and the 

original properties of the signal. The gate values used were 4x10
-7

 µε
2
/Hz,  

5x10
-7

 µε
2
/Hz and 6x10

-7
 µε

2
/Hz. After the data was extracted, the retained 

energy containing higher signal internal energy was obtained. Furthermore, 

based on the time positions of the retained energy and referring to the original 

signal before the extraction, maintained segments were obtained. The 

extractions produced segments that were not uniform in length because the 
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Morlet wavelet algorithm extracted the time series based on the energy content 

of the signals. 

For this purpose, the retained segments were reattached into a single load to 

validate if the process satisfied the requirements in data editing, i.e., maintaining 

90% of the original statistical values. A verification process was done by 

comparing the statistical parameter values between the original and the modified 

signal. From the analysis of the modified signal, an optimal gate value was 

determined based on the gate value ability (refer to the modified signal) to 

produce the shortest signal with the minimum signal statistical parameter 

deviation. Figure 3 shows the differences in the length of modified signals from 

the extraction at various gate values. 

 

 

Fig. 3. Edited signals at: (a) 4x10
-7

 µε
2
/Hz, (b) 5x10

-7 
µε

2
/Hz, (c) 6x10

-7 
µε

2
/Hz. 

 

Based on Figure 3 above, at gate value of 4x10
-7

 µε
2
/Hz, data of 36.57 seconds 

shortened only by 39.05% and its r.m.s. and kurtosis became 2.68% and 5.45%, 

respectively. For a gate value of 5x10
-7

 µε
2
/Hz, the Morlet wavelet-based 

extraction resulted in a 30.33-second edited signal, which was 49.45% shorter 

than the original. The modified signal changed the r.m.s. and the kurtosis to 

3.41% and 8.21%, respectively. For a gate value of 6x10
-7

 µε
2
/Hz, the data was 

modified by 60.22% and changed the r.m.s. and kurtosis values became 5.14% 

and 10.98, respectively. 

Based on the results, 5x10
-7

 µε
2
/Hz was selected as the optimum gate value 

because at higher values, i.e. 6x10
-7

 µε
2
/Hz, the change in kurtosis reached 
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10.98%. It was detrimental the original properties of the signal. The 30.33-

second edited signal resulted at the optimum gate value experience increasing of 

the r.m.s. and kurtosis values. Increased r.m.s. indicated that the internal energy 

content of the signal also increased. Different kurtosis values showed the 

extraction method was capable of effectively removing lower amplitude while 

maintaining higher amplitude in the modified signal. In addition, at gate value 

of 5x10
-7

 µε
2
/Hz, it gives similar distribution of frequency spectrum and power 

spectral density, as shown in Figure 4. It shows the noise in the road surface 

profile had been removed. The data were successfully edited based on the 

relationship between the higher amplitude and the Morlet wavelet coefficients 

of the time-frequency domain obtained. This Morlet wavelet algorithm removed 

segments with magnitudes less than the gate value based on their positions on 

the time axis. 

 

Fig. 4. Original and edited signals: (a) length, (b) frequency spectrum,  

(c) power spectral density. 

   

5. Conclusion 
In this study, an experiment was conducted to collect data for the purpose of 

obtaining acceleration data to simulate the extraction algorithm. The 

acceleration data causes vibration that will increase the probability to the fatigue 

failure at car components. The extraction process yielded data on the damaging 

segments by identifying and extracting segments based on the coefficient 

distribution of the Morlet wavelet transform. The damaging segments were 
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combined to form shorter signals while maintaining original behaviours. 

Overall, the Morlet wavelet algorithm was able to shorten the signal up to 

49.45% but maintained more than 90% of the statistical parameters and gave 

similar distribution of power spectral density as original data. The extraction 

method was able to identify the structural damage values of each segment. 

Finally, this study proved that the Morlet wavelet is an appropriate technique to 

extract acceleration data, especially for the automotive applications. 
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Abstract: Using the recently developed method, which presents the combination of the 

modulation technique with synchronous differential thermal measurements, we have 

demonstrated experimentally the existence of thermal surface energy (TSE) in metallic 

blocks with signal-to-noise ratio of several thousands. The TSE arises when there are 

changes of energy and momentum of the coupled field-particle system inside the material 

artifact, produced by the irradiation of the artifact surface by an external EM field. It is 

shown that the magnitude of TSE and the direction of its increase are defined by the 

Poynting vector of the external field. The fundamental features of the TSE - the lack of 

symmetry in space and the irreversible character of the process of its creation in time – 

are sufficient for the observation of the thermal hysteresis effect, whose hysteresis loop is 

reported. As the principle of superposition is demonstrated to be invalid in case of TSE, 

the thermal hysteresis curve converts in case of a continuous sweep in time into helical-

type curve, for which the form and the magnitude of each cycle are slightly different as a 

result of the non-linear interaction of heat sources of the Universe through TSE. As a 

result of non-linear character of interaction of quantum objects with EM field 

(established theoretically by N. F. Ramsey and experimentally by P. Kusch), the self-

ordering evolution process, observed for the thermal EM field, inevitably results in the 

same type of the evolution process in the whole energy spectrum of the EM radiation. 

The number of influence parameters in case of TSE is absolutely enormous, in 

confirmation of the previous theoretical studies of the cited paper of C. R. Stroud et al.   

Keywords: surface energy, thermodynamic temperature, hysteresis, evolution process.  

 

1. Introduction 

This communication we want to start with reminding of the theoretical 

prediction by Albert Einstein made in [1] that “classical thermodynamics can no 

longer be looked upon as applicable with precision…For the calculation of the 

free energy, the energy and the entropy of the boundary surface should also be 

considered”. The advancement of these ideas we find in [2a], where the thermal 

surface energy (TSE) is defined as the energy of boundary zones, located 

between the macroscopic parts of the system (sub-systems), in which the quasi-

equilibrium thermal conditions are realized. It is stated in [2a] that the TSE is 

proportional to the area of contact between the two sub-systems, and that the 

internal energy of the system can be considered as additive, only when the value 

of the TSE can be regarded as negligible. It is clear that in case of experimental 
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demonstration of the TSE, the concept of thermodynamic temperature [2b] 

should be somehow modified and it should be, at least, in agreement with the 

notion of “temperature”, which is traditionally used in the J. Fourier thermal 

conduction theory [2c] and which definitely refers to thermal non-equilibrium 

conditions. Meanwhile, in accordance with A. Einstein requirements formulated 

in [3], thermodynamics can be applied only to isolated systems, and 

additionally, when all the transients in that system are terminated [3]. 

 

2. 2. Experiment. 
The presented studies are based on the variation principle - one of the most 

general and powerful principles in experimental Physics. We have used a 

recently developed multi-channel synchronous detection technique (MSDT) 

[4a], which presents some modification of the famous R. Dicke’s method of 

synchronous detection. The specific feature of MSDT is that the modulation of 

the heat input to the system is realized through thermometer in one of the 

channels, and the detection is realized by several temperature sensors of the 

other channels [4a], which are located at different positions relative to the 

modulation source (Fig.1). In this case, the temperature information from the 

modulation channel can be used to find the synchronous temperature differences 

between the different points of the system, and, consequently, the propagation 

of the thermal signals can be precisely characterized both in time and in space.  

 

 
 

                        Fig.1. Simultaneous records of the resistance variations of the platinum resistance 

thermometer (PRT) and of two thermistors R6 and R3, located symmetrically relative to 

the PRT on the surface of the gauge block (as shown in the insert). During the current 

modulation cycle in the PRT, its current for ¼ of the modulation period is kept at the 

level of 5mA and ¾ of the period is kept at 1mA. The sensitivities of the thermistors are 

equal. In the insert, the location of one of the gauging surfaces is shown by the arrow. 

 

A schematic outline of our experimental set-up and an example of unprocessed 

results of the measurements, performed on a homogeneous steel artifact, are 

presented in Fig.1. A steel (or tungsten carbide) gauge block (GB), with 

dimensions 9x35x100 mm, is located horizontally on three small-radius, 

polished spheres inside a closed Dewar. The Dewar is kept in a temperature 
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controlled room, where typical temperature variations can be characterized by a 

standard deviation σ of ~ 50mK. Two thermistors R6 and R3, belonging to 

channels 1 and 2 respectively, are installed on the surface of the GB in copper 

adapters, whose axes are parallel to the gauging surfaces. A 100-Ohm platinum 

resistance thermometer (PRT), also in a copper adapter, is located parallel to 

thermistors and at equal distances (10mm) from their adapters. The PRT is 

connected to MI-bridge T615 (Canada), in which the current I is changed by 

step from 1 to 5mA (Fig.1). The period of the modulation cycle is ~148 minutes, 

and for 37 minutes the current I is 5mA, and for the rest of the modulation cycle 

it is held at 1mA level. In Fig.1, the PRT measurements correspond to the record 

with faster transients. Two other records show the variations of resistances of 

the two temperature calibrated thermistors R6 and R3, which have negative 

temperature coefficients. The thermistors are connected to high-precision multi-

meters HP-35a, and are calibrated together with the multi-meters, using the 

procedure described in [4a]. Both thermistors have, practically, equal 

sensitivities. From Fig.1 it follows that the temperature difference between the 

channels T[1,2] for the last 25 minutes of the first cycle (called below as 

reference points) was 465.6µK. For the last 25 minutes of the next cycle, the 

value of T[1,2] was 469.5µK. Using a linear fit to the indicated reference points, 

the induced temperature variations ∆T[1,2] (at I=5mA) can be determined very 

precisely (Fig.2). We also demonstrate by Fig.2, that when our detection system 

is moved as a whole, a fast decrease of the TSE value with the increase of the 

R6 distance from the nearest gauging surface is observed, as it is demonstrated 

by the dependencies 1-3, corresponding to different separations of the R6 axis L 

from the nearest gauging surface. (L=4.5mm; 9mm and 13.5mm, respectively). 

 

y = -4E-11x - 0.0452

-400

0

400

800

1200

1600

2000

2400

2800

200 205 210 215 220 225 230 235 240

Time / minutes

∆∆ ∆∆
T

[1
,2

] 
/ 

µµ µµ
K

 

1

1

1

2

3

Stand. Deviation 

relative to the trend 

is 0.97 µµµµK.

 
 

Fig.2. . Dependences on time of the thermal surface energy (TSE), characterized by the 

quantity ∆T[1,2], for different separations L of the axis of the R6 thermistor from the 

gauging surface: The corresponding dependences for L-values of 4.5mm, 9mm and 

13.5mm are marked by dots, rhombi and squares, respectively. Reference points are 

shown as triangles. 

 



Titov and Malinovsky 82 

-3000

-2000

-1000

0

1000

2000

3000

-30 -20 -10 0 10 20 30

PRT distance / mm.

 ∆∆ ∆∆
T

[1
,2

] 
/ 

µµ µµ
K

 

  
 

Fig.3. The dependence of the quantity ∆T[1,2] (solid line) and the dependence of its 

absolute value (dashed line) as functions of the displacement of the PRT axis from the 

centre of the corresponding block surface. 

