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Abstract: Within the framework of the two-point model the states of deformation and 
stress fields of a fractal quantum dot, the stochastic state of discrete lattice in a model 
multilayer nanosystem are investigated. This uses the theory of fractional calculus and 
the concept of fractal. Accounting for the effect of bifurcation of solutions of nonlinear 
equations leads to the appearance of four branches of the lattice nodes displacement 
function. The numerical modelling of the complex deformation field behaviour is 
fulfilled on a rectangular discrete lattice. It is shown that for inverse (with a negative 
fractal index) states of nonlinear fractal oscillator there is an interval of change of this 
index with anomalous behaviour of the deformation field: there is no effective 
attenuation within the interval. The possibility of appearance of different transition 
effects such as induction, avalanches, supernutation, echo in the model multilayer 
nanosystem with nonlinear fractal oscillator is shown. 
Keywords: fractal quantum dot, stochastic state of discrete lattice, deformation and 
stress fields, inverse states of fractal oscillator, model multilayer nanosystem. 
 

1. Introduction 
The actuality of fundamental research of individual quantum systems [1-9] is 
related to the possible use of them in quantum information technology [2-4]. As 
the information carrier (units, bits) the quanta of light – photons [1] are used. The 
recording and subsequent reading of quantum information (encoded in the 
polarization states of photons) are carried out on quantum states of single atoms 
or collective quantum states of the atomic ensemble. In the theoretical model 
description the main object is a qubit – two-level quantum system [5]. In the 
study of spontaneous parametric scattering, correlations and entanglement in 
quantum states of the system other model objects of types qutrit and ququarts 
[6] – the number of quantum systems with more than two levels – have been 
used. The quanta of vibrational excitations of the lattice – phonons, fractons [7] 
– can be used as another media. There are various mechanisms of relations and 
mutual transformations of some information carriers (photons) into others 
(phonons) in active nanostructured elements of quantum systems [8]. In [2] the 
behavior of the Fermi gas of ultracool atoms 

40
K, trapped in an optical trap is 

studied. The existence of Dirac points when changing the lattice anisotropy and 
minimum energy gap within the Brillouin zone is shown. In [3] the Dirac 
fermions and topological phase in molecular graphene are studied. Near singular 
points Dirac fermions in molecular graphene show quantum and statistical 
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features of behavior. In [9] the interaction of a single localized electron with 
Bose-Einstein condensate has been studied. It was shown that this electron can 
excite phonons and collective oscillations of all condensation. Individual 
quantum systems are also intensively studied on the base of organic 
semiconductors for the purpose of their application in quantum electronics, 
optics, spin information technology (spintronics). So, in [4] by the spin echo 
method the system of spin quantum qubits based on copper (CuPc – cupper 
phthalocyanine) in organic films is studied. Physical properties of the arising 
transient processes of a spin type induction, echo were studied. Physical 
properties of these quantum systems (nanosystems) are essentially nonlinear. 
The methods of nonlinear dynamics have been applied to the theoretical 
description of the chaos [10] in structural mechanics [11], the analysis of 
nonlinear chaotic models [12], rare attractors and nonlinear oscillators [13]. In 
[14] it is proposed to use fractal nanotraps to capture individual particles or 
groups of particles in order to study their physical properties. At the same time 
it becomes necessary to conduct experimental and theoretical study of the 
properties of fractal quasi-two-dimensional and volumetric structures in the 
model multilayer nanosystems. In [14-20], the models of fractal dislocation [15-
18] and fractal quasi-two-dimensional structures were considered as active 
elements in nanosystems [19]. In order to describe possible correlation effects 
and statistical properties of the deformation field of fractal dislocation a two-
point model was proposed [18]. At excess of critical parameter values there are 
possible effects of bifurcation [17] solutions – the appearance of several 
branches in the energy spectrum. From the analysis of the behavior of the 
correlation functions of the first and second order on the dimensionless time the 
possibility of transition effects such as induction, avalanches, self-induced 
transparency, echo, effects of supernutation and propagation of linear fractal 
dislocation is shown [8]. 
The aim of this article is to study the deformation fields (after the bifurcation of 

solutions) of the fractal quantum dot, stochastic discrete lattice state, transient 

processes in model multilayer nanosystem with nonlinear fractal oscillator. 

