Chaotic Modeling and Simulation (CMSIM) 1: 8-8, 2016

The dynamics of Hamiltonians with
non-integrable normal form

Ferdinand Verhulst

Mathematisch Instituut, University of Utrecht, The Netherlands
(E-mail: f.verhulst@uu.nl)

Abstract. In general Hamiltonian systems are non-integrable but their dynamics
varies considerably depending on the question whether the corresponding normal
form is integrable or not. We will explore this issue for two and three degrees of
freedom systems; additional remarks on Hamiltonian chains can be found in [9]. A
special device, the quadratic part of the Hamiltonian Hs(p, q) is used to illustrate the
results.
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1 Integrability versus non-integrability

We will consider time-independent Hamiltonian systems, Hamiltonian H(p, q),
p,q € R™ with n > 2 degrees of freedom (DOF). A more detailed study is found
in [9]. Regarding mechanics, or more generally dynamical systems, Hamilto-
nian systems are non-generic.

In addition we have that the existence of an extra independent integral besides
the energy for two or more degrees of freedom is again non-generic for Hamil-
tonian systems (shown by Poincaré in 1892, [4] vol. 1).

So the following question is relevant: why would we bother about the integra-
bility of Hamiltonian systems?

We give a few reasons, leaving out the esthetic arguments:

e Symmetries play a large part in mathematical physics models. Symme-
tries may sometimes induce integrability but more often integrability of
the normal forms. An example is discrete (or mirror) symmetry.

e Near-integrability plays a part in many models of mathematical physics
where the integrability, although degenerate , can be a good starting point
to analyze the dynamics. Integrals of normal forms may help.

e Non-integrability is too crude a category, it takes many different forms.
A first crude characterization is to distinguish non-integrable Hamiltonian
systems with integrable or non-integrable normal form.
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2 How to pinpoint (non-)integrability?

Looking for a smoking gun indicating integrability there are a few approaches:

1. Poincaré [4] vol. 1:

A periodic solution of a time-independent Hamiltonian system has two
characteristic exponents zero. A second integral adds two characteristic
exponents zero except in singular cases. This can be observed (for an
explicit Hamiltonian system) as a continuous family of periodic solutions
on the energy manifold. Finding such a continuous family can be either
a special degeneration of the system or a sign of the existence of an extra
integral.

2. Symmetries of course; strong symmetries like spherical or axial symme-
try induce extra integrals. Weaker symmetries may or may not induce
an integral. An example is studied in [6] where discrete symmetry is ex-
plored in two degrees of freedom systems. It is shown for instance that the
spring-pendulum displays many degenerations depending on the resonance
studied.

3. Degenerations in variational equations or bifurcations are degenerations
that often suggest the presence of integrals.

3 Normal forms

There are many papers and books on normalization. A rather complete intro-
duction is [5]. One considers k-jets of Hamiltonians:

H(p,q) = Hy + Hy + ... + Hy,

usually in the neighbourhood of stable equilibrium (p,q) = (0,0). The H,, are
homogeneous polynomials in the p, g variables.

An important feature is that Ha(p,q)(¢) is an independent normal form
integral, see [5]; its physical interpretation is that Hy is the energy of the lin-
earized equations of motion. The implication of the existence of this integral
is that near stable equilibrium, for two DOF, the normal form is for all reso-
nance ratios integrable so that chaos has for two DOF near stable equilibrium
generally a smaller than algebraic measure. This explains a lot of analytic and
numerical results in the literature (see again [5]).

In general, for more than two DOF, integrability of the normal form can
not be expected without additional assumptions. If we find integrability, it
restricts the amount of chaos and also of Arnold diffusion.

Example: Braun’s parameter family
Two DOF normal forms are integrable but it is still instructive to consider
them. An exampe is Braun’s family of Hamiltonians:
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Fig. 1. Periodic solutions obtained from the normal form to cubic terms of Braun’s
family of discrete-symmetric Hamiltonians. The horizontal lines correspond with
isolated periodic solutions on the energy manifold, dots at —1/3 (the Hénon-Heiles
case) and at 1/3 correspond with continuous families of periodic solutions.

The analysis is given in [8] and summarized in [5]; consider for instance
w = 1, a1 and ay # 0 are parameters. The normal form to cubic terms
produces two normal modes and, depending on the parameters, two families
of in-phase periodic solutions, two families of out-phase periodic solutions and
for specific parameter values two continuous families of periodic solutions on
the energy manifold; see fig. 1. Normalizing to quartic terms the continuous
family at a1/(3a2) = —1/3 (the Hénon-Heiles Hamiltonian) breaks up into
separate periodic solutions; the continuous family at a;/(3a3) = 1/3 persists,
this Hamiltonian before normalization is already integrable.

