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Abstract. The occurrence of chaotic instabilities is investigated in the swing motion of 

an inclined Furuta pendulum. The analysis is motivated and applied to predicting the 

nonlinear bucket swing behaviour of a dragline. A dragline is a large, powerful, inclined 

Furuta pendulum utilized in the mining industry for removal of overburden. A 

representative model of the dynamical system with energy dissipation is first developed 

and pertinent equilibrium states are identified and unperturbed phase space behaviour 

determined. Fundamental insights into the effects of inclination angle on the equilibrium 

behaviour are identified. Subsequently, analytical predictive criteria for the onset of 

chaotic instability in the forced system are obtained in terms of critical system 

parameters using Melnikov’s method. Numerical simulations under field measured 

conditions are performed and show that the sufficient analytical criteria are useful 

predictors of the onset of chaotic instability under steady and unsteady slewing 

conditions. Results for both inclined (tight dragrope) and non-inclined (loose dragrope) 

conditions are compared and discussed. The inclination is shown to critically change the 

equilibrium behaviour of the system and delay the onset of chaotic instability primarily 

due to centrifugal stiffening of the pendulum swing. In addition, conditions under which 

chaotic instability is more likely to occur such as pendulum mass/bucket positions are 

identified and discussed. 
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1  Introduction 
 

The analysis of the nonlinear dynamics of a pendulum on a rotating arm (Furuta 

pendulum) has been the topic of much recent research. The system is a 

fundamental rotating multibody system that may be used to provide insight into 

the dynamic behaviour of a wide range of more complex systems including 

satellites and mining draglines (see for examples Moon[i], Kapitaniak[ii], 

Fradkov and Evans [iii], Meehan et al [iv,v,vi], Holmes and Marsden[vii] and 

Koiller[viii] amongst many others).  The Furuta pendulum is also a classic 

nonlinear benchmark system for proving and tuning nonlinear control strategies 

[ix,x,xi]. Recent research on this system has identified interesting nonlinear and 

stability behaviour of the non-inclined Furuta pendulum. In particular, Pagano et 

al[xii] identified pitchfork and Hopf bifurcations using centre manifold and 
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normal form theories providing insight into control parameter tuning for upright 

position stabilization. This bifurcation analysis was extended  recently in Munoz 

et al[x] to identify new branching point bifurcations. These researchers noted 

possibilities of further contributions, facilitated by insight from investigations 

on analogous pendulum systems. In fact, in parallel, this research was extended 

using analogous methodology from a fundamental rotating multibody system in 

the form of a very large practical Furuta pendulum; a dragline[vi]. Draglines are 

crane-like machines used as the primary means for removal of overburden in 

open-cut coal mining. The nonlinear dynamics of the dragline bucket (pendulum 

mass) swing motion during house (rotating arm) slewing (rotation) is of 

importance[xiii], as excessive amplitudes cause fatigue damage and render the 

system difficult to control. The recent research on this system specifically 

extended the work of Munoz et al[x] in that an analytical closed form Melnikov 

solution for prediction of the onset of chaotic instability in the non-inclined 

Furuta pendulum was obtained and validated using numerical simulations under 

small and large perturbative slew torque conditions. Although these analytical 

results are extremely useful for avoiding and or controlling chaos in the non-

inclined Furuta pendulum, the scope of  application to dragline behaviour is 

limited in that the dragrope must be assumed to be slack. In fact, the dragrope is 

often taught at times during a normal cycle of operation, causing the pendulum 

bucket to swing in a plane inclined to the vertical as opposed to being parallel to 

the axis of the rotating arm (slew axis, see fig 1). Hence a dragline with a taut 

drag rope is an example of a large inclined Furuta pendulum. The effects of such 

an inclination on the dynamic behaviour of the Furuta pendulum are unknown 

and are shown to be non-intuitive in the present research. Hence, the main 

contributions of this paper are: 

 Analytical determination of the equilibrium and stability behaviour of 

the inclined Furuta pendulum identifying fundamental differences with 

the non-inclined system. 

 Analytical prediction of the occurrence of chaotic instability of the 

inclined Furuta pendulum. 