2. Nonlinear fractal oscillator in nanosystem 
At construction of model of fractal dislocation in the [14-20] the Hamilton 

operator 2Ĥ  from [15, 20] was used for the energy spectrum of fractal dislocation 

2 1 1 2 2 3 3
ˆ ˆ ˆ ˆH n n n      ; 1 1 1ˆ ˆ ˆn a a ;  2 2 2ˆ ˆ ˆn a a ;   3 3 33ˆ ˆ ˆn a a  ;  3 33 3ˆ ˆ ˆn a a .   (1) 

2 1 0 3
ˆˆ ˆH H b b  ;    1 2 1 2 3 3

ˆ ˆ ˆ ˆ( )H n n n    . 

Here 1 2 3ˆ ˆ ˆ, ,n n n
 are the operators of occupation  numbers of states of dislocation with non-

dimensional own energies 1 2 
, 3 . The relations between the new 1 2 3ˆ ˆ ˆ, ,a a a 

 and old 

1ˆ ˆ ˆ, ,c c 
 operators are defined by expressions 

1 11 1 21 31ˆˆ ˆ ˆa t t c t c    ; 2 12 1 22 32ˆˆ ˆ ˆa t t c t c    ;  3 23 33ˆ ˆ ˆa t c t c  ;  1ˆ zD  .   (2) 

In expressions (2) the elements ijt
 of the matrix T̂  are defined by the relations 

  11t k ;   12t k  ;   13 0t  ;   21 ( , )t k cn u k ;   22 ( , )t k cn u k ; 



Chaotic Modeling and Simulation (CMSIM)  1:  27-39, 2015 29 

 

23 ( , )t sn u k  ;   31 ( , )t k sn u k ;   32 ( , )t k sn u k ;   33 ( , )t cn u k .   (3) 

Here k  and ( , )u F k   are the module and the argument of the Jacobi 

elliptic functions ( , )sn u k , ( , )cn u k ; 2 2( ) 1k k   ; F  is an incomplete 

elliptic integral of the first kind;   is the polar angle. Using (2), we find the 

commutation relations for the new operators 

3 3 3 3 0 3
ˆˆ ˆ ˆ ˆ[ , ]a a n n b b

    ;  0 301 2b n  ;  2
30 ( , )n sn u k ; 

3 2
ˆ ˆ ˆ ˆˆ[ , ] (1 ) [ , ]zb z I c c
       ;  1

2ˆ zD   ;  1
2 1

ˆ ˆ ˆ[ , ] zb z I 
     ,   (4) 

where ẑ  is the coordinate operator. The structure of operators of fractional 

partial derivative (integral) of the Riemann-Liouville zD  ( zI ) on 

dimensionless coordinate z  with the index order   is defined as 

0
( ) | | / (1 )

z
z z z

D z d           ,   1

0
( ) | | / ( )

z
z z

I z d         ,   (5) 

where z  is the operator of ordinary partial derivative on z ;   is gamma function. 

Indices , 1   have the meaning of fractal dimensions along the axis Oz . Acting 

by the operator 2 2
2ˆˆ ˆ ˆˆ ˆ ˆ ˆ{ , }c c cc c c z        to the function c , we obtain 

the equation a fractal oscillator 
2 2 2 1 1

2ˆ ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ) (2 1)c z z c c c cz z D D cc c c n 
                   .   (6) 

Here ,c cn   are the eigenvalues (generally fractional values, may depend on z , 

 ), eigenfunctions of the fractal oscillator. Acting by the operator 3
ˆ

zD b
  on the 

left to the function c , we obtain the nonlinear equation 

3
ˆ ˆ ˆ[ , ] (1 )z c z c cD b D c c 
         .                        (7) 

To find the eigenvalues cn  and eigenfunctions c  the equations (6), (7) must be 

solved together. These equations are fundamental to describe the nonlinear fractional 

oscillator. Dimensionless displacement u  of points of fractal dislocation 

(deformation field) is connected with a parameter   (stress field) by model 

relations (Hooke's law) 0/ ( , )u F k    , 0u u u   , where 0  is the 

normalization parameter; 0u  is the constant (critical) displacement. 

In this two-point model [18] based on the Hamiltonian 2Ĥ  (1) the deformation 

fields of the stochastic discrete lattice state, the fractal quantum dot in a model 

sample of finite nanosize with volumetric discrete lattice 1 2 3N N N 
 is 

investigated. The deviations of the lattice nodes from the state of equilibrium in a 

separate plane 1 2N N  for two different points of 1( , )zz j j  and 2 ( , )zz j j
 are 

described by non-hermitian displacements operators
 1ˆ( )u z  and 2ˆ( )u z

, 

corresponding to the rectangular matrix with dimensions 1 2N N
, 3[1, ]j N . 
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The value of zj  plays the role of dimensionless current discrete time [8, 20]. 

