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Abstract. Lagrangian data can provide relevant information on the advection and
diffusion properties of geophysical flows at different scales of motion. In this study,
the dispersion properties of an ensemble of trajectories transported by a surface ocean
flow are analyzed. The data come from a set of Lagrangian drifters released in
the South Brazilian Bight, during several oceanographic campaigns. Adopting a
dynamical systems approach, the attention is primarily focused on scale-dependent
indicators, like the finite-scale Lyapunov exponent. The relevance of mechanisms like
two-dimensional turbulence for the dispersion process is addressed. Some deviations
from the classical turbulent dispersion scenario in two-dimensions are found, likely
to be ascribed to the nonstationary and nonhomogeneous characteristics of the flow.
Relatively small-scale features (of order 1-10 km) are also considered to play a role
in determining the properties of relative dispersion as well as the shape of the kinetic
energy spectrum.
Keywords: Turbulent transport, Lagrangian dispersion, Geophysical flows, Oceanic
turbulence.

1 Introduction

Experimental campaigns involving Lagrangian drifters provide useful informa-
tion to test model and theories of geophysical fluid dynamics, as well as to
characterize the advection and diffusion properties of flows in applications. In
an oceanographic context, for instance, predicting the spreading of a pollutant
or the distribution of a biological population (e.g., phytoplankton or fish larvae)
transported by surface currents represent both a challenging scientific task and
a matter of general interest.

In the past years, an amount of Lagrangian data about the South At-
lantic Ocean (SAO) was collected thanks to the First GARP Global Exper-
iment drifters, released following the major shipping lines, and to the Southern
Ocean Studies drifters, deployed in the Brazil-Malvinas Confluence. These
data allowed estimates of eddy kinetic energy, integral time scales and diffu-
sivities [1,2]. Despite the relatively uniform coverage, the boundary currents
resulted poorly populated by buoys. Furthermore, the majority of previous
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studies about drifters in the South Atlantic have concerned one-particle statis-
tics only. While single-particle statistics give information on the advective
transport associated to the largest and most energetic scales of motion, two (or
more) particle statistics are needed to access information about the dominant
physical mechanism acting at a certain scale of motion (chaotic advection,
turbulence, diffusion). In a previous study [3], we considered both one and
two-particle statistics to investigate the advective and diffusive properties of
the surface currents explored by an ensemble of drifters released in proximity
of the coast of Brazil during a project called MONDO (Monitoring by Ocean
Drifters), for the environmental assessment on an oil drilling operation. The
analysis of trajectory pair dispersion revealed some deviations, at scales smaller
than approximately 10 km, from the behavior expected within a classical two-
dimensional (2D) turbulence scenario. Interestingly, such deviations suggest
that motions in this range of scales would be more energetic than predicted by
2D turbulence. However, due to limited statistics, the results were not con-
clusive, i.e. no clear scaling behavior of appropriate statistical indicators was
detected below 10 km.

In this study we revisit the analysis of trajectory pair dispersion in the
Southwestern Atlantic Ocean using a larger data set, corresponding to drifter
trajectories coming from environmental assessment projects of oil drilling op-
erations (including the first MONDO project) and Projeto AZUL [4], a pilot
operational oceanography program in the region. The main goal of the present
work is to attempt making a step forward in the understanding of relative dis-
persion at scales smaller than 10 km, and discuss the consistency of the data
analysis with classical turbulence theory predictions. The paper is organized as
follows. In Section 2 we recall the classical picture of turbulent dispersion and
we introduce the statistical indicators of Lagrangian dispersion that we will
consider. In Section 3 we provide a description of the data set. In Section 4
we report the results of our data analysis, and in Sec. 5 we compare it with
that issued from numerical simulations of the Lagrangian dispersion process.
Finally, in Section 6 we provide some concluding remarks.

2 Turbulence and relative dispersion

In the quasi-geostrophic (QG) approximation, valid for relative vorticities much
smaller than the ambient vorticity due to the Earth’s rotation, theoretical ar-
guments would predict that, from the scale of the forcing at which eddies
are efficiently generated by instability, e.g. the Rossby radius of deformation
δR, both a down-scale enstrophy cascade and an up-scale energy cascade take
place. The corresponding energy spectra are respectively given by E(k) ∼ k−3

(for k > kR) and E(k) ∼ k−5/3 (for k < kR) [5,6], where k is the horizontal
wavenumber and kR = 2π/δR. In the ocean, possible deviations from this ideal
double-cascade scenario may come, reasonably, from the nonhomogeneous and
nonstationary characteristics of the velocity field, e.g. in the case of boundary
currents, as well as from ageostrophic effects. At this regard, one presently
debated issue is the role of submesoscale structures [7], velocity field features
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of size ∼ (1−10) km, in determining the shape of the energy spectrum at inter-
mediate scales between the Rossby deformation radius, in the ocean typically
∼ (10−50) km, and the dissipative scales (much smaller than 1 km). It is worth
observing, here, that recent high-resolution 3D simulations of upper-ocean tur-
bulence [8,9] have shown that the direct cascade energy spectrum flattens from
k−3 to k−2 at submesoscales.

