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Abstract. A deterministic epidemic model for the spread of gonorrhea is investigated in 

discrete-time by taking into account the interval between successive clinical cases. It is 

shown that the discrete-time dynamical system exhibits far more complex dynamics than 
its continuous analogues. Stability analysis is obtained in order to investigate the local 

stability properties of the fixed points; it is verified that there are phenomena of Fold and 

Flip bifurcations. Numerical simulation tools are used in order to illustrate the stability 

analysis results and find some new qualitative dynamics. We come across the 
phenomenon of “intermittency route to chaos”. The density of infected individuals goes 

through quasi-periodicity and a strange attractor appears in the system. Chaos control is 

obtained in order to see how the male latex condom use during sexual intercourse affects 

the incidence of gonorrhea. It is shown that male latex condom use stabilizes the chaotic 
vibrations of the system to a point where the number of infected individuals remains 

stable and is significantly small or zero, leading to the control of disease. 
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1  Introduction 
 

Gonorrhea is one of the oldest known human infections. The organism Neisseria 

gonorrhoeae was first described by Neisser in 1879 and cultivated in 1982 [25]. 

Neisseria gonorrhoeae causes an estimated 62 million cases of gonorrhea 

worldwide each year [16]. Furthermore, the financial impact of gonorrhea is 

high. Only the direct medical cost for gonorrhea treatment in the Unites States is 

estimated at $1,051,000,000 annually [9]. Infections due to Neisseria 

gonorrhoeae are a major cause of pelvic inflammatory disease (PID) in the 

United States. PID can lead to serious outcomes in women such as tubal 

infertility, ectopic pregnancy, and chronic pelvic pain. In men gonorrhea can 

cause a painful condition called epididymitis in the tubes attached to the 

testicles [7]. Further, if left untreated, gonorrhea can also spread to the blood 

and cause disseminated gonococcal infection (DGI), a condition that can be life 

threatening. Moreover, the organism Neisseria gonorrhoeae has the ability to 

develop resistance against all clinically useful antibiotics. William Smith [31] 

suggests that we are on the verge of a highly untreatable gonorrhea epidemic. 
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Although gonorrhea was easily cured with antibiotics years ago, however 

bacteria develop resistance to treatments. Furthermore, the World Health 

Organization recently put out an alert with regards to the reported cases of 

resistance to cephalosporin antibiotics - the last treatment option against 

gonorrhea - in several countries including Australia, France, Japan, Norway, 

Sweden and the United Kingdom [40]. According to Dr. Manjula Lusti-

Narasimhan from the Department of Reproductive Health and Research at 

WHO, gonorrhea is becoming a major public health challenge due to the high 

incidence of infections accompanied by dwindling treatment options. And after 

the failure from this last effective treatment, as there are no new therapeutic 

drugs in development, if gonococcal infections become untreatable the health 

implications will be significant. Mathematical models have been widely used 

from epidemiologists over the years to predict epidemics of infectious diseases. 

Hethcote and Yorke [20] monograph is an excellent work in the context of 

gonorrhea transmission dynamics and control. They used nonlinear differential 

equations to model the transmission dynamics of gonorrhea in a heterosexually-

active population with two distinct levels of sexual activity. Continuous-time 

epidemic models have been widely used over the years in the investigation of 

the transmission of infectious diseases due to their mathematical tractability 

([5], [22], [26]). However, discrete-time models are often directly applicable to 

time-series data and may represent contacts, which are restricted to a specific 

time or time period more accurately [4]. Therefore, it may be easier to compare 

the output of discrete-time models with statistical real-world data. Several works 

have based their models on difference equations in order to investigate the 

gonorrhea transmission dynamics ([13], [23]). However, discrete-time SIS 

epidemic models sometimes are capable of generating complex dynamics such 

as period-doubling and chaotic behavior, in contrast with continuous-time 

epidemic models. In this paper we study a discrete-time version of Hethcote and 

Yorke [20] gonorrhea model using discrete time steps, based on the duration of 

the serial interval of gonorrhea infection. 