 Application and validation of analytical predictions using simulations 

based on field measured parameters and data and comparisons with the 

non-inclined system. 

In this paper, a formulation of the nonlinear equations of motion governing the 

dynamics of the inclined Furuta pendulum/dragline system are first presented.  

Unperturbed phase space analysis results are then described and equilibria and 

nonlinear behavior are identified.  Numerical and analytical results, describing 

the presence of chaotic instabilities under different operating conditions, are 

compared under quasistatic conditions before a full analysis using field data of a 

dragline cycle is provided. Conditions under which chaotic instability is more 

likely to occur, including regions in pendulum mass/bucket trajectory space, are 

identified and discussed.  
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2  Modelling the Inclined Furuta Pendulum 
 

A dragline system is an analog of an inclined Furuta pendulum as shown via 

comparison in Figure 1. The system consists of a rotating assembly comprised 

of a house (containing primary components such as drive motors, controls and 

an operator cabin), a boom structure and a bucket, as shown in the model of Fig. 

1a). The normal dragline operation cycle consists of three main phases: 1) a 

digging phase, in which the bucket is filled with overburden; 2) a slew phase, in 

which the house and boom is swung (or slewed) about a vertical axis while the 

bucket is hoisted, and 3) a dump and return slew phase during which the 

overburden is dumped and the house and boom return to the dig position. 

Control of the hoist and drag rope lengths allows positioning of the bucket in the 

vertical boom plane. However, the bucket is free to swing normal to that plane 

and a considerable amount of operator skill is required to control this 

undesirable motion.  

 
Fig. 1. Equivalent models of an inclined Furuta pendulum; a) slewing dragline 

with tight dragrope, b) generic model. 

 

For the purposes of investigating nonlinear behaviour of the dragline, an 

inclined Furuta pendulum model based on Fig. 1 is developed. Referring to Fig. 

1, the house and boom structure (rotating arm) is modelled as a rigid body with 

moment of inertia, hI , that slews about the vertical slew rotation axis Y . The 

boom is inclined at an angle β with respect to the horizontal X axis of the inertial 

reference frame XYZ  with the origin O  at the intersection of the boom axis 

and the vertical. The bucket/pendulum mass is modelled as a point mass, m , 

suspended by the massless drag and hoist ropes of lengths, d  and h , which 

control the motion of the bucket within the bucket plane. The bucket position is 

defined by the four independent degrees of freedom:  ,  , P  and B . The 

slew angle,  , is a measure of the rotation of the rigid house and boom 

assembly about the Y  axis. The out of plane angle,  , represents the angle 

between the vertical plane through the boom axis and the bucket plane. It is 

noted that the tight dragrope enforces the bucket to swing about the boom axis 

as opposed to a horizontal axis with a loose drag rope ie the system becomes an 

inclined Furuta pendulum as opposed to non-inclined. In this case, the location 
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of the bucket within the bucket plane is measured along two orthogonal axes, 

B  parallel to the boom axis and P  perpendicular to this axis. The bucket is 

considered to be acted upon by gravity, g, in the –Y direction, and has a 

damping torque proportional to the bucket out-of-plane angular velocity.  This 

damping torque is associated with viscous losses in the ropes and sheaves and 

has a constant, ct.  A net slew torque, M, about the Y-axis is generated from the 

slew transmission controlled by the operator.  

 

The equations of motion for the system for the two rotational degrees of 

freedom,  and  , may be derived using Lagrange's Equations in a similar 

manner to [vi] as, 

  2

2 1sin cos 2 sin cos sinI m PD PB P P D M              (1) 

  2 2

2 1cos sin sin cos sin 0tm P gP PD P P D c              ,(2) 

where the underscore indicates functions of the degrees of freedom as defined 

in the Appendix as follows;  
1D  is the horizontal distance from the slew axis to 

bucket image in the vertical boom plane, 
2D  is the perpendicular horizontal 

distance from the bucket swing velocity to the slew axis and I  represents the 

instantaneous moment of inertia of the system about the Y  axis.  