 

By Fig.3, we show the dependence of the quantity ∆T[1,2] on the displacement 

of the PRT axis relative to the centre of the corresponding block surface (see 

insert of Fig.1). The rapid decrease of the TSE amplitude with the increase of 

the R6 distance from the gauging surface, which can be approximated by the 

Gaussian curve, is clearly demonstrated. So, the term “surface energy” is quite 

appropriate in case of the TSE.  

   When combining the anti-symmetric dependence ∆T[1,2] on the PRT 

displacement of Fig.3 with the much larger symmetric background of the 

induced temperatures, which is clearly observed in Fig.1 for large time intervals 

after the change of the modulation current, we come to the conclusion that the 

total induced temperature variations (and consequently the total value of TSE), 

in the general case, are characterized by the lack of spatial symmetry. The only 

exception is the singular point of the absolutely symmetric position of the PRT 

on the block surface.  

   The results of the experiment, which further clarifies the origin of TSE, are 

shown in Fig.4. Here, with very small uncertainty it is demonstrated that the 

magnitude of the quantity ∆∆∆∆T[1,2] (and hence the magnitude of TSE) is linearly 

related to the increments in powers δP, delivered to the GB by the PRT. All the 

data points, presented in Fig.4, correspond to the values of the temperature 

differences ∆T[1,2], arising in the channels 1 and 2 exactly 13 minutes after the 

beginning of the heating period of the modulation cycle (see Fig.2). In Fig.4, we 

have two increments of the input power, corresponding to the PRT current 

increments from 1mA to 3mA and from 1mA to 5mA, respectively. These 

current variations in the modulation cycles were realized in two independent 

experiments, as well as the dependencies 1 and 2 also represent the results of the 

other two experiments, performed for the R6 separations from the nearest 

gauging surface L, equal to 4.5mm (dots) and 13.5mm (squares), respectively.  
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Fig.4. The effect of the PRT power increment on the quantity ∆T[1,2]. Dependences 1 

and 2 correspond to the separations of the R6 axis from the nearest gauging surface of 

L=4.5mm (dots) and L=13.5mm (squares), respectively. The decrease of the magnitude 

of the TSE with the increase of the R6 separation from the nearest gauging surface is 

clearly demonstrated by the dependences (1) and (2).  

 

As it will be shown below, these experimental dependences establish a linear 

relations between the two vector quantities in our experiments: the Poynting 

vector S of the external EM field, irradiating the surface of the block, and the 

vector quantity ∆T[1,2], characterizing the difference between the induced 

temperature variations, observed in the channels 1 and 2. The ratio of the slopes 

of the dependencies 1 and 2, presented in the inserts of Fig.4, gives a precise 

value of the TSE decrease with the separation L. It is worth noting here, that as 

the process presents complicated functions of time and distances, the obtained 

value of the TSE decrease with distance is valid only for the indicated time.  

   To advance further in understanding the origin and properties of the TSE, we 

have performed another type of the differential temperature measurements. We 

study the vector quantity ∆V[1,2], which characterize the difference in the 

induced temperature velocities, observed in the channels 1 and 2. This is easy to 

realize as the program in Fig.1 calculates both: the mean temperature in the 

channel for the specified time interval and the mean thermal velocity for the 

same period. The experimental points, shown in Fig.5 by dots, correspond to the 

heating period of the modulation cycle, while rhombi represent the cooling 

period. The reference points, corresponding to the last 30 minutes of the cooling 

period, are shown as squares. As the cooling period is chosen long enough, the 

difference between the measured velocities of the reference points in the 

channels is less than 1µK/min. So, the linear fit to the reference points (shown 

in the insert of Fig.5) is practically equal to zero for all the presented time 

moments. As, the quantity ∆V[1,2] is defined by the difference between the 

induced values of the thermal velocities, the effect of the reference function on 
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the uncertainty of ∆V[1,2] is negligible. Below it will be shown that ∆V[1,2] 

describes the difference in the energy fluxes, entering (through boundaries) the 

unit volumes inside the artifact in the vicinities of the thermistors R6 and R3.  
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Fig.5. Variations in time of the difference between the induced temperature velocities, 

recorded by the channels 1 and 2, ∆V[1,2], that are observed during the heating period 

(I=5ma) of the modulation cycle (dots)  and during the cooling period (I=1mA) of the 

modulation cycle (rhombi). These variations are measured relative to the reference 

points, shown as squares. The solid line shows the linear fit to the reference points, with 

the corresponding equation of the fit presented in the inset.  
 

   The plot, shown in Fig.5, indicates to the three key properties of the TSE, 

studied here. First, it shows that the excessive energy flux does exist only during 

a short period of time after the change of the power value, dissipated in the PRT. 

Second, the magnitudes, the time scales and the forms of the curves are, 

practically, identical for the heating and for the cooling periods of the 

modulation cycle. Third, the direction of the propagation of the excessive energy 

flux is changed to the opposite during the heating and cooling periods of the 

cycle. The latter follows immediately from the definition of the vector quantity 

∆V[1,2], which keeps the information about the direction: its positive value corresponds 

to the excessive energy flux to the units volumes in the vicinity of the gauging surface, 

while its negative value shows that the energy flux is lager to the unit volumes, located 

symmetrically relative to the PRT position in the direction of the bulk material. But in 

medium with absorption, the direction of the propagating energy defines the direction of 

the force, acting on the charged particles (free electrons) [2d, 6]. So, the dependence of 

Fig.5 shows that the net systematic force on charged particles is present only during 

short moments of time at the beginning of the heating and cooling periods, and these 

forces have opposite signs, but approximately equal magnitudes and durations. This 

observation shows the way how to present a hysteresis loop for the TSE, as in agreement 

with the standard procedure in the studies of ferromagnetic [2e] and ferroelectric [2f] 

materials, the X-axis variable should be related to the vector of force, acting on the 
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particles [2f]. The corresponding thermal hysteresis loop for the quantity ∆T[1,2] is 

presented in Fig.6.  
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Fig.6. The thermal hysteresis loop for the quantity ∆T[1,2], corresponding to the 

temperature records of Figs. 1 and 2. The heating period of the cycle is shown by dots, 

while the cooling part is presented by rhombi. The time interval for the data points 

between arrows 1 and 3 is increased, as the temperature variations are negligible. 

 

   To obtain the form of the thermal hysteresis loop it is sufficient to present the 

data of Figs.1-2 not as a continuous sweep in time, but as a function of the 

direction of the external force (acting on the field-particle system inside the 

artifact) by inverting the time for the cooling period of the cycle. The 

corresponding plot is shown in Fig.6. Here, the induced temperature variations 

∆T[1,2] for the heating period are presented in the same time scale as in Fig.2. 

In Fig.6, the data points, corresponding the heating period are shown as dots 

(the beginning and the end of the heating are marked by two arrows 1 and 2). 

The data points for the cooling period of the cycle in Fig.6 are shown as rhombi. 

The corresponding path is indicated by arrows 2-3-1. Along this path the time 

variable is (111 – t), which means the time inversion relative to the point t=111 

minutes, marked with arrow 2. Between the time interval, indicated by the 

arrows 2 and 3, the time scale is the same as in Fig.2. For the time interval 

between the arrows 3-1, where the variations of ∆T[1,2] are negligible, the data 

points are presented for much larger time intervals, so that the end of the cooling 

period coincides with the beginning of the heating period. As the quantity 

∆T[1,2] is measured relative to the mean value of the several reference points at 

the very end of the cooling period of the cycle, we have a perfectly closed loop, 

only with some random jitter at a few µK level at the end parts of the loop that 

is absolutely negligible in comparison with the amplitude of the TSE effect.  

   The energy, which is radiated by the system during the modulation cycle and 

which is responsible for heating the environment, is defined by the form of the 

thermal hysteresis curve. As for the other, well studied hysteresis effects;[4f], 

the TSE process is an irreversible one. To prove this, we can assume that the 

modulation of the current in the PRT is produced by a rechargeable battery and 



Titov and Malinovsky 86 

an electronic switch with negligible losses, and the state of the battery charge is 

continuously monitored by the device, which is used in all portable computers. 

We assume also that all the results of the measurements are recorded. Then for 

the normal play of the record we shall observe that the battery is gradually 

discharged, and the environment is heated by the energy, radiated by the gauge 

block. For the backward play of the record, we shall observe that for the purely 

periodic process, the energy of the battery is increased only as result of cooling 

of the thermal reservoir. But such process is strictly forbidden, as it contradicts 

the Clausius-Plank formulation of the second law of Thermodynamics (which 

presents the result of the analysis of a huge number of experimental facts and is 

known to have no exemptions) [2b]. So, in accordance with the Weyl idea how 

to check the symmetry in time of an arbitrary physical process, we are coming 

to the conclusion that the process of the build-up and of the disappearance of the 

surface thermal energy, presented by the experimental plots of Figs. 2 and 7, is 

definitely irreversible in time. Thus, the thermal evolution process, described by 

the vector quantity ∆T[1,2], is irreversible in time and has no symmetry in 

space. 

    Now we shall describe another important result of this study, which is closely 

related to the above mentioned properties of TSE. Experimental dependencies in 

the following figures show the effect of non-linearity of the material in the 

thermal evolution process, or, in other words, the invalidity of the superposition 

principle for the external EM fields in the energy and momentum propagations 

inside the material artifact. The main differences relative to the experiments of 

Figs.1-5 are the following. First, the separations between the adapters of the 

PRT and thermistors were increased from 10mm to 13.5mm, in order to study 

for steel and tungsten carbide blocks the effect of the heat source separation 

from the thermistor on the TSE amplitude. Second, two additional, auxiliary 

heat sources (resistors) were located inside the Dewar symmetrically and at the 

same distances from the gauging surfaces of the artifact. When one of them is 

switched on, the adjusted value of the dc current through this resistor produces a 

desired temperature difference between the locations of the thermistors R6 and 

R3. Thus in this experiment, the difference in the induced temperature 

variations, recorded by the channels 1 and 2, was measured when there was a 

systematic temperature difference on the artifact surface at the locations of the 

thermistors, belonging to the channels 1 and 2. The temperature difference 

between the channels, T[1,2], shown as an additional parameter in Figs.7-8, was 

measured as a mean value of the temperature difference between the two 

thermistors, observed for the last 30 minutes of the cooling period of the 

modulation cycle. In Fig.7 the range of the variation of the parameter T[1,2] 

was between -2.46mK and 61.06mK.  

    As it clearly follows from Fig.7, the quantity ∆T[1,2] is increasing with the 

increase of the temperature difference T[1,2]. The equation of the linear fit is 

presented in the insert. As the quantity ∆T[1,2] corresponds to the difference in 

the temperature variations in the channels 1 and 2 that are induced by the 

increase of the current in the PRT and this induced temperature difference is 

affected by the presence of the other heat source, this means that the thermal 
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system is a nonlinear one, and the superposition principle is not valid for the 

sources of external EM radiation in case of TSE. 
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Fig.7.   The dependence of the quantity ∆T[1,2], measured 13 minutes after the increase 

of the PRT modulation current in steel gauge block, on the temperature difference T[1,2] 

between the positions of the thermistors R6 and R3. (See text for other details). 