The original rectangular matrix displacement 1ˆ( )u z  and 2ˆ( )u z  with elements 

1 1( ) ( )nm su z u z , 2 2( ) ( )nm su z u z  ( 1,2,3,4s  ) in volumetric lattice 

1 2 3 30 40 67N N N      were obtained by the method of iterations on an 

index m  for the four branches of the dimensionless complex displacement 

function by the formulas in [17, 20], respectively 

  1 1 2 4( ) ( ) ( ) / 2u z u z g g g    ;      2 1 2 4( ) ( ) ( ) / 2u z u z g g g    ; 

3 1 2 5( ) ( ) ( ) / 2u z u z g g g     ;   4 1 2 5( ) ( ) ( ) / 2u z u z g g g     .    (8) 

Functions 1 2 3 4 5, , , ,g g g g g  by analogy with [17, 20] are modeled by expressions 

2
1 0( , ) (1 )(1 2sn ( , )) /g u u u k Q     ;                                 (9) 

2 3 1/2
2( , ) 2 3 | | ( 1/ 3) ( 2 / 3) / ( 1/ 2)cg z z z                ;  (10) 

3 1/2 2
3( , ) 3 2| | ( 1/ 3) ( 2 / 3) /cg z z z           ; 

2 1/2
4 1 2 3[( ) ]g g g g   ;   2 1/2

5 1 2 3[( ) ]g g g g    ;            (11) 

The initial expression for Q  has the form 

2 2 2

0 0 0
0 1 2 3 1 2 3

c c c

n n m m j j
Q p p n p m p j b b b

n m j

         
              

     
.   (12) 

The expression (12) has thirteen parameters. The parameter 0p  is independent 

of the variables , ,n m j ; parameters 1 2 3, ,p p p    are included in the linear form; 

parameters 1b , 2b , 3b , 0n , cn , 0m , cm , 0j , cj  determine the behavior of 

the quadratic form. Parameters cn , cm , cj  play the role of semi-axes of fractal 

volumetric structures in a new coordinate system O n m j    . The original 

coordinate system Onmj  is described in terms of variables , ,n m j . 

Performing spatial axis rotation of the coordinate system around axis Oj , we 

move from the system Onmj  to the system O n m j     by the formulas 

1 1 1 1 1 1 1 1cn( , ) sn( , ) cn( , )n n k u k m u k j k u k         ; 

1 1 1 1 1 1 1 1sn( , ) cn( , ) sn( , )m n k u k m u k j k u k         ; 

1 1j n k j k      ; 1 1 1sn( , )k u k  ; 1 1 1cn( , )k u k   ; 
2 2
1 1 1k k  .   (13) 

Here the dimensionless displacement 1u   is connected with the polar angle 

1  in the plane Onm  by relation 1 1 1( , )u F k  ; F  is an incomplete 

elliptic integral of the first kind; the dimensionless displacement 1u   is 

connected with the effective angle 1  by relation 1 1 1( , )u F k  ; 1 1,k k   are 

modules of elliptic functions. The dimensionless displacement 1u   is a 
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nonlinear function of two parameters 1  and 1k , that define the different 

mechanisms of alteration of fractal volumetric structure and governing it. Here 

the parameter 1k  is a nonlinear function of 1u   and 1k  . As a result, the 

displacement 1u   becomes a complex function depending on three parameters 

1 , 1u  , 1k  .In the calculations it should be: 1 0.053 ( 33)z zz h j   ; 

2 6.653 ( 33)z zz h j   ; 0.1zh  , which corresponds to the forward and 

backward waves of displacements 1( )nmu z , 2( )nmu z ; 1,30n  ; 1,40m  . For 

0zj   we have 1 2 3.353z z  . 

Averaged functions sM  have the form [15, 16, 20] 

1ˆ ˆ( ) ( )s s s sM M j Sp u M iM         ;   1 2 1 2 1
ˆ ˆˆ /T
N N N N   .   (14) 

Here Sp  is an operation of calculating the trace of a square matrix; «T » 

denotes transposition; 1
ˆ
N , 2

ˆ
N  are row-vectors with elements equal to one; 

Re( )s sM M   , Im( )s sM M   . 