In the context of a dragline model, these inclined Furuta pendulum equations are 

simplified in that the bucket position coordinates, P and B, are considered to be 

quasistatically constant. Equation (1) can be considered to be the slew moment 

equation about the Y axis.  The first term arises from the slew acceleration with 

the instantaneous system moment of inertia I  determined by the bucket position 

in the horizontal plane as a function of swing angle  as well as P and B. The 

last three terms represent the additional moments contributed from the bucket 

swing motion via Coriolis and other inertia forces with respect to O.  Equation 

(2) represents the moment equation for the bucket swing motion about the boom 

axis. The first two terms and the last are typical for a damped pendulum, while 

the other two terms characterise the effects of the centrifugal and angular 

accelerations contributions from the slew motion, arising due to the moving 

reference plane.  Equations (1) and (2) are coupled through multiple non-linear 

terms resulting from the rotating multibody motion of the system.   

At this point it is instructive to understand how the inclination angle of the 

inclined Furuta system (due to a tight dragrope) has affected the equations of 

motion, as compared to the non-inclined system (see [vi]). Firstly, gravity will 

now act at an angle  with respect to the pendulum-bucket swing motion and 

hence the natural frequency of the bucket swing under no slewing 0   reduces 

to g coso P  . Secondly, the bucket swing motion is no longer in a plane 

parallel to the slew axis. This means that there will now be a component of 

centrifugal force due to slewing in the plane of the bucket swing motion.  This 

component is evident in the fourth terms of  (1) and (2) as the factor 1 sinD   

and will cause a centrifugal stiffening of the bucket swing behaviour. This is 
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shown to critically affect the stability and perturbed nonlinear behaviour of the 

system in the subsequent sections. 

For subsequent analysis, it is convenient to define the energy and angular 

momentum quantities that are conserved under unperturbed conditions. The 

total mechanical energy of the system, E, is derived as, 

 2 2 21 1
22 2

cos 1 cosE I mP mD P mgP         ,          (3) 

where presently for simplicity the potential energy is defined as being zero 

when the bucket swing angle  Similarly, the Y component of angular 

momentum of the system about O, HOy, that is conserved when 0M  , may 

also be obtained as, 

 
2OyH I mP D   ,  . (4) 

 

3  Phase Space Analysis of the Inclined Furuta Pendulum 
 

The phase space of the unperturbed system, corresponding to the case of no 

external torque 0M   and no damping 0tc  , was investigated for stability and 

nonlinear behaviour.  For the unperturbed system, both angular momentum and 

total energy of the system have constant values OyH  and E , such that by using 

Eqs. (3) and (4), the phase space may be described by, 

  2

Oy2

2 2 2 2 2

2 E cos (1 cos ) H
 = 

( ( )cos sin )h

I mgP

mP I m P B

 


 

  

 
.     (5) 

Equation (5) is in a similar (but distinct) form to that of the previous analyses 

(eg [vi]) for the non-inverted Furuta pendulum and may also be shown to be 

integrable; a necessary condition for application of Melnikov’s method. The 

corresponding set of phase curves under different energy and angular 

momentum conditions for different values of 2

OyC = 2E HI   are plotted in Fig. 

2. These phase space plots are representative of the unperturbed dynamics of the 

inclined Furuta pendulum for out of plane bucket angles of magnitude less than 

 2
. Fig. 2a) corresponds to the two equilibrium conditions described by 

     
TT

* * *

1cos ( cos sin ) ,g P D             
 if  

2
2

OyH critI   (6) 

                                                 
1
 Note in the derivation in the Appendix the potential energy reference is 

defined more generally to (3) as the origin O. 
2
 For larger, out of plane bucket angles, the phase space has heteroclinic orbits 

intersecting at the inverted unstable equilibrium points defined by n   , 

similar to the phase space of a simple pendulum [7-10]. These represent 

unrealistic conditions for a dragline so are not investigated further in the present 

analysis. 
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while Fig. 2b) corresponds to that described by 
T T

Oy0 H ,I        . if  
2

2

OyH critI                   (7) 

where 
*  is a function of the parameters, OyH  and I , as defined by the roots 

of a fourth order polynomial, 

  2
* 1 2 2 2 2

Oycos [ ( sin cos ) ] +H ( sin cos ) / 0hroot I m P B B xP B xP g            
  

(8) 

 
Fig. 2. Phase space curves for an inclined Furuta pendulum without external 

forcing or dissiption; a)  
2

2

OyH critI , b)  
2

2

OyH critI . . 