 

    To increase further the resolution of our measurements, the data points in 

Fig.7 present the averaged values of the quantity ∆T[1,2], obtained for several 

modulation cycles during the total duration of 5-7 hours. In this case, the 

abscissa values of the quantity T[1,2] correspond to the mean values of the 

temperature differences, obtained during the indicated measurement time. The 

mean thermal velocities, obtained during 5-7 hours of the measurements, were 

quite small, as these velocities correspond to the averaged values of temperature 

rates, obtained during several cycles of the temperature stabilization system in 

the laboratory. So, the results of the measurements (shown in Fig.7) correspond 

to the quasi-static values of the temperature difference T[1,2].  

    As a consequence of the applied measurement procedure, the standard 

deviation, characterizing the scatter of the data points in Fig.7 relative to the 

linear fit, has been reduced to the value of 1.32µK. Meanwhile, the total 

variation of the quantity ∆T[1,2], obtained for the shown range of temperature 

difference T[1,2] of 63.5mK, exceeds the value of 830µK. So, it follows from 

Fig.7 that the nonlinearity of the thermal system is not small at all (as the linear 

fit is 1.2x10
-2

, when using the same units for both axes), and can be studied in 

detail when the temperature modulation technique is superimposed on a 

constant temperature bias.  

   Some results of the primary importance are illustrated by the plots of Fig.8, 

where we present the results for a tungsten carbide (TC) block in the presence of 

an external energy source, producing the energy flux in the same direction as the 

modulation source does during the heating period of the modulation cycle.  
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Fig.8. .   The records of the quantity ∆T[1,2], that were obtained for the tungsten carbide 

block for the temperature differences between the channels T[1,2], which were produced 

by an external heat source and which were equal to -1.72mK (dots); -7.2mK (squares) 

and -12mK (rhombi).  

 

Here, we present the variations of the quantity ∆T[1,2] as a function of time in 

the presence of an additional heat source, when the measurements were 

performed on a 100-mm TC block, when the separations between the PRT and 

thermistors adapters were 13mm (as in Fig.7). Comparison of the results for TC 

and steel blocks shows that the TSE process in TC block is found to be about 3 

times faster than in the steel GB. So, even during the first 13 minutes after the 

increase of the modulation current in the PRT, a considerable part of the 

evolution process can be observed in case of the TC block.  

   The violation of the superposition principle in combination with hysteresis 

effect results in important consequences: the presence of an additional heat 

source can change drastically the evolution process, which can be observed as a 

result of the energy modulation cycle inside the PRT at any point of the artifact. 

This is illustrated in Fig.8, where we present the dependences ∆T[1,2] versus 

time. Here, the dependences 1-3 (marked with dots, squares and rhombi) 

correspond to the mean values of the temperature differences between the 

channels T[1,2] equal to -1,17mK, -8.2mK and -17.2mK, respectively. These 

values were measured for the reference points in three independent experiments, 

corresponding to three different power levels, dissipated by the auxiliary heat 

source.  

   As it is clearly demonstrated by the dependences 1-3, the additional heat 

source changes significantly the thermal evolution process. The maximum of the 

curve ∆T[1,2] versus time, which can be detected in Fig.2 under close 

examination, now becomes clearly observed in Fig.8. The distinguishing 

features of the effect are variations of the maximum value of the dependences 
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∆T[1,2] versus time, and the shift of the position of the maximum value on the 

time scale with the increase of the absolute value of the temperature difference 

T[1,2]. For example, for the dependences 1-3 the maximum values are equal to 

915µK, 863µK and 846µK, respectively, when the uncertainty of these 

measurements is about 2-5µK. With the increase of the value of the negative 

temperature difference T[1,2], the position of the maximum value shifts to the 

smaller time intervals, elapsed after the increase of the modulation current in the 

PRT. For the dependences 1-3, the corresponding time intervals are, 

approximately, equal to 7.5, 5.45 and 4.15 minutes, respectively. Thus, we have 

presented a record of the evolution process, when the external heat source 

changes the parameters and the dependence on time of the thermal evolution 

process. For example, the difference between the dependences 1 and 3 in Fig.10 

steadily increases with the increase of the time interval, and for the time 

intervals 3, 7 and 13 minutes after the increase of the modulation current, the 

differences between the dependencies 1 and 3 are equal to 13µK, 123µK and 

255µK, respectively.  

      When analyzing the presented dependences of Fig.8 in the time interval 

between 0.5-1.5 minutes, we find a fascinating result. The auxiliary heat source, 

producing a stationary energy flux in the direction of the thermistor R6, is 

increasing the quantity ∆T[1,2], which describes the effect of the additional 

energy flux in the same direction, stimulated by the increase of the PRT 

modulation current (see Figs. 2 and 4). For this time interval we have, 

practically, a pure running wave of the propagating energy, as the reflection 

from the gauging surface is quite small. Indeed, the product of time interval of 1 

minute and the value of the experimentally measured mean velocity of the 

energy propagation is less than the distance from the PRT to the gauging 

surface. Thus, it is demonstrated experimentally that when the energy reflection 

from the boundaries is negligible, the energy flux, which is propagating in a 

homogeneous medium and which is induced by a step increase of the magnitude 

of the Poynting vector of the external EM field, is significantly increased, if the 

energy flux in the same direction has been created in advance by an auxiliary 

source of EM radiation. This effect can be called as a thermal hysteresis effect 

for the running energy waves. As it follows from Fig.8, this effect can be of 

primary importance. For example, for the time interval t after the increase of the 

modulation current of 0.5 minute, the quantity ∆T[1,2], corresponding to the 

temperature bias T[1,2] of -17.2mK, exceeds by more than 2 times the quantity 

∆T[1,2], observed for the bias of -1.2mK.  

    

3. Conclusions and discussions. 
   First, we are to note here that the main parameters, affecting the indications of 

thermistors, are the energy and the Poynting vector of the external EM field, 

irradiating the surface of the thermometer. This field is produced by the motion 

of the charged particles and the EM field inside the artifact, which is in contact 

with the thermistors. As the charged particles in the artifact cannot tunnel 

through the gap of ~0.1mm (which is filled by nonconductive paste) between 

the thermistor adapter and the artifact, the only way for the energy transfer to 
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the adapter is through the absorption of EM field. This is the consequence of the 

Poynting’s theorem of Electrodynamics [5], which says that the rate of change 

of the electromagnetic energy plus the total rate of doing work by the fields over 

the charged particles within the volume of a material artifact is equal to the flux 

of the Poynting vector, S, entering the volume of the artifact through its 

boundary surface. The vector S defines the energy current density inside a 

dielectric material with arbitrary level of losses [6], and the continuity equation 

for the total energy density, W, for the coupled field-particle system can be 

presented in the form (see eq.(2.17) in [6]): 

            …(1). 
Here, W presents the sum of the energy densities of the of the optical vibrational 

mode (kinetic and potential) and the energy density of the EM field; s is the 

relative spatial displacement field of two ions in the primitive unit cell; m is the 

reduced mass of two ions in the primitive unit cell, and Γ is the damping rate of 

the conversion of the optical mode into heat. The rate of energy variations, 

described by the first two terms in Eq. (1), is detected by thermistors and 

corresponds to the experimentally measured thermal velocity at the specified 

point of the material artifact. Thus, Eq. (1) establishes the linear relation 

between the total energy flux density S, coming to the elementary volume 

through its boundary surface, and the thermal velocity, indicated by thermistor. 

So, the linear relation between the vector quantities S and ∆V[1,2] is established 

(see Fig.3). 

    Under the approximations of [6], for a plane transverse EM wave, whose 

amplitude falls exponentially in z-direction, the cycled-averaged value of the 

total-energy current density in the z-direction <Sz> is related to the cycle-

averaged energy density <W> (see Eq. (2.19) in [6]) by a simple relation (4.16): 

 

<Sz> = ve <W>             … (2), 

 

where ve is the velocity vector of the energy propagation in the material. Both 

parameters, velocity ve and the energy density W, can be precisely determined 

from our experimental data. So, the energy current density of a guided EM 

wave, which cannot be calculated theoretically (as constitutive relations for the 

medium are not known [5]), can be measured experimentally. This observation 

also refers to the cycle averaged value of the corresponding component of wave 

momentum density <Gz>, which can be presented as the ratio of total-energy 

density <W> and the value of the phase velocity vp. As the cycle-averaged 

rate of the energy conversion into heat <RH> [6] is given by the ratio  

(ve <W> / L), (where L is the characteristic length of the decay of the field 

intensity), the TSE in the bulk material could have been predicted in [6]. 

Under the same approximations, in the one dimensional case, the total force 

density <Ft>, consisting of the Lorentz force density (which is acting on the 

particles) and of the time derivative of the EM field momentum density [6], can 

be presented by the expression: 
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<Fz> = [( 1 + η
2
 + κ

2
 )/ (2η

2
 L)] <W> (ve / vp)   … (3). 

 

Here, η is the refraction index of the medium and κ is the extinction coefficient. 

It follows from the equations presented above that for a specified material the 

force density <Fz> is linearly related to the rate of the energy dissipation <RH>. 

All the parameters in Eq. (3) can be measured quite accurately experimentally. 

Naturally, the force density <Fz> results in the systematic motion and in the 

displacement of free electrons. So, the mass transfer, as well as stresses and 

deformations, arising in the artifact as a result of the energy and momentum 

propagations in the medium, have to be taken into account in all adequate heat 

transfer theories.  

    It is also worth emphasizing here that our studies present an experimental 

confirmation of the main conclusions of the whole series of theoretical papers 

[7-9], started by R. H. Dicke and dealing with the interaction of the EM field 

with an ensemble of atoms or molecules. In accordance with [7, 8], the 

parameters of the spontaneous radiation process critically depend on the pre-

history of the system and the type of its excitation. A simple example is 

presented in [7], showing that the system under consideration is anisotropic one: 

“As an example, consider a gas of two-level molecules, all excited”, when “an 

intermolecular spacing is large compared with the radiation wavelength. 

Assume that a photon is emitted in the k direction [7]”. Then it follows from [7] 

that “the radiation probability in the direction k has twice the probability 

(averaged over all other directions)” that “corresponds to the ordinary, 

incoherent spontaneous radiation of a single molecule”. So, the system of 

molecules, interacting with the common EM field, is characterized by the 

angular correlation between the successively emitted photons [7].  
   In case of an arbitrary excitation level of the molecular system, when its 

dimensions are large in comparison with the wavelength of the resonant 

radiation, the coherent spontaneous decay of the system is still possible, but 

only in a single direction: ”the polarization of the emitted or absorbed radiation 

is uniquely given by the direction of propagation” [7]. It is noted in [7]:“in the 

present case the incident radiation is assumed to be plane with the propagation 

vector k, then after the excitation, the gas radiates coherently in the k 

direction… Radiation in directions other than k tends to destroy the coherence 

with respect to the direction k “, as a consequence of the difference in the 

selection rules for coherent and incoherent spontaneous radiation (see equations 

(51) and (52) in [7]) “. So, the theoretical description of an ensemble of 

molecules, interacting with EM field, shows that the coupled field-particle 

system is the anisotropic one, and the considerations of space symmetry are not 

valid for this ensemble [7]. This is in strict agreement with our experimental 

results (see Figs.1-4). 