 

2  Basic Gonorrhea Model Description 
 

Hethcote and Yorke [20] studied a continuous-time dynamical system for the 

spread of gonorrhea. They divided population into two groups, females at risk 

(Nf) and males at risk (Nm); and each group into two subgroups, susceptible 

females (N f S f ) & infective females (N f I f ) and susceptible males (N m S m ) & 

infective males (N m I m ). They modeled the dynamics of the spread of gonorrhea 

by the 4-dimensional system: 

 

    

(1) 

where, the sexually active population Nf and Nm is constant and equals the 

number of susceptible plus the number of infective individuals (Nf = Sf + If and  

Nm = Sm + Im); λf and λm indicate the transmission rate of infection of susceptible 
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females and males respectively; df and dm indicate the average duration of 

infection for females and males respectively. Since the population is constant, 

the system (1) reduces to the 2-dimensional dynamical system: 
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where, Sf = 1 – I f  and Sm = 1 – I m  since the total population size remains 

constant and r = Nf / Nm. The limiting system (2) has two equilibrium points, a 

trivial and a non-trivial. If the nontrivial equilibrium point exists, it is 

asymptotically stable and gonorrhea dies out. If the nontrivial equilibrium point 

does not exist, then the trivial equilibrium point is asymptotically stable and 

gonorrhea remains endemic. 
 

3  Discrete Gonorrhea Model 
 

According to Ramani et al. [28], discretizing an epidemic model has the 

following advantages: (a) the epidemic statistics are collected from given time 

intervals, not continuously, (b) the discrete-time models provide natural 

simulators for the continuous-time models, (c) with discrete-time models one 

can use the entire arsenal of methods that have been developed for the study of 

mappings and lattice equations, either from integrability and/or chaos points of 

view. There are several ways to discretize a continuous-time model. However, 

the approach of discretizing the differential equations of a dynamical system has 

the advantage that can keep track of the known properties of the continuous time 

system [19]. 

Thus, in order to discretize Hethcote and Yorke model, we replace dI f  / dt and 

dI m  / dt by the difference quotients (I
f
n + 1  –  I

f
n ) / δ and (I

m
n + 1  –  I

m
n) / δ in 

the dynamical system (2). Time is measured in “generations”. We obtain a 

deterministic discrete gonorrhea model defined by the 2-dimensional map: 
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(3) 

where, δ is the length of each discrete-time step, where the number of infective 

individuals grow by the addition of the newly infective individuals; I
f
n , I

m
n  is 

the number of infective females and males in one time step respectively; I
f
n + 1 , 

I
m

n + 1  is the number of infective females and males at the next time step 

respectively; the infection rates of susceptible males and females (λf, λm) indicate 

the average number of individuals with whom an infectious individual makes 

adequate contact
1
 during a unit time interval [3]. The map (3) has two fixed 

points, which are identical to the equilibrium points of the analogous continuous 

model (2), a disease-free equilibrium E1 and an endemic equilibrium E2: 

                                                 
1 Adequate contact is a direct or indirect contact that is sufficient for transmission of 

infection, if the individual contacted is susceptible. The concept of a sufficient contact is 

necessary since transmission of infection sometimes does not occur during sexual 
intercourse between an infective and a susceptible [20]. 
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In order to study
2
 the local behavior around each of the two fixed points, we 

calculate the Jacobian matrix at E1, E2. If λ1, λ2 are the eigenvalues of the 

Jacobian matrix at each fixed point, then the fixed point is stable, if |λ1| < 1 and 

|λ2| < 1. By using Vieta’s equations: λ1 + λ2 = Tr(J), λ1 ∙ λ2 = Det(J) (i.e. TR(J) 

and Det(J) are the trace and the determinant of the Jacobian matrix) and 

applying Jury’s conditions [21], the fixed point is linearly asymptotically stable 

if and only if: 

-TrJ(I
*

f, I
*
m)<1+DetJ(I

*
f, I

*
m), TrJ(I

*
f, I

*
m)<1+DetJ(I

*
f, I

*
m) and DetJ(I

*
f, I

*
m)<1  

 

5  Numerical Simulations for the Discrete-Time Model 
 

A series of numerical simulations
3
 (using the numerical simulation tools: 

parametric basins of attraction, bifurcation diagrams, phase plots and 

Lyapunov exponent diagrams) are introduced in order to illustrate the results of 

the analytical stability analysis and to find some new qualitative dynamics of the 

discrete-time model (3) as the parameters are varied. The rates of infection λm 

and λf should be different, because transmission efficiency is gender dependent. 