The stability of these equilibrium points may be derived using Lyapunov’s 

direct method. Physically, the symmetrical properties of the bucket swing allow 

the possibility of two stable equilibrium points, corresponding to positive and 

negative swing displacements of the bucket/pendulum mass, * . This pair of 

offset stable equilibrium points (also occurring in a variety of analogous systems 

eg [iv]) are interesting physically in that they serve to limit the slew rate to a 

constant critical value, 

crit Yg h  ,   cos sinYh P B   .                    (9) 

where Yh  is the vertical distance of the bucket below the X axis when the 

bucket swing angle is zero.  In contrast to the non-inclined Furuta pendulum, it 

is deduced that the inclination critically changes the stability behavour, delaying 

the existence of the two stable equilibrium points to conditions when the bucket 

is below the horizontal ( ie longer rope lengths) and to a higher critical slew 

rate, crit Yg h g P   . The existence of a pair of homoclinic orbits in Fig.  

2a) encircling the two equilibrium points is important as the system will be 

attracted to either one of the equilibrium points depending on the initial 

conditions and there will be a region in phase space where this dependence will 

be highly sensitive to small changes.  By solving for the origin point using 

Eq.(5), the set of homoclinic orbits is found to occur under the conditions, 

2

OyC = 2E H 0I      and   {
2 2

OyH YI g h    where   0Yh  }. (10) 
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It may be deduced that the pitchfork bifurcation to the homoclinic orbits in Fig. 

2a) occurs when the angular momentum first exceeds the critical value 

described by eqn (6). With reference to chaotic instability, it is therefore 

expected that it’s onset will first occur for small bucket swing angles once the 

slew velocity exceeds / Yg h . This is investigated subsequently. 

 

4  Analytical Prediction Of Chaotic Instability 
 

The stability and phase space analyses have shown that the inclination of the 

Furuta pendulum significantly delays the pitchfork bifurcation (to a pair of 

homoclinic orbits) to a higher critical slew rate / Yg h . However, qualitatively 

the inclined system in phase space appears to behave in a similar manner to the 

non-inclined case when the two stable equilibrium points exist. This insight 

motivated an investigation into appropriate transformations of system equations 

in order to take advantage of the existing Melnikov analysis for the non-inclined 

case[vi]. For this purpose, nontrivial transformations of the energy and angular 

momentum quantities were investigated to non-dimensionalise the 

representative Lagrangian L=T-V to analogous forms. In particular, under the 

assumption of a small bucket swing angle, the harmonic terms of (1) and (2) are 

approximated by, 

sin  , 21 cos 2   , (11) 

and the system dynamics reduce to a Lagrangian form of a rotating body with 

internal energy dissipation[v], described by, 
2 2 2 2 2

Oy
ˆˆ ˆ ˆ ˆ ˆH ( 1 ) ( ) 2L I y y I y ky      

 
.     (12) 

In (12) the dimensionless quantities are defined for the inclined Furuta 

pendulum as, 

t   , ˆ
ˆ

y
d


 ,

2

2 2 2
ˆ

cos cos ( )

h

Y Y

II
d

mP h m D h 
 


,

2

ˆ
ˆcos Y

I
I

mP h d
 ,

2

2 2
k̂

1 ( / )

crit

YD h




   

,
2 2

H
Ĥ

ˆcos 1 ( / )

Oy

Oy

Y YmP h d D h


 
,

 
 
2 2 2

,
ˆ ˆ,

ˆcos 1 ( / )Y Y

L E
L E

mP h d D h


   

.    (13) 

The forcing/perturbative parameters for Hamiltonian transformation may be 

nondimensionalised to, 

2 2 2

ˆ
ˆcos 1 ( / )Y Y

M
M

mP h d D h


   