3. Stochastic state of the multilayer nanosystem 
For the investigation of transient processes in multilayer nanosistem with 

nonlinear fractal oscillator the initial parameters were as follows: 0.5k  ; 

0 29.537u  ; 0 14.3267n  ; 9.4793cn  ; 0 19.1471m  ; 14.7295cm  ; 

0 31.5279j  ; 11.8247cj  ; 1 0p  ; 2 0p  ;
 3 0p  . In modeling the 

stochastic state deformation field of volumetric lattice it was assumed: 

0 1.0123p  ; 1 2 3 0b b b   . For a negative fractal index 0.5    the behavior 

of four branches (8) of displacement function u  for forward and backward 

waves is given in Fig. 1, 2. These results were obtained for variant with 1 0u   ; 

1 0u   ; 1 0k   . From (14) it follows that the spatial rotation of the coordinate 

system is missing: n n  ; m m  ; j j  . It was also assumed that zj j , 

therefore, the displacement function ( ) ( ( , )) ( ( , ))zu z u z j j u z j j    

( ( , )) ( )u z j j w j   becomes a function on j . Note that the imaginary part of 

the displacement u  is zero for all four branches, which indicates the anomalous 

behavior of the inverse structural states (with negative indices 

( 2 / 3; 1/ 3)    ) of the deformation field. When 5j   for the forward wave 

(Fig. 1a,b,c) the behavior of displacement function for all branches is regular: 

along the axis Om  for branches 3, 4 oscillations are observed; for branches 1, 2 

the output on constant values with increasing m  is characteristic (Fig. 1c). For 

the backward wave (Fig. 1d,e,f) besides regular behavior of branches 1, 2, 3 the 
pronounced stochastic behavior of branch 4 is observed. Note that for backward 

wave parameter 2| |cz z  from the expression (10), (11) has a minimum for 

5j  , and the parameter 1| |cz z  changes monotonically on j . Behavior 

projection displacement u  as functions of m  for various j  of the backward 
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wave (Fig. 2) clearly demonstrates the presence and features of transient 
processes (such as of structural alteration) in the model multilayer nanosystem. 

When 0zj j j    (Fig. 2a) the displacement function for all branches of the 

backward and forward waves coincide. With increasing j  the behavior of 

branches for the forward and backward waves begins to differ (Fig. 1). 

 

   

a) b) c) 

   

d) e) f) 
 

Fig. 1. Dependencies of the displacement function u  and projections on planes nOu , 

mOu  for forward (a, b, c) and backward (d, e, f) waves on the lattice indexes n , m : 

1 – branch 1u , 2 – branch 2u , 3 – branch 3u , 4 – branch 4u ; 5j  , 0.5   . 

 

   

a) 0j   b) 44j   c) 45j   

   

d) 51j   e) 52j   f) 67j   
 

Fig. 2. Dependencies of the projections on plane mOu  function u  on m  for different j : 1 

– branch 1u , 2 – branch 2u , 3 – branch 3u , 4 – branch 4u ; 0.5   , backward wave. 



Chaotic Modeling and Simulation (CMSIM)  1:  27-39, 2015 33 

 

For backward wave the change of order of the branches is сharacteristic: for 

44j   (Fig. 2b) branch 2 is located above  branch 4 and for 45j   (Fig. 2c) 

branch 2 becomes below branch 4; for 51j   (Fig. 2d) branch 1 is located 

below branch 3 and for 52j   (Fig. 2e) branch 1 becomes above branch 3. 

This behavior is confirmed by the intersection of the dependence of the average 

functions M  for backward wave (Fig. 3b). For forward wave the crossing 

effect and the changing of location order branches of the displacement function 

for values 33j  , 34j   and 41j  , 42j   are confirmed by the 

dependencies of the average functions M  (Fig. 3a). 

 

   
a) b) c) 

 

Fig. 3. Dependencies of functions M  on j  for four branches of displacement function u  

for forward (a) and backward (b) waves: curves 1, 2 (thick lines) - 1M , 2M ; curves 3, 4 

(thin lines) - 3M , 4M , respectively, 0.5   . Effect of rotation, backward wave (c). 