The average probability of transmission of gonococcal infection during a single 

sexual exposure (a) from an infectious woman to a susceptible man in estimated 

to be about 0.2 – 0.3, while (b) from an infectious man to a susceptible woman 

is about 0.5 – 0.7 [37]. Hence, we use the following values for the rate of 

infection parameters: λf = 0.6 and λm = 0.25. However, the probability of 

transmission of gonococcal infection is increased for individuals, who have ever 

had gonorrhea or other STI, for individuals who are street-involved youth and 

for individuals having sex with many partners, with sex workers, or with a 

partner coming from a country where gonorrhea is frequent [17]. The average 

durations of infection dm and df have also to be different, because (a) 90% of all 

the men who have had gonococcal infection notice symptoms within a few days 

after exposure and promptly seek medical treatment, while (b) up to 75% of 

women with gonorrhea fail to have symptoms and remain untreated for some 

time [27]. In particular, when symptoms occur in men, they usually occur 3-5 

days after sexual contact with an infected individual; while women, who 

develop symptoms, usually experience them within 10 days of sexual contact 

with an infected individual [38]. So we fix the average duration of infection for 

females and males at df = 10 and dm = 3 respectively. 
 

                                                 
2 The results of the stability analysis have been exhibited by using the software package 

wxMaxima 12.04.0 (http://maxima.sourceforge.net/). 
3 Numerical simulations have been exhibited by using the software E&F Chaos 1.02 [12]. 

http://maxima.sourceforge.net/
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Fig. 1. Time course of a single gonorrhea infection; Individual A becomes 

infected, transmits the infection to individual B and receives treatment. 

 

Gonorrhea affects males and females almost equally
4
. So we assume that the 

number of males and females at risk (N m , N f) is equal with ratio r = 1. We also 

assume that the initial number of infective individuals is the same both for males 

and females. Therefore, we use for initial conditions the values (I
f
0 , I

m
0) = (0.5, 

0.5). Finally, in order to accurately describe the gonorrhea transmission 

dynamics, the size of the discrete time step should match the epidemiology of 

the disease [34]; that is, whether the dynamic of infection is a matter of days or 

hours. Thus, we assume that the discrete time step δ corresponds to the 

generation time of gonorrhea, that is, the time from the moment one person 

becomes infected until that person infects another person [29]. This time 

interval is well-known as the serial interval (Figure 1), that is, the time period 

between successive clinical cases [14]. In other words, this is the average time 

between the observation of symptoms of gonorrhea in one person and the 

observation of symptoms in another person that has been infected from the first. 

The serial interval is important in the interpretation of infectious disease 

surveillance and trend data, in the identification of outbreaks and in the 

optimization of quarantine and contact tracing [14]. Furthermore, the symptoms 

of gonorrhea usually appear two to five days after infection (i.e. incubation 

period) [25]. Thus, since an infected individual remains infectious until he/she 

receives treatment, we assume that infections occur during the infectious period 

(Figure 1). Moreover, although a range of values for the serial interval is 

possible, the average serial interval can be estimated as: (average incubation 

period) + (half the average infectious period), assuming that the maximum 

infectiousness occurs at the middle of the infectious period [30]. So the serial 

interval could be estimated by the incubation period. Therefore we define the 

length of the discrete time step between infection and subsequent transmission 

as 2 < δ < 5 days. Using these values for our parameters, we observe that the 

dynamics of the basic model (2) alters significantly in discrete time for time 

interval length between successive clinical cases (2 < δ < 4) days, as the rate of 

infection of susceptible females increases (Figure 2).  

                                                 
4 Global estimated incidence of gonorrhea, occurred in 1999, is 62.35 million infected 
people annually. Particularly gonorrhea affected 33.65 women and 28.70 men [39]. 
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Fig. 2. The basins of attraction diagram for δ ϵ [2, 4] and λ f  ϵ [0, 2.25]. 