, t

2

c
ĉ

cos 1 ( / )Y YmP h D h


   

,

 (14) 
where the static radial distance of the bucket from the slew axis is defined as, 

1 2( 0) ( 0) cos sinD D D B P         .     (15) 
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Although this nondimensional parameterisation was onerous and may seem 

convoluted, the transformed Lagrangian (12) is now identical to that of the 

non-inclined system and hence the resulting Hamiltonian equations of 

motion, their homoclinic orbit solutions and Melnikov analyses can now be 

conveniently applied to the present problem. For brevity, the primary steps 

of the Melnikov analysis are outlined in the following, as details of a very 

similar analysis is provided in [iv]. 

 

Prediction under Perturbed Steady Slewing Conditions  

Melnikov’s method was used to obtain an analytical criterion for the onset of 

chaotic instability in the perturbed dragline system based upon the unperturbed 

phase space. The simplest form of Melnikov’s method considers systems of the 

form: 

 ( ) ( , );x f x g x   t     2T
u v x  (16) 

where f x( )  is considered to be the unperturbed Hamiltonian system of 

state equations defined on 2 , and g x( , )t  is a small periodic perturbation 

which is not necessarily Hamiltonian. Using the dimensionless quantities of 

(13) and (14), the equations of motion for the inclined Furuta pendulum (1) 

and (2) can be expressed in the Hamiltonian form of (16) as, 

  

 
    

       

1
2 2

22
2 2 2

2
2

2
2 2 2 2

E E E

ˆ ˆˆ ˆ ˆ ˆ= I I 1

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ= H k I I ( )
ˆ ˆI

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆM cos 2 M H I sin M I sin c I ( )

y

y Oy y

Oy y

dy d p y y

y
dp d y p y y

y

y y p y y O



 

     







  

    
 



      
  

    (17) 

where the generalised momentum, ˆ
yp , is defined by, 

                               2 2ˆ ˆˆ ˆ ˆ ˆI 1 Iyp y y y    ,             (18) 

and an external slew torque of the form   cosM  ME   is considered. For Eq. 

(17), a Taylor’s series has been used to expand the perturbational terms with 
ˆ1 I  , so that only first order terms have been retained.  More details of this 

transformation are provided in [v]. It is noted that the unperturbed phase space 

 ˆ ˆ, yy p , has the same qualitative behavior as the phase space  , '  , illustrated in 

Fig. 2.  Equation (17) is in the form appropriate for the application of 

Melnikov’s method. The Melnikov function, denoted  M t0  is written as the 

integral, 

       M t  0   




 f q g q0 0 0t t t t dt, , (19) 

where f x( )  and g x( , )t  have been defined previously in Eq. (16), the symbol 

  is the wedge product defined by a b a b a b  1 2 2 1 , and  q0 t  is the 
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solution for the set of homoclinic orbits in the unperturbed system. The 

equations describing the homoclinic orbits depicted in Fig. 2a), for small out of 

plane angle,  , may be obtained via solution to equations (5), subject to (10), 

(11) and (14), as, 

       0 0
ˆ ˆ =  sech  sech tanhy dy d         

 
 

, (20) 

where  

ˆˆ ˆ2E/k I   ,     ˆˆ ˆ ˆ= 2E Ik I 1   , (21) 

and the subscript  
0

 denotes the closed solution for the homoclinic orbits. 

Using Eqs. (20), (16) and (17) the Melnikov function may be obtained 

explicitly.  In particular, under the assumption that 

   E E
ˆˆ ˆ ˆ ˆ ˆM I k I 1    or M 2H cosh 2Oy     , a relationship for the critical 

torque amplitude may be simplified to the form, 

 
22

3 2 2

E 2

Ĥ
ˆ ˆˆM  2c 5I 2 15  sech +  cosech

ˆ2 2I

Oy  
  

  

 
         

    
 

. (22) 

Equation (22) represents a sufficient criterion for the occurrence of chaotic 

instability in an inclined Furuta pendulum under slew torque perturbations, for 

small bucket swing angles. It is based on perturbations about a nominal 

(unperturbed) condition of constant (or quasistatic) angular momentum. 