   As the systems, analyzed in [7, 8], are open ones, the process of the coherent 

spontaneous radiation is irreversible in time. When the molecules are in 

equivalent positions [8], the radiation process can be described by the motion of 

the super Bloch vector on the Bloch sphere, and the process stops when the total 
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dipole moment of the system acquires zero value [8]. In the general case of the 

initial excitation, some energy is still trapped in the system:” the system of 

atoms can no longer radiate coherently, and the remaining energy will be 

dissipated by whatever incoherent processes are available to the atoms” [8]. 

This property is also in agreement with our experiments, where the basic 

property of irreversible character of interaction with the external EM field of the 

ensemble of atoms in a metallic block immediately follows from the 

experimentally demonstrated thermal hysteresis loop.  

   On the other hand, our experimental demonstrations of the asymmetries in 

time and in space in case of thermal evolution process are in agreement with the 

more general violations of symmetries [10, 11], which have been predicted and 

explained theoretically by the prominent Russian physicist A. D. Sakharov in 

case of the physics of elementary particles (CPT asymmetries) [11]. Here, we 

can add that the irreversible character of the processes in Astronomy has been 

established since 1927, when the British astronomer Arthur Eddington 

introduced the concept of the “arrow of time” - the distinguished direction of the 

time, which can be determined by the study of organizations of material objects 

in the Universe. The numerous studies of the Universe performed with radio-

telescopes have demonstrated clearly its anisotropy and the lack of spatial 

symmetry [12]. One of the first experimental observations of the violation of the 

reflection symmetry in the physics of elementary particles was performed using 

β-disintegration of radioactive isotope of cobalt in strong magnetic fields at low 

temperatures [13]. Numerous biological studies [14, 13] confirm unambiguously 

that the asymmetries in time and in space are the fundamental properties of 

Nature. 

   Specially, it should be emphasized that the fundamental result of [8], dealing 

with enormous number of influence parameters in the interaction of EM field 

with an ensemble of atoms, have been experimentally confirmed by these 

studies. It follows from [8] that in calculation of the field, emitted by the 

ensemble, all the distances between the atoms, the mutual orientations of the 

dipole moments and the levels of the initial excitations of all atoms are the 

necessary parameters in this procedure. So, the number of influence parameters 

increases dramatically with the increase of the number of atoms in the ensemble. 

In case of interaction of macroscopic objects through the EM field the number 

influence parameters are further increased, as additional information about the 

forms, properties of the materials and mutual solid angles of the observations 

has to be included into the influence parameters even in free space. For the 

experiments on Earth, when the energy from Sun is propagating through the 

turbulent atmosphere, the number of parameters is infinite [2a]. The well-

established irregularities of the Earth rotation, convert the curves of Fig.1 into 

spirals, with slightly different adjacent cycles, as a result of the time asymmetry 

in the process of the energy propagation from the Sun. Naturally, the thermal 

evolution process, which is described by the infinite number of parameters, has 

the infinite number of the modes of existence, and this observation is in 

agreement with one of the fundamentals of the Ancient Indian philosophy.   
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Introduction

The problems of calculating hydraulic operating parameters are the
basic problems in the analysis of operating conditions of pipeline systems when
designed, operated, and controlled. These problems are traditionally solved
using models and methods, which, however, do not allow us to quantitatively
assess the satisfiability of operating conditions when consumption is random,
which is typical of many practical situations. This is explained by high
complexity and dimensionality of pipeline systems (heat-, water-, gas supply
systems, etc.) as modeling objects, excessive efforts necessary to apply general
methods of stochastic modeling (such as the Monte-Carlo method), and
difficulties in obtaining initial statistical data.

The paper presents an approach, a set of mathematical models and
methods for modeling the operating parameters of pipeline systems that were
developed in terms of stochastics and dynamics of consumption processes and the
established rules of their control, which make it possible to rationally combine the
adequacy of modeling and its high computational efforts [1, 2].

Problem statement of the probabilistic calculation of
hydraulic operating parameters. Probabilistic description of definite
hydraulic operating parameters is reduced to the probability density function,
which is denoted here by ( , )Rp R  , where R – the value of a random vector of
operating parameters (pressure, flow rate, etc.); R – distribution parameters.
Most of the practical cases allow us to use the hypothesis about normal
distribution of R . Then { , }R RR C   and the probabilistic description of
hydraulic operating parameters can be reduced to the specification of values of
mathematical expectation ( R ) and covariance matrix ( RC ) for value R.

Not every combination of R  components is acceptable, since they

mailto:pipenet@isem.sei.irk.ru
mailto:vanteeva@isem.sei.irk.ru
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should satisfy the equations of flow distribution model ( ) 0U R   (where U –
non-linear vector function). These equations result from general physical
conservation laws, and hence should be solved deterministically.

The traditional deterministic model of  steady hydraulic operating
parameters in a pipeline system as a hydraulic circuit with lumped parameters
can be represented as [3]

T( ) ( , ) ( , , , ) 0.
( , )

Ax Q
U R U X Y U x Q P

A P f x



 

     
(1)

Here the first subsystem of equations represents the conditions of
material balance at the nodes of hydraulic circuit (equations of the first
Kirchhoff law); the second subsystem – the equations of the second Kirchhoff
law; X – boundary conditions; Y – unknown operating parameters; T –
transposition sign; A – m n - incidence matrix with elements 1( 1)jia   , if
node j  is the initial (end) node for branch i , 0jia  , if branch i is not incident
to node j ; m, n  number of nodes and branches of the hydraulic circuit; x –
n-dimensional vector of flow rate in branches, ,Q P – m-dimensional vectors of
nodal pressures and flow rates, ( , )f x  – n-dimensional vector-function with
components ( , )i i if x  , reflecting the laws of hydraulic flow for the branches;
  n -dimensional vector of parameters of these characteristics. For instance,
if ( , ) | |i i i i i i if x s x x H   , then { , }i i is H  , where ix – flow rate in the i-th
branch; is  hydraulic resistance of the branch; 0iH  – increase in pressure
in the case of an active branch (e.g. a branch representing a pumping station);

0iH   in the case of a passive branch (e.g. a branch representing a pipeline

section). If in (1) all parameters , , 1,i is H i n  are set deterministically, then
T T T T( , , )R x Q P .

Thus, the probabilistic model of steady flow distribution can be
represented as ( ) 0, ~ ( , )r RU R R N R C , where rN – r – dimensional normal
probability distribution; r – dimensional of vector R. In the case of normal
distribution of X , if we neglect the non-linear distortion of distribution

( )[ ( ), ]Y Xp Y X   (where ( )Y X – implicit function given by the flow distribution

equations), the problem can be reduced to the determination of { , }R RR C 

with the given function { , }X XX C   and under condition
( ) ( , ) 0U R U X Y  . Moreover, the composition of X  should provide

solvability of equations ( , ) 0U X Y   with respect to Y , i.e.
dim( ) dim( ) rank( / )Y U U Y    , where /U Y  – Jacobian matrix (of partial
derivatives) under fixed boundary conditions *X  in the neighborhood of the
solution point *Y , dim( ) – vector dimensional, rank( ) – matrix rank.
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Methodological approach. Let ( )X X X    be a random
deviation of possible realization of boundary conditions from its mathematical
expectation X . After linearizing function ( )Y X  in the neighborhood of X , we
obtain ( ) ( / ) XY Y X Y X     , where /Y X  is derivative matrix at point X .

Since ( )E Y Y  and ( ) 0XE   , where E  is the operation of mathematical

expectation, then ( )Y Y X . Thus, the mathematical expectation of unknown
operating parameters ( Y ) is the function of flow distribution equations under
boundary conditions X . Correspondingly,

( )
X X

R
Y Y X
   

    
   

(2)

and
T

X XYX X
R

YX YY Y

C C
C E C C

 
 

     
      

       
,

where
T T

T T
Y Y Y X X X

Y Y Y YC E E C
X X X X

   
                        

,

T T
T T T( )XY YX X Y X X X

Y YC C E E C
X X

   
                  

, ( )Y Y Y   .

Thus, the general scheme for solving the problem of probabilistic
calculation of  hydraulic  parameters is reduced to the following: 1) to obtain
vector Y  by traditional methods for calculating the flow distribution with the
given X ; 2) to determine matrix RC , whose individual blocks are determined
using the known matrix XC  and derivative matrix /Y X   at point X .

Here two main questions arise: 1) based on what do we set the
distribution parameters of boundary conditions ( { , }X XX C  ); 2) what is the
final form of relationships for the resultant covariance matrices in different
variants of the division of R  into X  and Y , since in the traditional methods for
the flow distribution calculation the derivatives /Y X   are not calculated in
explicit form, which represents a separate problem.

Probabilistic description of consumer loads. A typical
example of pipeline systems operating under the conditions of stochastic
consumer loads is water supply systems. The approach applied to the
probabilistic description of these stochastic conditions is based on the use of the
queuing theory methods and on results of the studies [4, 5, etc.], which found
their reflection in the regulatory documents [6]. According to these results, the
probability of using plumbing units ( hrp ) can be described by “Erlang
formulas”, which demonstrate a discrete limit distribution of used channels,
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depending on the characteristics of the flow of requests and the performance of
the queuing system.

The suggested technique for calculating the mathematical expectation
of consumer flow rates ( hrq ) and their variances ( 2

,q hr ) consist in the
following:

1. Knowing the number of plumbing units at the consumption node
( N ) and the probability of using them hrp [6], we can calculate hrm m  such
that maximum value ( max ( )p m ) acquires the probability

 
( )

!

m

hrN p
p m Z

m

 
 
 
 

 , 0,1,...,m N , (3)

where
 

0 !

k
N

hr

k

N p
Z

k

 , m  is the number of simultaneously used plumbing

units; hrNp is their usage rate.
2. We should determine the average hourly flow rate 0,hr hr hq m q ,

where 0, 0, / 1000h hrq q – hourly water flow rate by one device, m3/h; hrq –
can be interpreted as the mathematical expectation of flow rate at the
consumption node; 0,hrq – standardized value, l/h.

3. When approximating the discrete Erlang distribution by the
continuous normal distribution, we should calculate the equivalent variance by
formula 2 2

, max1/ 2 ( )m hr p m  .
4. The variance  of the average hourly flow rate will be determined as

2 2 2
, 0, ,q hr h m hrq  .