 

For small values of the infection rate parameter (0 < λf < 0.4), the solutions 

converge either to a disease-free fixed point or to an endemic fixed point (light-

blue area) for every value of time interval between clinical cases. For average 

values of the infection rate parameter (0.4 < λf < 1.46), as λf increases, the light-

blue area is being replaced with the dark-blue area and the solutions converge to 

an attracting cycle of period 2. Moreover, for specific step size values (2.25 < δ 

< 3), further increase in the infection rate parameter λf  gives rise to non-periodic 

behavior (white area). For large values of the infection rate parameter (λf > 1.85) 

as the value of λf increases, any periodic and non-periodic behavior is being 

replaced with divergence to infinity (black area). This abrupt behavior is not 

meaningful, but it could be taken as some kind of catastrophe causing the 

extinction of the infected population. Thus, for sufficiently low infection rate of 

susceptible females, the behavior of solutions of the discrete-time model is 

qualitatively the same with the basic model. However, as the infection rate 

increases, the discrete-time model exhibits the same behavior as the continuous-

time model only for certain short time interval between successive clinical cases 

of gonorrhea (δ < 2.25). 

Fixing the time period between clinical cases at δ = 2.65 (2 < δ < 4 days) and let 

the rate of infection of susceptible females parameter increasing in the interval λf 

ϵ [0, 1.59], we observe bifurcations occurring in the system (Figure 3). 

The value λf ≈ 0.1333 is a bifurcation point at which a “fold” bifurcation occurs: 

For exceptionally small values of the varying parameter (λf < 0.1333), the 

disease-free fixed point E1: (0, 0) is locally asymptotically stable (stable node) 

and the endemic (negative) fixed point E2: (I
*

f ,  I
*

m) is unstable (saddle). Some 

solutions converge to the attracting disease-free fixed point; there are no 

infective individuals and gonorrhea dies out. Hence, the initial infective 

population sizes (I
f
0 , I

m
0 ) = (0.5, 0.5) lead to the extinction of the disease due to 

the low probability of infection. Near the value λf ≈ 0.1333 both fixed points E1: 

(0, 0) and E2: (– 0.0001, – 0.0001) undergo a “fold” bifurcation and become 

non-hyperbolic with eigenvalues of the Jacobian matrix (λ1 = – 0.1483, λ2 = 

0.9999 ≈ +1) and (λ1 = – 0.1483, λ2 = 1.0001 ≈ +1) respectively. Hence, for this 

critical value, the system has only one non-hyperbolic fixed point Ε1 ≈ Ε2: (0, 

0). For 0.1333 < λf < 1.1035, the system has again two fixed points, the trivial 
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and a non-trivial positive fixed point. The fixed points have exchanged their 

stability. The disease-free fixed point E1 is now unstable (saddle), while the 

endemic fixed point E2 is locally asymptotically stable (stable node). The initial 

infective population sizes (I
f
0 , I

m
0 ) = (0.5, 0.5) converge to the attracting 

endemic fixed point, where both infected males and females are fixed in time. 

Moreover, the number of infective females is larger than the number of infective 

males (I
*

f > I
*
m) likely due to the fact that the infection rate of females is larger 

than the infection rate of males (λf > λm) and the duration of infection is larger in 

females than in males (df > dm). As the parameter λf increases in this interval, the 

number of infective individuals (I
*

f, I
*

m) increases continuously and gonorrhea 

remains endemic. Near the value λf ≈ 1.1035 the saddle disease-free fixed point 

E1: (0,0) becomes non-hyperbolic (λ1 = – 0.9999, λ2 = 1.8516) and for λf > 

1.1035 is an unstable node. The value λf ≈ 1.2961 is a bifurcation point at which 

a “flip” bifurcation occurs: At λf ≈ 1.2961 the endemic fixed point E2: (0.8329, 

0.3845) undergoes a “Flip bifurcation” and becomes non-hyperbolic with 

eigenvalues of the Jacobian matrix (λ1 = – 0.9999 ≈ –1, λ2 = – 0.0207). For 

1.2961 < λf < 1.59 the endemic fixed point E2 becomes unstable (saddle) and a 

stable cycle of period 2 appears in the system. Both infective males and females, 

now, converge to different 2-period cycles, while both periodic cycles become 

wider, as the parameter increases at this particular interval. 
 

 
Fig. 3. The bifurcation diagrams (λf, I

*
f) and (λf, I

*
m ) for δ = 2.65 as λf increases 

in the interval λf ϵ [0, 1.59]. 