 

On the dependencies of the average functions 1M , 2M  for forward and 

backward waves (Fig. 3a,b) there are features such as "inclined steps" that is 

characteristic of the hysteresis phenomena. For backward wave on the curves 

1M , 2M , (Fig. 3b) for 5j 
 

the local minimum, maximum are also 

observed, respectively, which is typical for the type of behavior of the soft mode 

[20]. By choosing the parameters 1 / 8u   , 1 1k   , 1 0u    the rotation of 

the coordinate system is carried out. The influence of this rotation on the 

behavior of the averaged functions ( )M j  for backward wave is given in 

Fig. 3c. Effects of shifting and broadening of the main features in comparison 

with Fig. 3b are observed. For values of the fractal index ( 1; 2 / 3)     and 

( 1/ 3;1)    all branches are characterized by the presence of both real and 

imaginary parts of the displacement function. For backward wave for 0.5   

the dependencies of the average complex functions are shown in Fig. 4. These 

results were obtained for the variant with parameters 1 0u   ; 1 0u   ; 1 0k    

(excluding the effect of rotation). For all branches the presence of their critical 

value kj j  is characteristic. Within the regions of changes [1; ]kj j  the 

behavior of functions is stochastic. On the dependencies sM , sM  of the 

dimensionless time zj j j   transient processes with the formation of complex 
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shapes signals are observed, which allow the interpretation of the type of fractal 

induction, nutation, supernutation, echo, avalanches, self-induced transparency [7]. 

 

 

  
a) [ 3;4]M    b) 

  
c) d) 

 

Fig. 4. Dependencies of M  on j  for four branches of u : a) 1 [ 3;5]M   ; b) 2M ; c) 3M ; 

d) 4M . Curve 1 (thick lines) - sM , curve 2 (thin lines) - sM ; 0.5  , backward wave. 

 
When kj j  the behavior of functions ( )sM j , ( )sM j  is almost regular with 

monotonic changes in the laws, close to power dependences. Note that the 

strongest changes of the averaged functions ( )sM j , ( )sM j  are observed 

near 5j  . At the same value j  for inverse states with 0.5    (Fig. 3) the 

behavior of the soft mode type is observed [20]. 

 

4. Quantum dot in multilayer nanosystem 

For quantum dot the basic parameters were as follows:
11

0 3.457 10p     ; 

1 2 3 1b b b   . Other parameters were the same as for the stochastic state. The 

choice of parameters corresponds to the location of the singular points of the 

deformation field on the fractal imaginary ellipsoid. First, we consider the state 

of a quantum dot with a fractal negative index 0.5   . On Fig. 5 there is an 

example of the behavior of the averaged functions M  for the four branches (8) 

of forward (Fig. 5a) and backward (Fig. 5b) waves. These results have been 

obtained for the variant with 
 1 0u   ; 1 0u   ; 1 0k   . On the dependencies 

3( )M j , 4 ( )M j  of the forward and backward waves (Fig. 5a,b) such features as 
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"blurry steps" are observed compared with features such as "inclined steps" on the 

curves 1( )M j , 2 ( )M j  from Fig. 3a,b. On the dependencies 1( )M j , 2 ( )M j  

(Fig. 5a,b) peak up, peak down for 31j   appear, respectively. For backward wave 

for 5j 
 
at all four branches (Fig. 5b) local minima, maxima are additionally 

observed, which is typical for the behavior of the soft mode type [20]. 
 

   
a) b) c) 

 

Fig. 5. Dependencies of M  on j  for four branches of u  for forward (a) and backward (b) 

waves, 0.5   : curves 1, 2 (thick lines) - 1M , 2M ; curves 3, 4 (thin lines) - 3M , 

4M ; effect of rotation for backward wave (c). 

 

Between branches 1 and 3, 4 and 2 there is crossing of branches (Fig. 5a,b). By 

choosing the parameters 1 / 8u   , 1 1k   , 1 0u    the rotation of the 

coordinate system is carried out. The influence of this rotation on the behavior 

of the averaged functions ( )M j  for backward wave is given in Fig. 5c. The 

effects of shifting and broadening of the main features in comparison with 

Fig. 5b are observed. Below the behavior of the four branches (8) of 

displacement function u  of forward wave for the characteristic values 31j   

(Fig. 6) and 42j   (Fig. 7) is given. The imaginary part of the displacement 

function u  for all branches is zero. For branch 1 (Fig. 6a) the presence of peak 

up localized near node 0 0( , )n m  with a large amplitude and stochastic behavior 

in the quantum dot region (Fig. 6b) is characteristic. For branch 2 (Fig. 6c) a 

peak down is observed, which is also localized near the node 0 0( , )n m  with 

other amplitude and stochastic behavior in the quantum dot region. For branch 3 

(Fig. 6d) almost regular behavior with small positive amplitudes and minimum 
near the node 0 0( , )n m  is observed. For branch 4 (Fig. 6e) almost regular 

behavior with small negative amplitudes and maximum near the node
 0 0( , )n m  

is observed. On Fig. 6f the section [ 2;2]u   of all four branches together is 

given: branches 1 and 3 generally have positive values, 2 and 4 – negative. 