Figure 1 presents a diagram of function (3), where N=270 and
hrp =0.023. The diagram shows that the maximum probability density function

corresponds to hrm , whose average hourly flow rate is hrq .
General scheme of obtaining the covariance matrix consists

of three stages: 1) to linearize system (1) at point X ; 2) to reduce linearized

system 0R
U
R


 


 to Y X
Y
X


  


; 3) to obtain covariance matrix of the vector

of unknown operating parameters RC  using the operation
T

X X

Y Y

E
 
 

   
   
    

.
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Thus, for the case, where X Q ,
x

Y
P
 

  
 

, constmP  , const :

T

0AU
f AR

 
     

;
1 T 1

1

( )xx
Q

P

f A M
M






 



  
   

    
;

1 1 1

1 T 1 1 T 1 1 1 1 T 1 1

1 1 1 1 1 1

( )
( ) ( ) ( ) ( )

( )

Q Qx QP

R xQ x xP

PQ Px P

Q Q x Q

x Q x Q x x Q

Q Q x Q

C C C
C C C C

C C C

C C M A f C M
f A M C f A M C M A f f A M C M

M C M C M A f M C M

  

        

     

 
 

  
 
 

 
 

     
  

,
where xf  – diagonal matrix with elements ( , ) /i i i if x x  ; QC  known
covariance matrix of nodal flow rate; PC , xC  covariance matrix of nodal
pressure and covariance matrix of flow rate in branches; T

Qx xQC C 

covariance matrix of nodal flow rate and flow rate in branches; T
PQ QPC C 

covariance matrix of nodal pressure and flow rate; T
Px xPC C  covariance

matrix of nodal pressure and flow rate in branches. Thus, knowing X QC C ,
we can calculate RC . No special requirements are imposed on matrix QC ,
however, in practice it is usually taken as a diagonal matrix from considerations

Fig. 1. Continuous approximation of Erlang distribution for the probability

of simultaneously used devices for the case where N =270 and hrp =0.023.
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of statistical independence of consumer loads. This means that
2cov( , )j t Q j

Q Q   for j t , and cov( , ) 0j tQ Q   for j t .

Covariance matrix for the general case of setting boundary
conditions T T T T( , , )X X XX Q P  , where at each node we can set either the flow
rate or the pressure, and each branch is characterized by ,in -dimensional vector
(e.g. { , }i i is H  , , 2in  ) of hydraulic parameters, which is specified in the
probabilistic form in full or partially [1, 2].

Divide the set of nodes in the design scheme into subsets of nodes with
the given flow rate ( QJ ) and pressure ( PJ ), and the set of branches into subsets
of branches with hydraulic parameters given in the probabilistic ( VI ) and
deterministic ( DI ) forms. We omit the conclusion and give the finite
expressions for the covariance matrix of unknown operating parameters:
1) Covariance matrix of unknown nodal pressure

T
T T

T T

,

;

V VY Y
PY PY PY QV V QV

X V V X

Y Y Y Y
QX PX

X X X X

x xP PC A C A
Q Q

P P P PC C
Q Q P P

 
 

              

      
          

2) Covariance matrix of flow rate in the branches with deterministically
specified characteristics

T T
T

, , ,, D D D D
x D x D x D PY PX

Y Y X X

x x x xC C C
P P P P

 
                     

;

3) Covariance matrix of flow rate in the branches with probabilistically
specified characteristics

T
T

TT

, V V
xV V V PY

Y Y

V V V V
PX V

X X V V

x xC C
P P

x x x xC C
P P

x x



 

 

           

     
          

;

4) Covariance matrix of unknown nodal flow rates
T T T,QY QY QY PD xD PD PV xV PVC A C A A C A       ,

where QDA – ( )Q Dm n -dimensional incidence matrix with elements jia ,

Qj J , Di I ; QVA – ( )Q Vm n - dimensional incidence matrix with elements

jia , Qj J , Vi I ; PDA – ( )P Dm n -dimensional incidence matrix with
elements jia , Pj J , Di I ; PVA – ( )P Vm n -dimensional incidence matrix
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Fig. 2. Daily change in the frequency distribution of hydraulic operating parameters

а) For the nodal flow rate, b) For the nodal pressure
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with elements jia , Pj J , Vi I ;
1

TxDD
QD

Y D

fx A
P x


 

    
,

1
TxDD
PD

X D

fx A
P x


 

    
,

1
TV xV
QV

Y V

x f
A

P x


  

    
,

1
TV xV
PV

X V

x f
A

P x


  

    
,

1
V xV xV

V V V

x f f
x 


   

     
– matrices of

partial derivatives of the corresponding combinations of parameters, which

implicitly depend on three matrices only: xD

D

f
x



, xV

V

f
x




 and xV

V

f




, whose

structure is determined by the type of branch characteristics. Moreover, the first
two of them are diagonal, and therefore, easily invertible.

Thus, based on the given relations, we can sequentially calculate the
covariance matrices of all the operating  parameters, if we know the covariance
matrices of nodal flow rate set in the probabilistic form ( QXC ), nodal pressure
( PXC ), and hydraulic characteristics of branches ( VC ).

Probabilistic calculation of dynamics of hydraulic
operating parameters. Stochastic boundary conditions initiate the change in
hydraulic operating parameters with time. As a result we face the problem of
probabilistic modeling and analysis of operating parameter dynamics

( ), 0R t t T   as a random process for the calculation period T .
Figure 2 presents the graphs of realization-frequency distribution of

two hydraulic operating parameters (the nodal flow rate and the nodal pressure).
The first parameter can be considered as a disturbance, the second – as a
response. Figure 2a shows the graph of water flow rate frequencies for an
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Fig. 3. Statistical characteristics of change in the nodal pressure as a random process
а) Dynamics of mathematical expectation;

b) Graph of the autocorrelation function of pressure in the reservoir
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individual residential building in the water supply system that is constructed
based on the experimental data. Figure 2b shows the graph of pressure
frequencies at the connection node of the reservoir in the water supply system in
one of the Irkutsk districts that is obtained by processing the data of the
dispatching department for 490 days.

Analysis of both processes in Fig. 2 indicates that: 1) the frequency
distribution at any cross-section of both processes is approximated by the normal
(Gaussian) distribution satisfactorily enough; 2) the variance of every process

2( )  is practically invariable. The root-mean-square deviation ( )  for daily
water flow rate changes negligibly, i.e. within 10 per cent (Table 1), for pressure
 within 7 per cent; 3) the mathematical expectation for both processes changes
during a day (Fig. 3a); 4) the autocorrelation function stabilizes at the zero value
(for the nodal value in Fig. 3b) fast enough.

The hydraulic operating parameters vary in time in response to three
main disturbing actions (boundary conditions): 1) random actions of regular
character (consumer loads); 2) deterministic actions of regular character (control
actions); 3) random actions of irregular character (fires, accidents).  The second
type of disturbances is taken into account algorithmically on the basis of the
specified control rules. Analysis of the consequences of relatively rare
disturbances of the third type is the subject of the reliability theory of pipeline
systems and is not carried out here.
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Table 1. Values of mathematical expectations and root-mean-square deviations
of the nodal flow rate during day hours for the conditions in Fig. 2а.

Day hour Q , m3/h  100%


1 4.60 2.14 3.11
2 2.32 1.94 6.52
3 1.88 1.99 4.12
4 1.66 1.94 6.52
5 1.87 1.84 7.97
6 3.28 2.2 6.00
7 7.88 2.02 2.67
8 10.80 2.08 0.22
9 10.88 1.96 5.56

10 12.40 2.26 8.89
11 12.48 2.02 2.67
12 12.13 2.28 9.86

Day hour Q , m3/h  100%


13 11.97 2.25 8,41.
14 11.77 2.2 6.00
15 11.28 2.15 3.59
16 11.16 2.07 0.26
17 11.53 2.0 3.63
18 12.32 2.09 0.70
19 12.35 2.17 4.56
20 13.34 2.05 1.22
21 13.68 2.04 1.71
22 14.34 2.02 2.67
23 12.51 1.85 10.86
24 9.10 2.18 5.04

Dynamics of hydraulic operating parameters ( ), 0R t t T   may be
considered as a random process with the discrete time (a quasidynamic
approach). At each time instant of the process the operating parameters obey the
normal distribution. Variation of the operating parameters at the adjacent
instants may be considered as insignificant and the flow distribution – as steady.
Thus, the problem of probabilistic calculation of hydraulic operating parameter
dynamics is reduced to the determination of T T T T[ (0) , (1) ,..., ( ) ]R R R TR and

T
R RE     RC based on the specified parameters
T T T T[ (0) , (1) ,..., ( ) ]X X X TX , XC  and the conditions ( ) ( ) ( , )A t x t Q t P ,

T T( ) ( ) ( )A t P t y t ,  ( ) ( ), ( )y t f x t t , 0,...,t T . In this case the
suggested analytical probabilistic models and the calculation methods can be
applied to each calculation instant, which will sharply decrease computational
efforts. The computing experiments in Table 2 have shown the decrease in
running time by tens of times.
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Table 2. Time required for probabilistic calculation by the Monte Carlo and
analytical methods [7]

Time for methodNumber of scheme
nodes and branches Analytical Monte Carlo - .M C Analytt t

6 nodes and 8
branches 3.2 s 3 min 56.25

12 nodes and 19
branches 4.8 s 28.5 min 356.25

12 nodes and 29
branches 16.2 s 1.25 h 277.77

In some cases such as availability of  reservoirs it is important to take
account of the lagging factor of internal responses of pipeline systems, when the
successive operating condition depends on the prehistory of conditions.
Availability of reservoirs can be taken into account by using the additional
dynamic relation , , 1 ,( / )j k j k j k jP P g t F Q   , where t – duration of the k -
th condition; jF – liquid surface area in the reservoir; j – index of the node
with a reservoir; g – gravitational acceleration;  – liquid density. The
reservoir operation can be modeled by insertion of a dummy branch connected
to a dummy node with zero (or air) pressure. The hydraulic characteristic of
such a branch has the form: , , , ,i k i k i k i ky s x H  , where , , 1i k j kH P  ,

, /i k js g t F  .  Let f
kH  be a vector of dummy pressure rises in the branches

that represent all the reservoirs. The covariance matrix of vector f
kH  that is

used at the k-th calculation step will have the form: *
1( ) ( )

fH k PY kC t C t  , where
*

Y 1( )P kC t  – block of covariance matrix PYC  that was calculated at the previous
step and is attributed to the pressures at the nodes with reservoirs.

Calculation of probabilistic operating parameters of
pipeline systems. The suggested approach to the calculation of statistical
parameters of pipeline system operation offers an opportunity  to  obtain
probabilistic estimates of virtually any operating parameters of  pipeline systems
depending on their operating conditions by the known formulas of the
probability theory. For example the probability that any “nondegenerate” subset
of operating parameters belongs to a given range at the time kt   will be
determined by the formula

   
1

1

T 1
1

1 1... exp C
2(2 )

n

n

v v

Rk k k Rk k k nn
v vRk

p R R R R dR dR
C

     
    ,  (4)

where kR – n-dimensional vector (subvector) of operating parameter values at

the time instant kt ; kR – n-dimensional vector  of mathematical expectation

kR ; RkC  ( n n )-dimensional covariance matrix for kR ; Rkp   probability
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that kR  belongs to  a specified range [ ,v v ]; T
1[ ,..., ]nv v v  and

T
1[ ,..., ]nv v v  vectors of upper and lower boundaries of the studied range,

whose components can take infinite values to take account of one-sided intervals
or their absence.
The assessment of probability that kR  belongs to a specified range [ ,r rv v ]
during period Т will be determined by the formula

   
1 1 1

K K K

RT Rk k k Rk k
k k k

p p t t p t T
  

       , (5)

where K – the number of calculated periods over period
1

K

k
k

T t


  ; kt 

duration of the k -th condition.
Equations (4) and (5) can be applied to estimate the operation of pipeline

system, its fragments or individual components in a definite operating condition
or over the period of time, for example in terms of the extent  to which they are
loaded, consumer demand is satisfied, or process constraints are met, etc.