 

 

5  Case Study Results 
Predictions of the occurrence of chaotic instability in an inclined (tight 

dragrope) and non-inclined (loose dragrope) Furuta pendulum under both steady 

and unsteady slewing motion were investigated both analytically and 

numerically for realistic dragline parameters. The mechanical parameters for a 

standard 1370 BE dragline were used to compare with previous research results: 

m = 66 000 kg, ct = 4.1 MNms, Ih = 1.588x10
9
 kgm

2
 and  =0.05 0.2 rad/s. 

Two different bucket positions and inclinations were investigated as shown in 

figure 3. Case 1a) represents the non-inclined case and is included so that direct 

comparison with previous results[vi] can be made. The inclined cases 1b) and 2 

represent typical quasistatic bucket positions encountered during normal 

operation with a taut dragrope. For these parameters, the critical slew rate at 

which a pitchfork bifurcation first occurs under inclined and non-inclined 

conditions is described in table 1. The slew torque frequency was chosen to be 

of the same order as the actual swing cycle used in dragline operation. 

Numerical integration of Eqs. (1) and (2) was performed using a fourth order 

Runge-Kutta method with at least 200 timesteps over the bucket response cycle; 

ensuring convergence of the numerical solution. Plots were generated after a 
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number of pre-iterates (no recording) of forcing periods, in order to ensure 

transients had subsided. 

 

 
Fig. 3. Pendulum mass/bucket positions and inclinations for test cases 1a), b) & 

2. 

Table 1 Case configuration parameters and corresponding critical slew rates. 

 β (rad) D (m) hY (m) 
crit (rad/s) 

Case 1a) non-inclined 0 87 100 0.3132 

Case 1b) inclined 0.602 87 40.224 0.4938 

Case 2 inclined 0.602 40 32.517 0.5492 

 

 

Results under Perturbed Steady Slewing Conditions  

As found with previous analyses, the occurrence of chaotic instability associated 

with the pitchfork bifurcation identified in section 2, is sensitive to the angular 

momentum of the system. In particular, according to the criterion of Eq. (22), 

initial slew rates only slightly greater than the critical value of crit  were 

investigated to minimise the critical torque amplitude to plausible values for 

draglines (of order 100 MNm) and to limit bucket swing angles to realistic 

(small) values.  In particular, unless otherwise noted, the initial slew rate was 

chosen to be 2% higher than the critical slew torques in Table 1.  Figure 4 shows 

an example of a bifurcation diagram generated for the inclined Furuta case 1b) 

with an initial slew rate of 0.505i   rad/s, a slew torque frequency of 0.05 rad/s 

and 200 pre-iterates. The diagram shows evidence of steady state chaotic 

instability over a range of torque amplitudes, with the initial occurrence at 

approximately EM 515 kNm . This is notably significantly higher than that 

found for the non-inclined case 1a) which was EM 390 kNm [vi] for an 

equivalent initial slew rate factor 102% of the critical slew rate listed in Table 1.  
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In the same manner, the critical torque amplitudes for a number of bifurcation 

diagrams at different slew torque frequencies were determined in order to obtain 

a quantitative comparison with analytical Melnikov predictions using Eq.(22). 

These results were collated for the three cases of table 1 in Figure 5. 
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Fig. 4. Bifurcation diagram for the inclined Furuta pendulum/dragline case 1b) 

under perturbed, steady slew conditions ( 0.505i   rad/s, 0.05   rad/s).. 

 
Fig. 5. Comparison of analytical and numerical results for the onset of chaotic 

instability for the inclined Furuta pendulum/dragline cases 1 a),b) & 2 under 

perturbed, steady slew conditions ( 0.505i   rad/s). 