There is the crossing of the four branches of the displacement function at 

separate points. Between the branches of the displacement function gaps are 

observed. With an increase of j  the behavior of all four branches of the 

displacement function changes (Fig. 7). This is due to the change ( )Q j  (13) and 
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the parameter | ( ) |cz j z  from expressions (10), (11) for four branches of the 

displacement function (8). The changes in the values of gaps between the 

branches of displacement function are also observed. Note that the behavior of 

the four branches of the displacement function, the gaps between the branches, 

the location of the singular points are qualitatively similar to the behavior of the 

physical parameters close to the Dirac points [2, 3]. It is also possible to have 

the physical interpretation of the displacement function as a function of the 

dimensionless wave number ( ) /z c cq z z z  . 

 
 

 
 

 
a) 1u u  b) 1 [0;2]u   c) 2u u  

   

d) 3u u  e) 4u u  f) [ 2;2]u   
 

Fig. 6. Dependencies of u  on the lattice indexes n , m  for forward wave: (a) 1 – branch 

1u , (b) cut 1 [0;2]u   (top view), (c) 2 – branch
 2u , (d) 3 – branch 3u , (e) 4 – 

branch 4u , (f) dependences of the four branches; 31j  , 0.5   . 

 
 

  

 

 
a) b) c) 

 

Fig. 7. Dependencies of u  (a), the projections on planes nOu  (b) and mOu  (c) on the 

lattice indexes n , m  for forward wave: 1 – branch 1u , 2 – branch 2u , 3 – branch 3u , 

4 – branch 4u ; 42j  , 0.5   . 
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When 0.5   the displacement function u  is complex. Each of the functions sM , 

sM  (Fig. 8) has the characteristic range of values 0 0( ; )ks ksj j j j j   , within the 

behavior of these functions are very different. Here ksj  is some critical value. 

 

 

  
a) b) 

  
c) d) 

Fig. 8. Dependencies of M  on j  for four branches of u : a) 1M ; b) 2M ; c) 3M ; d) 

4M . Curve 1 (thick lines) - sM , curve 2 (thin lines) - sM ; 0.5  , forward wave. 
 

So functions 1M , 2M , 3M  within specific intervals have pronounced stochastic 

behavior, and the behavior of functions 1M , 3M , 4M , 4M  is almost regular. 

Function 2M  describes the formation of a signal with a complex shape. On dependencies 

2M , 3M , 2M  near the value 0j  pronounced peaks are observed. The behavior of the 

functions (Fig. 8) demonstrates the possibility of the appearance of various transient processes 

in a model multilayer nanosystem with quantum dot. The analysis of these dependencies 

allows us to estimate the critical values ksj , that are associated with the dimensionless 

relaxation times of each of the branches su  of the complex displacement function u . 

Outside characteristic intervals all functions practically change monotonous by its laws. 

 

5. Conclusions 
The behavior of the four branches of the complex displacement function on the 

dimensionless time for the stochastic state and the fractal quantum dot in model 

multilayer nanosystem is investigated. The appearance of four branches is 

connected with the bifurcation effect of solutions of nonlinear equations system 

for multilayer nanosystem with fractal oscillator. For values of the fractal index 

( 1; 2 / 3)     and ( 1/ 3;1)    all branches are characterized by the presence 
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of both real and imaginary parts of the displacement function. It is shown that 

changing the dimensionless time may cause transient effects such as fractal 

induction, nutation, supernutation, echo, avalanches, self-induced transparency. 

Within the range of variation of the fractal index ( 2 / 3; 1/ 3)     the 

imaginary part of displacement function is zero for all four branches, which 

indicates the anomalous behavior of the inverse structural states. The analysis of 

the behavior of the averaged functions and displacement functions allows to 

reveal features such as soft mode, "inclined steps", the presence of hysteresis, 

gaps between the branches of displacement function, the presence type of 

singular Dirac points. By increasing the dimensionless time the change of the 

structure of the displacement field of each of the four branches, the change of 

the gaps between the branches, the crossing of the branches in selected areas 

(transient processes type of structural alteration) take place. 
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