Numerical example
Let us consider a numerical example of calculating the stochastics of the

hydraulic operating parameters for the network presented in Fig.4. The network
consists of 7 nodes and 11 branches of which: one node has a fixed pressure;
two nodes have lumped loads; two nodes are nonfixed loads depending on
pressure; one branch represents a pumping station with an increasing head
Н0=21 m; one dummy branch simulates a reservoir (water level in the reservoir
Н f=16.4 m); two dummy branches simulate nonfixed loads, their resistances are
random values. Thus, this example illustrates the possibilities of the suggested
approach in terms of the random composition of boundary conditions.

The input information specified in the probabilistic form is:
T T T T

4 5 7 9 10( , , ) ( , , , , )X X XX Q P Q Q P s s  = (5.2, 1.8, 0, 0.30359, 1.2407); XC – a
diagonal matrix with nonzero elements (1.065, 0.3969, 0.0001, 0,059, 0.51564).
Resistances in the dummy branches 9 and 10, that simulate nonfixed flow rates
at consumers are determined by the formula [1, 2] 2/( )r r

i j js P Q , and variances

–  2 2 6 2
, ,4( ) /( )r r

s i j j Qr jP Q  , where ,r r
j jP Q – design (required) pressures and

flow rates for this consumer, j – index of the initial node of the i-th branch.
Correspondingly in the example 2

rQ  7.7, 2
2  9.61, 2

rP  18, 3
rQ  7.11,

2
3  0.81, 3

rP  12.
Resistances in the branches that were specified deterministically are:

1s  0.00257, 2s  0.8996, 3s  0.00408, 4s  0.095, 5s  0.67, 6s  0.067,

7s  0.0957, 8s  0.00646, 11s  0.014.
The calculation results for nodes are presented in Table 3 and for

branches – in Table 4.
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Table 3. Calculation results for nodes Table 4. Calculation results for branches

Figure 5 presents a graphical interpretation of the calculated probability
of providing consumers with a required flow rate. For example for the consumer
at the second node 2 2(0 )rp Q Q   0.3442 or 2 2( )rp Q Q    0.64446,
and at the third node 3 3(0 )rp Q Q   0.71914 or 3 3( )rp Q Q    0.28083,
where rQ is the required flow rate.

Parameters
j Рj,

 Mwc
,P j Qj,

m3/h
,Q j

1 18.22 0.89 – –
2 17.11 1.25 9.19 4.03
3 14.96 1.21 6.48 1.08
4 16.70 1.25 – –
5 16.01 0.83 – –
6 16.37 0.02 – –
7 – – 22.67 9.07

Parameters
i xi, m3/h 2

,x i
1 20.75 3.29
2 1.54 0.02
3 10.01 0.03
4 -3.32 0.59
5 -1.61 0.02
6 3.20 0.98
7 -1.92 2.21
8 20.75 3.29
9 9.19 4.03
10 6.48 1.08
11 1.82 0.66

Fig.4. Example of the calculated scheme of the pipeline system for the general

case of boundary conditions

Real section; dummy branch simulating nonfixed consumer

loads; dummy branch simulating reservoir; dummy

branch simulating pumping station; node with the specified nodal loads;

           node with the specified pressure.7
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Conclusions
1. The paper presents:
- a technique for apriori calculation of statistical characteristics of a

probabilistic process of the transported medium consumption as a
queuing process;

- a general scheme for probabilistic calculation of pipeline system
hydraulic operating parameters. The calculation suggests determining
statistical characteristics of the operating parameters by specified
characteristics of boundary conditions and flow distribution model. It is
shown that such a calculation is reduced to solving a traditional problem
of flow distribution at the point of mathematical expectation of boundary
conditions in combination with an additional procedure for calculating
covariance matrices of operating parameters;

- a technique for obtaining the analytical expressions for covariance
matrices of operating parameters as well as the expressions for the
general case of specifying boundary conditions;

- a technique for probabilistic modeling of  changes in the hydraulic
operating parameters on the basis of developed analytical probabilistic
flow distribution models. This technique provides a considerable
reduction in computational efforts against the known methods of
simulation modeling.

2. The suggested technique for modeling pipeline systems provides the
possibility of obtaining probabilistic estimates of practically any pipeline
system operating parameters that depend on operating conditions.

Figure 5. Illustration to the calculation of probability of providing consumer with a
required flow rate: a) at node  2, b) at node 3.

Q – Calculated value of mathematical expectation of consumer flow rate considering
its dependence on nodal pressure, Qr– required value of consumer  flow rate.

Qr Q

a)p

QrQ

b)p



108  Novitsky  and Vanteyeva

3. A numerical example of probabilistic calculation of the steady flow
distribution in the pipeline system is given for the general case of
boundary conditions. The example illustrates the suggested probabilistic
approach.
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Abstract. It is admissible that most of the plasma literature is concerned with the plasma 

instabilities and the inevitable plasma waves, which remain standard obstacles to the 

thermonuclear fusion process. Many experimental data on the plasma waves (growth or 

damping) and their accompanied theoretical interpretations have been published during 

the last five decades; lots of them have been identified and justified as well, some not yet. 

Among them our previous research on the plasma waves is included, which originates in 

the early 80’s at the Plasma Physics Laboratory of the NCSR ‘’ Demokritos’’. As the 

wave rising is defined by the growth rate (or the damping on the extinguishment), these 

important wavy quantities have been studied in detail in the present paper. Three 

examples have been used from our previous theoretical results, and the first observation 

reveals that the involved quantities are complicated enough to be studied themselves. So, 

the use of suitable approaching models, which may interpret the experimental wavy 

quantities, is the central idea of the present attempt. Furthermore, calculations with a 

little change of the initial conditions have been repeated, to determine that the plasma 

behaves as a chaotic medium.  

 

1.  Introduction  

 

It is common experience that the plasma wave growth rate or  damping has almost 

always a complicated form [1-3], as the involved physical quantities are multi-parametric 

and very hard to be considered as separate, and also influence one another through the 

feed-back process [4,5]. Such plasma waves have been observed in the early 60’s [6-9] 

and their growth has been studied as well; as time passed their wavy properties have been 

studied extensively and the plasma waves have been recognized and  classified as 

electrostatic waves [10,11], drift waves [12,13], Alfven waves [14], short-wavelength 

electron plasma waves [15], long-wavelength waves [10-14, 16], ion-sound waves [17], 

e.t.c. All the above mentioned cases have been researched and their results have been 
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carried out by considering and finding an exponential change on time of the plasma 

quantities (plasma density, plasma potential, ions and electrons velocity e.t.c.). If the 

thoughts are extended in the other areas of Physics, then we can find many examples 

with exponential change on the time usually and, sometimes, on the space dimension as 

well. For the first case the extinguishing of the oscillations by considering a resistance 

proportional to the vibrated mass velocity [18, 19], the charge and discharge law of the 

capacitor from a d.c. generator through a resistance and the establishment or interruption 

of the d.c. current on a wrapper (the known time-circuits), the radioactive conversions 

Law from the Nuclear Physics [20] are mentioned. Afterwards, for the second case it is 

enough to mention the absorption law of the radiation from an absorbent material.  

The need for an approaching solution of the differential equations for every problem, 

which describes the change on time or space, is indispensable and the proposed 

mathematical models have the ambition to alleviate the  problem. In the first approach, 

the solution of such kind of problems is limited in the exponential known forms- 

functions, where the equalization factor is considered as ‘’constant’’, and this convenient 

and easy acceptance results in direct deductions. However, the stability of this kind of 

‘’constants’’ must be put under scrutiny as some results of this acceptance may rise 

doubts. So, the equalization factor must not be considered as a constant, but as lightly 

changeable in different ways.   

In the present work three such examples have been given [21, 22], although the purpose 

of our team is to shape a full list of the models, which may be useful and easy for the 

experimental and theoretical researchers. So, the completion of the model list is the 

immediate future work, since the experimental confirmation is the difficult part of the 

completed research; this difficulty is caused by the little amount of time in the growth 

establishment, which is very large at the nuclear decays, as the making of the 

measurements must be methodical. 

These examples that are mentioned above were selected from the previous work on the 

plasma waves, which has been carried out at the our Plasma Laboratory  [23-25] and 

presented as the first involvement with the topic.  

 . 

The paper is organized as following: A brief description of our experimental device, the 

plasma production and the wave appearance is given in Sec.2. In Sec.3 the weakness of 

the simple radioactivity problem are given in detail. Afterwards, three characteristic 

models are studied in Sec.4, whereas the discussions and conclusions are made in Sec.5. 

Finally, in the two Appendix sections more details of the mathematical elaboration are 

given. 

 

 2. Plasma production – Waves Appearance 

 

A.  Experimental Set-Up Description 

A nearly 4m long  semi-Q machine has been installed in the Plasma Physics Laboratory 

of the NCSR  ‘Demokritos’ since four decades ago and many studies on the rf produced 

plasma have been carried out [21-25]. A steady steel cylindrical cavity of 6 cm internal 

diameter, with its’ length adaptable to any purpose, is used almost always, as it is 

preferable due to its’ cylindrical symmetry simplicity. The argon-plasma is usually 

produced due to the argon atoms inertia and its’ low penetration. A d.c. generator 

supplies the Q-machine with constant current into a wide value region and with high 

accuracy. So, the produced magnetic field along the cylindrical cavity axis has an 

inclination from the constant value smaller than 4% if the Q-machine electro-magnets are 

placed correctly. 

A low power Magnetron generator operates at constant value of the signal frequency 
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( GHz45.2 ) and supplies the plasma production with the indispensable energy into a 

wide region of the external magnetic field values (Table 1). 

Electrical probes, disk probes, double probes and probe arrays, which can be moved 

accordingly or not, provide the possibility of measuring the plasma quantities (plasma 

density, plasma temperature, plasma potential, plasma wave form, e.t.c.) in every point of 

the plasma column. Figure 1(a) shows a drawing of the Set-Up for better understanding 

and Fig.1 (b) presents a photograph of a similar experimental device.  

 

   

 
 

 
                              (a)                                   (b) 

 

 

 

Fig.1  The plasma cavity with probes is presented in (a), whereas a photo of the 

experimental device is shown in (b). 