 

For higher values of the rate of infection of susceptible females λf ϵ [1.59, 1.72], 

we come across the phenomenon of “intermittency route to chaos”, which 

according to Manneville and Pomeau [24], is characterized by regular (laminar) 

phases alternating with irregular bursts. In particular, as the varying parameter 

increases, the endemic fixed point remains unstable (saddle), while periodic 

behavior of high periods, cascades of period-doubling bifurcations and 

deterministic chaos appear eventually in both infected males and females 

(Figure 4). For 1.59 < λf < 1.6402 the Lyapunov exponents vary among negative 

and exceptionally small positive values λi
+
 < 0.001 and the behavior of solutions 

appears to be slightly chaotic. For 1.6402 < λf < 1.6544 the map exhibits the 

familiar infinite sequence of period-doubling bifurcations (32 ∙ 2
n
): (32-period 

cycle, 64-period cycle, 128-period cycle, etc.) followed by chaotic oscillations, 

where the Lyapunov exponents take higher positive values λi
+
 < 0.05. At λf ≈ 

1.6544 a second series of period-doubling bifurcations (10 ∙ 2
n
): (10-period 
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cycle, 20-period cycle, 40-period cycle, etc.) route to chaos once again, while 

the Lyapunov exponents at this parameter interval (1.6544 < λf < 1.6763) vary 

among larger positive values λi
+
 < 0.1. At λf ≈ 1.6763 another series of period-

doubling bifurcations (12 ∙ 2
n
): (12-period cycle, 24-period cycle, 48-period 

cycle, etc.) lead to even more chaotic behavior, where the oscillations in the 

density of infected individuals can be hard to predict. The Lyapunov exponents 

take even larger positive values and reach the maximum value λmax ≈ 0.1849 for 

the parameter value λf ≈ 1.7172 for which the variations in the number of 

gonorrhea cases are the less predictable (fully developed chaos). At this point, 

the exceptionally high infection rate of susceptible females leads the number of 

infected individuals sometimes close to extinction and other times close to 

overgrowth (i.e. gonorrhea outbreaks). 
 

   

Fig. 4. The bifurcation diagrams (λf, I
*

f), (λf, I
*
m) and the Lyapunov exponent 

diagram (λf, λ) as λf increases in the interval λf ϵ [1.59, 1.72] for δ = 2.65. 
 

Furthermore, as the rate of infection of susceptible females increases in the 

interval λf ϵ [1.59, 1.72] for the same time interval between clinical cases  

(δ = 2.65), the system goes through quasi-periodicity and a strange attractor 

appears in the system (Figure 5). The stable period-2 orbit (Figure 5.a) near the 

value λf ≈ 1.59 loses stability via a supercritical Neimark-Sacker bifurcation, 

giving rise to two attracting closed invariant curves. At this point the number of 

infected males and females oscillates between all the states of the two invariant 

curves. The invariant curves grow in size (i.e. the amplitudes of oscillations in 

the number of infected individuals are increasing), interact with the saddle non-

trivial fixed point (I
*

f, I
*

m) ≈ (0.86, 0.39) and near the value λf ≈ 1.6375 become 

noticeably kinked (Figure 5.b). The kinked curves have a split, lock into a stable 

periodic orbit due to the first sequence of period-doubling occurring in the 

system (32 ∙ 2
n
) and reappear slightly deformed (Figure 5.c). They have another 

split, due to the second series of period-doubling (10 ∙ 2
n
), which gives rise to a 

motion of period-10 (Figure 5.d). The motion of period-10 forms into two 

weakly chaotic contiguous bands (Figure 5.e), while successive enlargements of 

the attractor can show its fine structure, which looks identical in all scales (i.e. 

self-similarity). The chaotic contiguous bands become more and more 

complicated, merging to form a strange attractor (Figure 5.f) for a value of the 

varying parameter (λf ≈ 1.717) in the chaotic domain (Figure 4). For higher 

values of the infection rate parameter, the successive iterates diverge to infinity 
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(i.e. both infected males and females become extinct through some kind of 

catastrophe) and the attractor disappears. 
 

(a)  (b)  

(c)  (d)  

(e)   (f)  

Fig. 5. The phase plot (If, Im) for δ = 2.65 as λf increases in the interval  

λf ϵ [1.59, 1.72]. 
 

So, we observe that the behavior of the discrete-time gonorrhea model (3) 

differs significantly from its continuous counterpart (2). Particularly, a time 

period 2 < δ < 4 days between successive clinical cases of gonorrhea and a 

sufficiently large infection rate of susceptible females allow for infinite 

sequences of period-doubling and chaotic behavior in the density of infected 

individuals. 
 