Let us now see how different transport mechanisms, like the turbulent phe-
nomenology described above, manifest in a Lagrangian framework, particularly
from a relative dispersion perspective. Relative dispersion is defined as the sec-
ond order moment of the distance R(t) = ||r(1)(t)−r(2)(t)||, at time t, between
two trajectories:

〈R2(t)〉 = 〈||r(1)(t)− r(2)(t)||2〉, (1)

where the average is over all the available trajectory pairs (r(1), r(2)). At scales
smaller than the forcing scale, δ < δR, the presence of a direct enstrophy
cascade implies that the velocity field varies smoothly in space. This means
that, for nonlinear fields, the particle pair separation typically evolves following
an exponential law:

〈R2(t)〉 ∼ e2λLt, (2)

where λL is the (Lagrangian) maximum Lyapunov exponent [10]; a value λL >
0 means Lagrangian chaos. The chaotic regime holds as long as the trajectory
separation remains sufficiently smaller than the characteristic scale δR. Under
these conditions, relative dispersion is often referred to as a nonlocal process
because it is mainly driven by the deformation field at scales much larger than
the particle separation. When δ > δR, on the other hand, the presence of an
inverse energy cascade with spectrum E(k) ∼ k−5/3 implies a rough velocity
field; in this case one expects

〈R2(t)〉 ∼ t3, (3)

that is Richardson superdiffusion [11]. This dispersion regime is said to be local,
because the growth of the distance between two particles is now controlled by
local velocity differences, i.e. mean gradients on a finite scale of the order of
the particle separation. In the limit of very large particle separations, namely
larger than any scale of motion, the two trajectories are sufficiently distant
from each other to be considered uncorrelated and the mean square relative
displacement behaves like:

〈R2(t)〉 ' 4KEt, for t→∞ (4)

where KE is the asymptotic eddy-diffusion coefficient [11]. At any time t, the
diffusivity K(t) can be defined as:

K(t) =
1

4

〈
dR2

dt
(t)

〉
=

1

2

〈
R(t)

dR

dt
(t)

〉
(5)

with K(t)→ KE for t→∞.
Relative dispersion is a fixed-time indicator. This involves averaging, at a

given time, particle separations that can be very different, which can be prob-
lematic for multiscale turbulent flows, especially in a local dispersion regime.
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Another approach, allowing to disentangle contributions to the dispersion pro-
cess from different scales, is to resort to indicators that are, instead, computed
as fixed-scale averages. The finite-scale Lyapunov exponent (FSLE) has been
formerly introduced as the generalization of the maximum Lyapunov exponent
(MLE) λ for non-infinitesimal perturbations [12]. If δ is the size of the pertur-
bation on a trajectory in the phase space of a system, and 〈τ(δ)〉 is the phase
space averaged time that δ takes to be amplified by a factor ρ > 1, then the
FSLE is defined as

λ(δ) =
1

〈τ(δ)〉
ln ρ. (6)

The quantity τ(δ) is the exit time of the perturbation size from the scale δ,
and it is defined as the first arrival time to the scale ρ · δ, with ρ ∼ O(1).
The evolution equations of Lagrangian trajectories form a dynamical system
whose phase space is the physical space spanned by the trajectories. In this
context, the analysis of relative dispersion can be treated as a problem of finite-
size perturbation evolution, with scale-dependent growth rate measured by the
FSLE. By a dimensional argument, if relative dispersion follows a 〈R2(t)〉 ∼
t2/β scaling law, then the FSLE is expected to scale as λ(δ) ∼ δ−β . For example,
in case of standard diffusion we expect β = 2; for Richardson superdiffusion,
β = 2/3; in ballistic or shear dispersion we have β = 1. Chaotic advection
means exponential separation between trajectories, which amounts to a scale-
independent FSLE λ(δ) = constant, i.e. β → 0. In the limit of infinitesimal
separation, the FSLE is nothing but the MLE, i.e. λ(δ) ' λL.

An indicator related to the FSLE is the mean square velocity difference
between two trajectories as function of their separation. Indicating with r(1),
r(2), v(1), v(2) the positions and the Lagrangian velocities of two particles 1
and 2 at a given time, we define the finite-scale relative velocity (FSRV) at
scale δ,

〈[∆V (δ)]
2〉 = 〈

[
v(1) − v(2)

]2
〉 (7)

where the average is over all trajectory pairs fulfilling the condition R(t) =
||r(1)(t) − r(2)(t)|| = δ at some time t. From the FSRV a scale-dependent

diffusivity can be formed as K(δ) = (1/2)δ〈[∆V (δ)]
2〉1/2 and compared to the

classical time-dependent diffusivity K(t) defined in (5).