 

 

 

B. Plasma production-Plasma Waves 

By using a combination of a rotary and a diffusion pump (Balzers type) connected with 

the cylindrical cavity, the argon pressure can be adjusted in order for the plasma to light 

within a wide region of values. In a previous publication [25], a complete study of the 

plasma external parameters , such as gas pressure, rf wave power and magnetic field 

intensity, has been given. In the present paper, the external parameters and the plasma 

quantities are summarized in Table 1. 
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   Table 1. The plasma parameters and plasma quantities ranging values 

Parameters Minimum value Maximum value 

Argon pressure p  Pa001.0  Pa1.0  

Argon number density, gn  315102 −× m  
317102 −× m  

Magnetic field intensity, B  mT10  mT200  
Microwaves’ power, P  

Frequency of the rf power (standard 

value) 

Watt20  

GHz45.2  

Watt120  
 

Electron density, 0n  315102 −× m  
315106.4 −× m  

Electron temperature, eT  eV5.1  eV10  

Ion temperature, iT  eV025.0  eV048.0  

Ionization rate %1.0  %90  
Electron - neutral collision frequency, eν  17102.1 −× s  

19103 −× s  

 

Among the other noteworthy findings of the thus produced plasma, are its’ stability, 

repetition, and the persistently rising low frequency electrostatic waves, many of which 

have become audible through the suitable conversion. The waves may have wave-vector 

component along the three axis originally, but, as the steady state is established, standing 

waves are seeking at the radial and cylinder axis direction, and the waves propagate only 

azimouthally.  

The study of these waves has been done theoretically [21,22,24] by using the fluid 

mechanics equations and its’ dispersion relation, the growth rate and damping have been 

also found. So, three types of dispersion relations and their growth rate are mentioned 

here; the first dispersion relation is the following, 
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where,  eν are the electron-neutral collisions ,
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The first kind of waves is caused by the radial rf –field gradient [21,23], since the second 

and third kind are identified as electron-neutral and ion-neutral collisional waves, 

respectively [22]. 

Figure 2 shows a wave form and the frequency spectra of two electrical plasma waves; 

each spectrum consists of the fundamental frequency and its’ upper harmonics, in full 

accordance with the dispersion relations (2-1) and (2-2). Figure 2 (a) is the waveform 

[21], spectrum (b) for the wave caused by the rf-field radial gradient and spectrum (c) for 

the collisional wave. 

 

 

           
Fig.2. The wave form is shown in (a), whereas the wave spectra are presented in (b) and 

(c) for rf-drift and collisional wave, respectively. 

 

C. Experimental Data 

Although many phenomena appear on the plasma waves, most of which have been 

presented in the previous publications [21-25], in the present paper only the influence of 

the gas pressure on the wavy frequency and amplitude is mentioned; this is considered to 

be enough for the first fitting between an experimental given fact and a suitable model.  

The indispensable measurements were taken using an electrical probe placed in the 

middle of the cylinder radius and the argon was lighted in the following values of the  

external plasma parameters; magnetic field  intensity B=72 mT and microwave power 
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P=45Watts. The examined wave is the collisional one, which is described by the 

dispersion relation (2-2), and its' frequency and amplitude was taken from the spectrum 

on every pressure value. So, Table 2 is completed and the graphic is presented in Fig. 3. 

 

Table 2. The wave Frequency and Amplitude with Pressure values B=72mT, P=45Watts 

Gas Pressure (Pa) Wave Frequency (kHz) Wave Amplitude 

(Arbitrary Units 

0.001
 

122 2.9 

0.01 102 2.6 

0.02 85 2.3 

0.03 

0.04 

77 

65 
2.0 

1.8 

0.05 58 1.6 

0.06 50 1.4 

0.07 46 1.2 

0.08 46 1.2 

0.09 46 1.2 

0.1 46 1.1 

              

 

 
Fig.3. The wave frequency, and the wave amplitude by the gas pressure  increase, are 

presented in (a) and (b) curves, respectively. 

 

3. Physical Quantities with Exponential Changing-Models  

Many examples have been taken from other areas of Physics and not only to state the 

models for the exponentially changed quantities, which is the topic of the present study; 

the known Radioactive Conversion (Change) Law  is taken from the Nuclear Physics and 

the mortality problem is a clearly statistical subject. 
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The simple solution of the transitive problems 

An easily perceptible example is the solution of the radioactively-law problem. Although 

the solution of this problem is known since the early university lessons, let us repeat its’ 

solution here, for two basic reasons: i) to give the physical interpretation of every 

mathematical hypothesis or operation (action) and ii) to study the terms of  this simple 

problem, such as the conversion rate, sub-duplication time, semi-life time e.t.c. 

 

The problem situation:   

At the time 0=t , the unbroken radioactive nucleus are 0N . How many unbroken 

nucleus N  will still exist after the passing of the time t ? 

Starting by the given fact that in the moment of the time t the remaining unbroken 

nucleuses are N , an infinitesimal increase of the time by dt is considered. A 

consequence of this is the breaking off dN from the unbroken nucleuses (the 

infinitesimal increase of the time causes, infinitesimal decrease of the unbroken 

nucleuses). 

The next step is the seeking of the dependences of the dN change of the unbroken 

nucleuses on the other physical quantities. (the whole physical interest of the issue is 

concentrated on this point of the solution proceedings). These influences are the 

following: i) the dN  change is proportional to the time increase dt  (why?), ii) the dN  

change is proportional to the available quantity of the unbroken nucleuses N in that 

moment t . The change dN is proportional to the product of these two factors 

consequently, and in accordance with the following relation,  

 

                                              dtNdN .∝           (3-1) 

 

If it is considered that there are no other changeable physical quantities that influence 

the dN , an analogy constant λ (for the quantities units equalization) must be introduced 

to the above relation (3-1). So, the following differential equation is resulted, which fits 

the problem, 

dtNdN ..λ−=              (3-2) 

 

The constant λ , is named breaking off constant, depends on the breaking nuclear 

material, and its’ unit is the
1sec−

 . Το sign (-) is simply put due to the decrease of the 

remained unbroken nucleuses. 

Although the differential equation (3-2) is solved very easily, at the end of the paper 

Appendix A gives more details; its’ solution is the known relation, 

 

teNN .
0 . λ−=        (3-3) 
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The  Law’s (3-3) study 

 

1. sub-doubling time:  as sub-duplication time is defined the time
2

1tt =  at which 

the remaining unbroken nucleuses are half of the original ones,
2

0N
N =  . With the 

replacement of the pair of the values ( )
2

,
0

2
1

N
t on the relation (3-3)  it is found that, 

2
1.

0
0 .

2

t

eN
N λ−

=        or            
2

1.

2
t

e
λ

=  

 

and finally,                                  
λ

2ln

2
1 =t              (3-4) 

 

In the same way the time of the sub-quadruplication
4

1t , for which the remaining 

unbroken nucleuses are
4

0N
N = , can be found. With the same mathematical thoughts, 

the following is resulted, 

 

2
1

4
1 2

224
tt .

lnln
===

λλ    (3-5) 

 

For the sub-eight time 
8

1t  it is found that, 

2
1

8
1 .3

2ln38ln
tt ===

λλ
           (3-6) 

 

Thinking that going from  
4

0N
 unbroken nucleuses to

8

0N
 is actually a sub-doubling, it 

is valid that, 

 

2
1

2
1

2
1

4
1

8
1 .2.3 ttttt =−=−          (3-7) 

 

 b) Broken nucleuses 

The broken nucleuses 
'N  are: )1.(. 0

.
000

' tt eNeNNNNN λλ −− −=−=−=   or  

 

)1.( .
0

' teNN λ−−=          (3-8) 

The drawing of the relations )(tNN =  (3-3) and  )('' tNN =  (3-8) is presented in 

Fig.4. 
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Fig.4. The )(tNN =   and  )('' tNN = drawing is presented 

 

c) Conversion rate 

The quotient
dt

dN
 is defined as conversion rate.  Consequently, the derivation of the 

relation (3-3) gives the conversion rate as following, 

 

NeN
dt

dN t
.)..(

.
0 λλ λ −=−= −

 

 

or     N
dt

dN
.λ−=      (3-9) 

 In  Fig.5 the conversion rate versus the time is presented graphically. 

 

Fig.5.  The conversion rate 
dt

dN
 versus the time t  is shown. 
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Observations-Comments:  

1.  The sub-doubling time remains constant, apart from the quantity of the unbroken 

radioactive nucleuses. 

2.  In accordance with the radioactively law (relation 3-3), when ∞=t  , the remaining 

unbroken nucleuses are nullified. 

3.  Τhe drawings of the remaining nucleuses 
teNN .

0 . λ−=  and the already broken ones 

)1( .
0

' teNN λ−−=  are symmetrical to the straight line
2

0N
=ψ  (Fig.3). 

 

3.  Cases-Models with no constant  λ  

In most cases the factor λ is not constant, but changeable by the time (quantities 

changeable by the time), sometimes in a small rate and other times in a big one. Let us 

consider the radioactively conversion again: two disputes of the results found from the 

previous solution can be placed here: i) the stability of the sub-life time 
2

1t , apart from 

the available number of the unbroken nucleuses N , and ii)  the total breaking off  all the 

available nucleuses. 

The physical perception obtained from the observation of related physical phenomena 

expects the sub-life time to decrease as the available unbroken nucleuses diminish, while 

the conversion proceedings have to stop leaving a small quantity of unbroken nucleuses. 

 

Nuclear breaking off with decreased factor λ  

Ι. Case 

Let us now consider that the factor λ   is not constant, but it has the following influence 

from the time, 

         

tµλλ −= 0       (4-1) 

 

where µ  is a constant measured in  
2sec−

. 

Repeating the formulation of the previous problem, where λ is considered as a constant, 

and, if at the moment t  the remaining unbroken nucleuses  are N , then, within the 

infinitesimal time dt , the change of the unbroken nucleuses dN  is given from the 

following relation, 

 

dtNdN ..λ−=    or      dtNtdN .).( µλ −−= 0    or                                                                      

                                   dtt
N

dN
).( µλ −−= 0          (4-2) 

The integration of the relation (4-2) gives the influence of time for the unbroken 

nucleuses evolution,  

 

2
0

2
0

tt

eNN
.

.

µ
λ +−

=       (4-3) 
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 The law's (4-3) study 

 

a) Semi-life time:  by putting 
2

1tt =   when
2

0N
N = , the equation  

02ln2.2.
2

10
2

2
1 =+− tt λµ   is obtained and its’ solution gives the semi-life time, 

µ

µλλ 2ln2
2
00

2
1

−−
=t             (4-4) 

If it is put that 
4

1tt =  when
4

0N
N =  , in the same way as above the sub-quadruplication 

time is obtained,  

µ

µλλ 2ln42
00

4
1

−−
=t              (4-5) 

From the last two relations (4-4) and (4-5) and by using the mathematical inducement 

method, it is easily proved that,  

2
1

4
1 .2 tt φ            (4-6) 

 

b) Broken nucleuses: The broken nucleuses 
'N  are calculated from the difference       

NNN −= 0
'

     or  

                       )1(

2
0 .

2
.

0
'

tt

eNN

µ
λ +−

−=                (4-7) 

The drawing of the relations )(tNN =  (4-3) and the )('' tNN =  (4-7) is presented in 

Fig 6. 

c) Conversion rate:   The conversion rate 
dt
dN  is defined from the derivative of the 

relation (4-3). This derivative of the time is, 

2
0 .

2
.

00 )..(
tt

etN
dt

dN
µ

λ
µλ

+−
+−=      or       Nt

dt

dN
)..( 0 µλ −−=      (4-8) 
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Fig.6. The )(tNN = (relation 4-3) and  )('' tNN = (relation 4-7) drawings are 

presented. 