6  Chaos Control 
 

Chaos may be undesirable, as the chaotic oscillations in the density of infected 

individuals can make the disease uncontrollable and, consequently, harmful to 

the people’s health throughout the world. Therefore, the number of infected 

individuals needs to be under control. A method of controlling chaos has been 
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proposed by Güémez and Matias [18], known as the G.M. algorithm
5
, which 

performs changes in the system variables allowing the stabilization of chaotic 

behavior. In addition, Codreanu and Danca [11] applied the G.M. method to a 

prey-predator model supporting its use in biological systems. The G.M. control 

algorithm consists of the application of a proportional feedback
6
 (γ) to the 

variables of the system in the form of pulses [18]. We apply the G.M. control 

algorithm to the discrete map (3) by modifying the system variables I
f
n , I

m
n  in 

the following form: 
  
I

n

f ® I
n

f 1+g
1( ), I

n

m ® I
n

m 1+g
2( ) . Hence, our discrete-time 

gonorrhea model (3) becomes: 
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where, γ1, γ2 represent the strength of the feedback for If , Im. For sexually active 

persons, male latex condoms are the most commonly used contraceptive method 

to prevent
7
 sexually transmitted infections [10]. So from a practical point of 

view, the modification in the system variables could be interpreted as the use of 

male latex condoms during each sexual intercourse. Hence, the new terms γ 1 I
f
n , 

γ 2 I
m

n  are associated with condom use during sexual intercourse protecting 

males and females from gonorrhea transmission and reducing the number of 

infected individuals (–1 ≤ γ1, γ2 < 0), while the terms I
f
n , I

m
n  are associated with 

sexual intercourse without condom use. Furthermore, for the sake of simplicity, 

we assume that the protection from gonorrhea transmission by condom use from 

female to male and vice versa is the same (γ1 = γ2 = γ). The condition γ = –1 

corresponds to an ideal situation where all sexually-active individuals use latex 

condoms during sexual intercourse consistently and correctly. 

Thus, in order to see how the condom use affects the incidence of gonorrhea, we 

apply the G.M. method for the parameter values δ = 2.65 and λf = 1.717 (the 

other parameters remain unchanged) for which the system’s behavior is chaotic  

(Figure 5.f). Let the control parameter (γ) to vary. We illustrate the results by 

plotting the bifurcation diagram (Figure 6) along with the time series before (γ = 

0) and after (γ < 0) the action of chaos control algorithm (Figure 7). Without 

condom use during sexual intercourse (γ = 0) the number of infective males and 

females appears irregular oscillations (Figure 7). As the intensity of pulses 

increases (i.e. condom use increases), the control parameter (γ) is taking smaller 

and smaller negative values, some part of If or Im is injected from the map 

depending on the value of I
f
n  or I

m
n  at that moment and through sequences of 

reverse period-doubling bifurcations, the chaotic domains give rise to regular 

behavior (Figure 6), where the oscillations in the density of infected individuals 

become predictable. Particularly, near the value γ ≈ – 0.066 the behavior of 

                                                 
5 Güémez and Matias [18] considered the logistic map and the exponential map. 
6 Depending on the sign of γ, in particular, some part of the system variables is injected 

or withdrawn depending on the value of the variables at the moment n [18]. 
7 In vitro studies indicate that latex condoms provide an effective mechanical barrier to 
passage of infectious agents comparable in size to or smaller than STI pathogens [8]. 
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solutions becomes periodic (cycle of period-2). In the parameter interval  

– 0.5432 < γ < – 0.2091 solutions converge to endemic equilibrium (Figure 7).  

 
Fig. 6. The bifurcation diagrams (γ, I

*
f), (γ, I

*
m) as γ decreases in the interval  

γ ϵ [– 0.6, 0], for δ = 2.65 and λf = 1.717. 

  

Fig. 7: The time series (n, I f), (n, Im) for the first n ϵ [0, 500] iterations; for  

γ = 0 (without control) and γ = – 0.3 (with control), for δ = 2.65 and λf = 1.717. 