4 Three degrees of freedom

Genuine first-order resonances are characterized by its normal form. Apart
from the three actions, this contains at least two independent combination
angles. We have for three DOF:

1:2:1 resonance
1:2:2 resonance
1:2: 3 resonance
1:2:4 resonance

A basic analysis of the normal forms to cubic order H = H, + Hj yields
short-periodic solutions and integrals. The use of integrals gives insight in the
geometry of the flow, enables possible application of the KAM-theorem and
may produce measure-theoretic restrictions on chaos.

5 Integrability of normal forms

The normal form has two integrals, Ho and H (or Hg). Is there a third integral?
To establish (non-)integrability we have:
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e Ingenious inspection of the normal form or obvious signs of integrability,
see van der Aa and F.V. [7].

e Extension into the complex domain and analysis of singularities, see Duis-
termaat [2].

e Applying Shilnikov-Devaney theory to establish the existence of a trans-
verse homoclinic orbit on the energy manifold, see Hoveijn and F.V. [3].

e Using Ziglin-Morales-Ramis theory to study the monodromy group of a
particular nontrivial solution; this study may lead to non-integrability. This
involves the variational equation and the characteristic exponents in the
spirit of Poincaré. In an extension one introduces the differential Galois
group associated with a particular solution; if it is non-commutative, the
system is non-integrable. See Christov [1].

5.1 The genuine first-order resonances

A remarkable result is that the normal form to cubic terms of the 1 : 2 : 2
resonance is integrable with quadratic third integral, see [7]. We have that
p1 = q1 = 0 corresponds with an invariant manifold of the normal form; the
manifold consists of a continuous set of periodic solutions and is a degeneration
according to Poincaré with 4 characteristic exponents zero. The calculation of
the normal form to quartic terms produces a break-up of this continuous set
into six periodic solutions on the energy manifold.

It was shown in [2] that the normal form to cubic terms of the 1 : 2 : 1
resonance is non-integrable. This was shown by singularity analysis in the
complex domain. A different approach was used in [1] where it was shown that
for a particular solution the monodromy group is not Abelian; this precludes
that the normal form is integrable by meromorphic integrals.

Non-integrability was shown in [1] for the 1 : 2 : 4 resonance in a similar
way. One identifies a particular solution in the (p1,¢1) = (0,0) submanifold;
the local monodromy group is not Abelian which precludes integrability.

The case of the 1 : 2 : 3 resonance is different. The analysis in [3] shows
that a complex unstable normal mode (ps,¢qs) is present. The normal form
contains an invariant manifold N defined by Hy = Ey, H3 = 0. N contains an
invariant ellipsoid, also homoclinic and heteroclinic solutions. They are forming
an organizing center producing a horseshoe map and chaos in Hy + Hsz + Hj.
So, the normal form contains only two integrals.

Later, Christov [1] showed by algebraic methods that Hy+H3 is already non-
integrable, but the consequences for the dynamics are not yet clear. Technically,
this is his most complicated case.

6 Discussion and consequences

In two DOF the Hamiltonian normal form is integrable to any order; this
restricts the chaos near stable equilibrium to exponentially small sets between
the invariant tori.
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For three and more DOF, the situation is more complicated. If the nor-
mal form is integrable, chaos is restricted to sets that are algebraically small
with respect to the small parameter that scales the energy with respect to
stable equilibrium. We would like to distinguish between various kinds of non-
integrability near equilibrium. The chaos is usually localized near homoclinic
intersections of stable and unstable manifolds.

The phenomenon is most striking after a Hamiltonian-Hopf bifurcation of a
periodic solution has taken place, see for the bifurcation diagram fig. 2.

double eigenvalues - |

Hamiltonian—Hopf bifurcation

Fig. 2. As a parameter varies, eigenvalues on the imaginary axis become coincident
and then move into the complex plane.

Consider the following explicit examples of the 1 : 2 : 3 resonance:

1 3
H(p.q) = 5 (07 +4i) + (5 + 63) + 503 + @3) + Hs(p, ),

H3(p,q) = —Q%(CLQQQ + asqs) — qg(clfh + ¢3q3) — bq1G23-

We will consider two cases. If as > b, analysis of the normal form shows that
the (p2, g2) normal mode is unstable of type HH (hyperbolic-hyperbolic or 4 real
eigenvalues). If as < b the (p2, ¢2) normal mode is unstable of type C (complex
eigenvalues). The Ha(p, q)(t) time series is shown in figs. 3 and fig 4. Both
time series display chaotic behavior, but the case of instability C involves the
Devaney-Shilnikov bifurcation producing strong chaotic behaviour; for more
information see [3].
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