3 Drifter data set

The data used in this study come from a set of 175 satellite-tracked ocean
drifters deployed at Campos and Santos Basins - Southeastern Brazil - for
environmental assessments of oil and gas activities (MONDO projects), and
from Projeto AZUL [4], a pilot operational oceanography project for the re-
gion. The period of analysis ranges from September 2007 to September 2014.
Deployments carried out during MONDO projects occurred from 2007 to 2012
(with the exception of 2008), while deployments from Projeto AZUL started in
2013. Part of the drifters were deployed in clusters of 3 to 5 units, with initial
pair separations smaller than 1 km, in order to study dispersion properties (as
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performed in [3]). Other deployments were targeted at dynamic features of
the region like eddies and meanders and consisted in releasing either a single
buoy at a time or groups with greater initial pair separations. All drifters are
of SVP (Surface Velocity Program) type [13], with an underwater drogue at-
tached to a surface buoy, an arrangement designed to minimize wind slippage
and to represent the average current of the top 20-m layer of the ocean. Each
drifter is equipped with a GPS device and iridium communication, allowing
for a 7 m accuracy of the position and a fixed 3 h acquiring rate. Data were
quality controlled as proposed by the Global Drifter Program [14] to remove
spurious values and to assure that trajectories pertain to the period when the
drifter was in the water and with the drogue attached. Resulting trajectory
durations vary from 30 to 671 days, with a mean of 180 days and a standard
deviation of 132 days. In order to remove high-frequency components, a Black-
man low-pass filter of 25 h was applied to the data. Despite the heterogeneity
of the deployment strategies and frequency, the 175 trajectories analyzed pro-
vide a rather good sampling of the southwestern corner of the South Atlantic
gyre and suffice for two-particle statistics studies. Trajectories and deployment
locations are presented in Fig. 1.

The domain explored by the drifters mainly corresponds to that of the
southward flowing Brazil Current and to the area where this meets the north-
ward flowing Malvinas Current, forming the Brazil-Malvinas Confluence, a
highly energetic zone playing an important role in weather and climate of South
America. More details about the local oceanography can be found in [3] and
references therein. Here we only recall that this is an area of intense mesoscale
activity with eddies detaching from both sides of the flow and that the first
internal Rossby radius of deformation has a meridional variation in the range
(20− 40) km, in the region.

Fig. 1. Overall view of drifter trajectories. The larger red dots indicate the La-
grangian origins of trajectories.
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4 Analysis of two-particle statistics

In this section we present the results of the data analysis on two-particle statis-
tics. Distances between two points on the ocean surface are calculated as great
circle arcs, according to the spherical geometry standard approximation. The
available statistics is limited by finite lifetime of trajectories and irregular de-
ployments of drifters in time. Hence, in order to increase the statistics, besides
the original pairs we also consider chance pairs, that is pairs that happen to
be sufficiently close to each other at an arbitrary instant of time after their
release [15].

Relative dispersion is reported in the left panel of Fig. 2 for three different
initial separations. The numbers of pairs counted in the statistics depends on
the initial threshold: 64 for R(0) ≤ 2 km, 77 for R(0) ≤ 5 km and 91 for
R(0) ≤ 10 km. The dependence of 〈R2(t)〉 on R(0) is well evident. The early
regime is shown in the right panel and it does not display any clear exponential
growth of 〈R2(t)〉. In the opposite limit of very large times, corresponding
to separations δ ≥ (250 − 300) km, some tendency towards a linear scaling,
indicating diffusive behavior, is found. In the intermediate range between these
two, the scaling of relative dispersion is not far from t3, as for Richardson
superdiffusion, but the growth is somehow smaller.
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Fig. 2. Drifter relative dispersion 〈R2(t)〉 (left panel) and its early regime (right
panel) for initial separations as in the legend. The time sampling is ∆t = 1/8 day.
Error bars are the standard deviations.

Relative diffusivity in the zonal and meridional directions, for R(0) ≤ 2 km,
is plotted in Fig. 3. In the intermediate time range between 10 and 100 days
the behavior of K(t) approaches a t2 law, as expected in the Richardson disper-
sion regime. The diffusivity in the meridional direction is found to be larger,
reflecting the anisotropy of the flow.