 

Finally, the decline in the number of infective individuals leads to the end of the 

disease (gonorrhea-free equilibrium) for – 1 < γ < – 0.5432 (Figure 6). Hence, 

for exceptionally high infection rate of susceptible females and time interval 

between clinical cases 2 < δ < 4 days, as the condom use during sexual 

intercourse increases slowly among individuals, the oscillations in the number 

of infective males and females decrease rapidly, leading to the reduction of 

gonorrhea incidence and the control of disease. So, we observe that condom use, 

just by a fraction of the population 50%, can reduce substantially the risk of 

gonorrhea transmission even for exceptionally high infection rates. 

 

Concluding Remarks and Discussion 

 

In this paper we have discretized the gonorrhea model of Hethcote and Yorke 

[20] and studied its dynamical characteristics using as a discrete-time step the 

interval between successive clinical cases (i.e. serial interval). We showed that 

the discrete-time model could result in a much richer set of patterns than the 

corresponding continuous-time model. The analytical stability analysis and the 

numerical simulation results showed that the discrete-time model undergoes: 

“fold”, “flip” bifurcations and the number of infective males and females can 

behave chaotically. In particular, we showed that: (a) for low rate of infection of 

susceptible females gonorrhea remains endemic or dies out, while (b) for high 
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rate of infection of susceptible females chaotic oscillations and gonorrhea 

outbreaks appear in the system. 

The results of our study reflect the real-world large fluctuations, which appear in 

the number of gonorrhea cases throughout the years. For instance, in Sweden 

from 2007 to 2011 the number of gonorrhea cases increased by 48% (from 642 

to 951 cases) [35]. The factors that might have been contributed to this increase 

in gonorrhea incidence seem to be: (a) the increased number of sexual partners 

over time, (b) the increased number of new casual sexual partners and (c) the 

low level of condom use with casual sexual partners [33]. Moreover, Alaska’s 

outbreak of Neisseria gonorrhoeae (GC) infection began in 2008 and peaked in 

2010 with a total 1,273 GC cases reported to Alaska Section of Epidemiology 

[2]. The 2009 case rate demonstrated a 69% increase from the 2008 rate, 

representing the greatest single-year increase in reported GC infection in Alaska 

since the 1970s; the rate increased in both sexes, among all races, in all age 

groups and in nearly all regions of the state [1]. Another example is the 

variations in the number of gonorrhea cases in the Onondaga County, NY, USA. 

According to the Onondaga County Health Department (OCHD) the number of 

cases of gonorrhea more than doubled in the county between 2011 and 2012. 

There were 602 cases in the first nine months up from 253 cases for the same 

period of 2011 [32]. Hence, the proposed discrete-time model seems to be more 

effective in practice and gonorrhea, despite the fact that it is a non-fatal disease, 

is likely to have a strong negative effect on life history evolution. Moreover, the 

results of our study show that the time interval between successive clinical cases 

is important in case of gonorrhea emergency situations. However, few are 

known about clinical onset serial intervals of gonorrhea. Therefore, collected 

data on serial intervals of gonorrhea could provide useful information to guide 

any public health action. 

Moreover we have stabilized the unstable periodic orbits, existing within the 

strange attractor and the unstable steady states (both endemic and disease-free), 

using a series of proportional feedbacks on the system’s variables. The chaos 

control results could be definitely regarded as those, which are obtained with the 

use of male latex condom during sexual intercourse. Our chaos control results 

show that condom use reduces the risk of gonorrhea transmission to a point 

where the number of infected individuals remains stable and is significantly 

small or zero. This reflects what many studies have shown, such as Barlow’s 

study [6], which showed that a 71% reduction in gonorrhea was associated with 

consistent and correct condom use (i.e., for every 100 cases of gonorrhea 

infection that would happen without condom use, only 29 would happen when 

condoms are used consistently). However, one of the paradoxes in modeling 

infectious diseases is that, despite their quantitative nature, the best that we can 

often expect is qualitative insights [15]. Quantifying the relation between the 

number of condoms used and the incidence of gonorrhea is often difficult. For 

instance, Warner et al. [36] reviewed studies, published from 1966 to 2004, to 

assess risk reduction for gonorrhea associated with male condom use. They 

found that, although most studies showed that condom use was associated with 

reduced risk for gonorrhea among men and women, however the exact 
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magnitude of risk reduction is difficult to quantify because of limitations and 

variations in the methods and design of these studies. 
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