Figure 5  shows good agreement between the analytical and numerical results 

and highlights the conservative nature of the Melnikov criterion for predicting 

the onset of steady-state chaotic instability in each case. By comparison between 

the cases of 1a) and b) it is seen that substantially higher critical torques (>3.5x) 

are required due to the inclination of the Furuta pendulum.  This is consistent 
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with the occurrence of centrifugal stiffening of bucket swing motion that needs 

to be additionally overcome by perturbations in the inclined case. Also 

comparing the inclined cases 1b) and 2, it appears the relative amount of 

centrifugal stiffening is also associated with higher critical torques as the bucket 

position moves closer to the horizontal X axis. This is confirmed by inspection 

of equations (2) to reveal that the total centrifugal torque on the bucket swing 

motion is proportional to this distance 
1( cos sin ) / cosYh P D    .  These 

results, under steady slewing conditions, also indicate that the dragline motion 

may pass through chaotic instability under larger perturbations associated with a 

normal (unsteady slewing) cycle of operation. 

 

Results under Unsteady Slewing Conditions  

The dragline dynamics was also investigated via numerical simulations of 

typical unsteady slewing conditions, with a nominal slew torque frequency of 

0.0623  rad/s representing a cycle time of 100 seconds. All other parameters 

were set values as specified previously, with exception to house slew damping, 

which was set to a value of ch=8.97x10
7
 Nms; obtained from field 

measurements.  The bifurcation diagram was generated under these conditions 

for case 1b) and indicates the first onset of chaotic instability via bifurcations at 

a torque amplitude of approximately 82 MNm. This value compares favourably 

with the analytical prediction of 78 MNm based on exceeding the critical slew 

rate 
crit . Trajectory simulations and the Poincare map for fully developed 

chaotic instability at a slightly higher torque amplitude of 84MNm are shown in 

Fig. 7.  
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Fig. 7. Time histories and phase spaces for the inclined Furuta 

pendulum/dragline case 1b) under large unsteady slew conditions ( 0i   rad/s, 

0.0623  rad/s, 684 x 10M   Nm). 
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The complexity of the time history and phase space traces and the fractal nature 

of the Poincare map are consistent with predictions of chaotic instability. These 

numerical simulations indicate that steady-state chaotic behavior persists even 

though the rotating arm of the inclined Furuta pendulum only has the necessary 

slew rate for the pitchfork homoclinic orbits to exist, for a relatively small 

amount of the cycle time.  

 

 

6  Conclusions 
Analytical and numerical results have shown the existence of chaotic 

instabilities in the inclined Furuta pendulum with internal energy dissipation, 

under perturbed steady slewing as well as unsteady conditions.  In particular, a 

closed form analytical criteria and numerical verification of these predictions of 

chaotic instability are presented for this fundamental rotating multibody system. 

The effect of inclination is carefully investigated and is shown to critically 

change the equilibrium behaviour of the system causing the existence of a 

pitchfork bifurcation to be delayed to bucket positions below the X-axis due to 

centrifugal stiffening of the pendulum swing motion. An analytical criterion for 

the occurrence of a chaotic instability region in system parameter space has 

been derived using Melnikov’s analysis. The chaotic region occurs near 

homoclinic orbits in the system’s phase space associated with the pitchfork 

bifurcation. This is shown practically to exist in the dynamics of a slewing 

dragline with damping under normal operation. Subsequently the analytical 

results have been compared to various numerical results for different parameter 

configurations. It is shown that Melnikov’s method provides a conservative 

estimate for the onset of steady state chaotic instability under steady and 

unsteady slewing conditions.  Chaotic instability is shown to be delayed to 

higher torque amplitudes for inclinations of the Furuta pendulum due to 

centrifugal stiffening of the pendulum swing. 

 

This analysis confirms that steady state chaotic instability is possible in dragline 

operating cycles, during high slew rate conditions under both tight and loose 

dragrope conditions. Its occurrence adversely affects dragline productivity and 

maintenance, and may be underlying difficulties with automation. 

Recommendations for useful extensions to the analysis include the 

investigations of the effect of dynamically changing rope lengths (rotating arm 

and pendulum lengths) and more realistic slew torque profiles during normal 

cycle operation. In particular, it is noted that cyclic rope length changes and 

operator slew control, intrinsic to normal dragline operation, may significantly 

alter the system equilibrium and stability behaviour. 
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