 

 

d)  The relation (4-3) study 

  

   The derivative of the relation (4-3) gives the conversion rate, which is, 

 

2
0 .

2
.

00 )..(
tt

etN
dt

dN
µ

λ
µλ

+−
+−=  

If it is put that 0=
dt

dN
, when µ

λ0=t  , which is the duration time of the phenomenon,  

the relation (4-3) has an extremity value as well. The kind of the extremity value is found 

from the relation

µ
λ0

2

2

=











t
dt

Nd
, and its’ value from the relation )( 0

µ
λ

N .  

For the second derivative it is concluded that, 

tttt

ettNeN
dt

Nd 0
2

0
2

2
000

2
02

2

)..)(.(.
λ

µ
λ

µ

λµλµµ
−−

−−+=  or 

 

[ ] tt

etN
dt

Nd 0
2

22
002

2

.)(
λ

µ

λµµ
−

−+=                   (4-9) 

 

By setting  µ
λ0=t   the relation (4-9) gives,  
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[ ] µ
λ

λ
µ

λµ

λλµµ
λ

0
02

2
0 ..

22
000

0
2

2

.)()(
−

−+== eNt
dt

Nd
      and, finally,                                                                                      

0...)( 2
0

0
2

2
2
0

φµ
λ

µµ
λ −

== eNt
dt

Nd
                                   (4-10) 

 

It is resulted from the relation (4-10) that the remaining unbroken nucleuses N  have a 

minimum value, which is, 

µ
λ

µ
λ 2

0
0

2
0

.)(
−

== eNtN              (4-11) 

In Fig.7 the change by the time of the factor )(tλ ,the unbroken nucleuses )(tN   and the 

conversion rate
dt

dN
 is presented.  

e)  Comments: By considering the conversion factor λ not constant but changeable by the 

time, the following advantages arise from the solution of the problem: 

 

1.  The sub-doubling time 
2

1t  does not remain constant, but it increases as the unbroken 

nucleuses diminish.  

2.  The initially available nucleuses 0N  are not broken in total, but there is a remaining 

quantity
µ

λ
2

0

2
0

.
−

eN  . 

3.  The solution of the problem and its’ results are general and include the results of the 

solution with tcons tan=λ , if it is set on the solution, where 0=µ . 

4.  The suggested change of the factor λ  is linear, which results to the solution being 

relatively simple, although slightly more complicated from what it is considered to be 

tcons tan=λ . 

5.  In the problem the change factor µ appears, which is experimentally determinable.  
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Fig.7. The factor )(tλ , the unbroken nucleuses )(tN  and the conversion rate 
dt

dN
 

versus the time t  is shown. 
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ΙΙ. Case  

Now, let us consider that the constant λ  is influenced by the remaining unbroken 

nucleuses N  (and consequently, indirectly from the time t ), in accordance with the 

relation,  

Nµλλ += 0         (4-12) 

Then the differential equation is written as following: 

dtNNdN .).( 0 µλ +−=       or           dt
NN

dN
−=

+ ).( 0 µλ
 

 

Integrating the last one, it is obtained that, 

 

Cdt
NN

dN
+−=

+ ∫∫ ).( 0 µλ          (4-13) 

The above relation (4-13) has the solution: 

 

 

t

t
e

e

N
N

.0 0

0

.
)1(

. λ
λµ

−
−−+Ψ

Ψ
=          (4-14) 

where is,     

0

0
Ν=Ψ λ

 

 

 The  law's (4-14) study 

a)  sub-doubling time:   By setting into the (4-14) 
2

1tt =   when   
2

0N
N = , the next 

equation is obtained,  
2

10
2

10
.

.

.
)1(

2
t

t

e
e λ

λ
µ

Ψ
−+Ψ

=

−

 

the solution of which gives the sub-doubling time, 

00

00

02
1

2
ln

1

N

N
t

µλ
µλ

λ +

+
=           (4-15) 

If it is set that  
4

1tt =  when
4

0N
N =  , in the same way as above the following result is 

obtained again 

 

00

00

04
1

41

N

N
t

µλ
µλ

λ +

+
= ln           (4-16) 

 

From the last two relations (4-15) and (4-16) and by using the mathematical inducement 

method it is easily proved that, 
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2
1

4
1 .2 tt φ  

b)   Broken nucleuses: The broken nucleuses
'N  are found from the difference 

NNN −= 0
'

 or 

 

)
)1(

1(
.

0
' 0

0

t

t
e

e
NN

λ
λµ

−
−−+Ψ

Ψ
−=         (4-17) 

 

c) Conversion rate:  The conversion rate 
dt
dN  is calculated from the derivative of the 

relation (4-14). This derivative on the time is, 

[ ]
t

e
e

dt

dN
t

.

)1(

2
0

0
2

0

..
λ

µ

µ
λ

λ −

−−Ψ

+Ψ
−

−=    (4-18) 

 

d)   The study of the relation (4-14) .  The derivation on time of the relation (4-14) is the 

relation (4-18), which is not zero at any moment except the point ∞=t .  The Ν(t) does 

not have extreme values consequently.  

 

4.  Interpretation of the results-Conclusions 

In Sec.2, Fig.3 represents the plasma wave frequency and wave amplitude decrease by 

the gas pressure increase; with a first look these two changes have exponential form, 

since the scrutiny leads to two significant observations; firstly, the required change of the 

pressure amount for the sub-duplication is not constant, but it increases along with the 

pressure increase; secondly, the wave frequency and amplitude are not nullified, but 

remain a sufficient quantity until the plasma is put out. The above results mean that the 

‘extinguishing factor’ λ is not constant, but changeable in some way. The curves of Fig. 

3 are similar enough to those of  Fig.s  6, 7b. 

Although the mechanism of the wave rising is very complicated and in most cases 

impossible to understand, the difficulty is treated partially by following the thoughts 

below. 

Every wave existence is caused by two antagonism factors. The first one is the cause 

(motive) for which the wave rises and is expressed by the growth rate. In the low 

frequency waves for example, the drift waves are caused in different gradients of the 

plasma quantities (plasma density, plasma temperature, d.c. potential e.t.c.). The second 

antagonism factor involves the wave damping and expresses the different ''resistances'', 

which may interfere with the wave transmission, as the collisions between the plasma 

particles (collision frequency). 

The above mentioned two factors appear together into the imaginary part iω of the wave 

frequency ω  in the previous three examples. In the equations (2-1) and  

(2-3) it is expressed with a sum,  

 

2
1 i

D

R
si

U

U
Cs

ν
ω −−=                  (2-1) 
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=        (2-3) 

 

since in the relation (2-2) it is formed as  a product.  
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.
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Cuk
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ω

ω

ω
νω

−−
=               (2-2) 

 

The balance of the two factors secures the wave stability and the inclination from the 

equilibrium gives the growth or the damping, respectively. 

The problem rises as the calculated imaginary part of the wave frequency iω  is not 

constant but changeable on the time, at least during the wave establishment or 

extinguishing. The mutual-dependence of the plasma quantities which are involved in 

the iω , is impossible to find and express analytically, so the their modeling becomes 

necessary. 

In the present work such a modeling is set out with the ambition to be completed in the 

immediate future in a full list of models applicable on any actual experimental data. This 

approaching fitting between the model and the experimental data must be confirmed by 

using delay-time methods, as the wave establishment time is in most cases very limited. 

With the examples, which are included in the paper and have been taken from the other 

areas of the Physics (Nuclear Physics) the results are much more satisfactory and 

acceptable than those believed until now. 

In the end the conclusion is that; although the experimental confirmation of the present 

study's usefulness is feeble now, the effort for the models' development must continue 

and a list of those models must be composed. This means that the 'Demokritos' team 

haves to do theoretical future work on the same topic and experimental confirmation of 

the mathematic models. 

In any case, the experimental measurements are very difficult to be carried out; firstly, 

because of the very little time required for the establishment of the steady state of the 

plasma waves, and, secondly, due to the great amount of time required for a perceptible 

physical nuclear decay. 
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Appendix A 

Solution of the differential equation (3-2) 

The equation (3-2) is the simplest form of a differential equation with two changeable 

quantities ( tN , ), which can be divided into its’ two parts. So, the following is resulted, 

dt
N

dN
.λ−=            (A1) 
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The relation (A1) is integrated by parts in two ways: i) by defined integrals, if the 

changeable quantities’ limits are known, or ii) by indefinite integrals, adding the 

integration constant C . If the second method is prefered, the following is resulted, 

 

Cdt
N

dN
+−= ∫∫ .λ  

     

or               CtN +−= .ln λ              (A2) 

 

For the finding of the integration constant C , one values pair of the changeable 

quantities N and t  is enough to be known. One known pair of values in this problem is 

the original conditions, where, for 0=t , it is 0NN = . The replacement of the quantities 

t  and N on the equation (A2) with the above known values, gives the value of the 

constant as,  

 

0ln NC =     (A3) 

 

 By the substitution on the relation (A2), the following relation is resulted, 

                             

0ln.ln NtN +−= λ      or 

t
N

N
.ln

0

λ−=              (A4) 

And, finally, the known law of the radioactivity is obtained, 

 

teNN .
0 . λ−=   (A5) 

 

Appendix B 

Solution of the differential equation (4-13) 

By dividing the integral function of the first part of the (4-13) into smaller additives, two 

factors α and β are seeking for the following equality to be valid,  

NNNN .)..(

1

00 µλ
βα

µλ +
+=

+
         (B1) 

Finally, the two factors have the values,  
0

1
λα =  and

0λ
µβ −= , and the last 

relation is written,  

).(

1

)..(

1

0000 NNNN µλλ
µ

λµλ +
−=

+        (B2) 

 

With the substitution of the relation (B2) into the (B1) one, it is obtained that,  

Cdt
N

dN

N

dN

NN

dN
+−=

+
−=

+ ∫∫∫∫ .
..

1

)..( 0000 µλλ
µ

λµλ
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or                         ').ln(ln 00 CtNN +−=+− λµλ          (B3) 

 

The initial condition ( 0,0 NNt == ) determines the integration constant C΄ , which 

takes the value,           ).ln(ln' 000 NNC µλ +−=  

With substitution into the relation (B3) and by using suitable mathematical elaboration 

the following is obtained, 
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where is,     
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0
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Captions 

Fig.1  The plasma cavity with probes is presented in (a), whereas a photo of the 

experimental device is shown in (b).  
 
Fig.2.  The wave form is shown in (a), whereas the wave spectra are presented in (b) and 

(c)  for rf-drift and collisional  wave, respectively. 

 

 Fig.3. The wave frequency, and the wave amplitude by the gas pressure  increase, are 

presented in (a) and (b) curves, respectively. 

 

Figure 4. The )(tNN =   and  )('' tNN = drawing is presented 

Fig.5.  The conversion rate 
dt

dN
 versus the time t  is shown. 

Fig.6. The )(tNN = (relation 4-3)  and  )('' tNN = (relation 4-7) drawings are 

presented. 

Fig.7. The factor )(tλ , the unbroken nucleuses )(tN  and the conversion rate 
dt

dN
 

versus the time t  is shown. 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