We now present the results obtained with fixed-scale indicators. These have
been evaluated for the same initial thresholds, R(0) ≤ 2, 5, 10 km. The density
of scales is fixed by setting ρ = 1.3 or ρ =

√
2, representing a good compromise

between the finest possible scale resolution and the largest possible number of
pairs per threshold to ensure convergence of the statistics. The results do not
strongly depend on the precise value of the amplification factor. The maximum
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Fig. 3. Drifter relative diffusivity K(t) for zonal and meridional components, for
initial separations R(0) ≤ 2 km. The t2 scaling corresponds to the Richardson regime.
The time sampling is ∆t = 1/8 day.

number of pairs considered varies with the initial threshold: 64 for R(0) ≤ 2 km,
77 for R(0) ≤ 5 km, 90 for R(0) ≤ 10 km.

The FSLE is plotted in Fig. 4; the comparison of left and right panels
(ρ = 1.3 and ρ =

√
2, respectively) clearly shows the robustness of results with

respect to the value of ρ. In the mesoscale range δ > δR above the deformation
radius, here reasonably estimated as δR ' 30 km, the FSLE exhibits a power
law scaling δ−2/3 compatible with Richardson superdiffusion and local disper-
sion. At scales of the order of the deformation radius δ ≈ δR, the FSLE is close
to a constant value λ(δ) ' 0.15 day−1, suggesting exponential separation and
a less local dispersion process. These results are in good agreement with those
previously found, in the same scale ranges, using data from the first MONDO
project [3]. In principle, they could support a classical double-cascade scenario
with k−5/3 and k−3 kinetic energy spectra in the inverse energy cascade and
in the direct enstrophy cascade, respectively. However, in the submesoscale
range δ ' (1− 10) km well below δR we find a behavior close to λ(δ) ∼ δ−1/2,
implying enhanced scale-dependent dispersion rates. We observe, furthermore,
that such a power-law scaling of the FSLE would correspond to a rather flat
kinetic energy spectrum in k−2. At the smallest sampled scales (δ < 1 km) the
FSLE tends to level off, which is more clearly seen for ρ = 1.3 (left panel of
Fig. 4). However, we remark that on these scales the resulting values are likely
affected by poorer statistics and filtering issues (the time scale 1/λ(δ) ≈ 1 day
is of the order of the filtering time window of 25 h).

The computation of the mean square finite size relative velocity is reported
in Fig. 5 (left panel). The Lagrangian velocity components are obtained from
the drifter trajectories by a standard finite differencing method. The FSRV is
consistent with Richardson dispersion for scales larger than the Rossby radius,
where it scales as δ2/3. In a rather narrow intermediate range (δ ≈ δR) it gets
closer to a δ2 behavior, suggesting exponential separation. In the submesoscale
range (1−10) km, on the other hand, it appears to scale as δ, which is consistent
with a k−2 kinetic energy spectrum and the FSLE behavior found in the same
scale range. These results support a classical double-cascade phenomenology
only at scales comparable to the Rossby radius or larger, while they suggest
more energetic submesoscales well below δR. From the FSRV an “equivalent
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Fig. 4. FSLE for different values of R(0), as in the legend, and amplification factor
ρ = 1.3 (left panel) and ρ =

√
2 (right panel). The δ−2/3 and δ−1/2 scalings respec-

tively correspond to Richardson law and a k−2 spectrum. The horizontal dashed line
corresponds to λ(δ) ' 0.15 day−1. Error bars are the standard deviations of the mean
values.

Lagrangian spectrum” EL(k) = 〈[∆V (k)]2〉/k can be dimensionally defined
replacing δ with 2π/k. This quantity returns the same picture, in k space, as
that found with the FSRV (Fig. 5, right panel).
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Fig. 5. Left: FSRV computed together with the FSLE. The scalings δ2, δ and δ2/3

correspond to k−3, k−2 and k−5/3 energy spectra, respectively. Error bars are the
standard deviations of the mean values; here ρ = 1.3. Right: Equivalent Lagrangian
spectrum defined from the FSRV. The Rossby radius δR ' 30 km corresponds to
wavenumber k ' 0.2.

Finally, in Figure 6 we compare the diffusivity computed as a fixed-time
average, Eq. (5), with that computed as a fixed-scale average from the FSRV.
Both quantities are plotted as function of the separation between two drifters:
K(δ) = (1/2)δ〈[∆V (δ)]〉1/2 with δ as the independent variable, and K(t) versus
δ = 〈R2(t)〉1/2 where the independent variable is the time t. The δ4/3 regime in
the mesoscales range and the δ2 one in the narrow intermediate range δ ≈ δR
(here less evident than with other indicators) are respectively consistent with
Richardson superdiffusion and nonlocal dispersion. Hence, they may support
the presence of an inverse cascade with E(k) ∼ k−5/3 (at scales δ > δR)
and a direct cascade with E(k) ∼ k−3 (at scales δ ≈ δR), as predicted by
QG turbulence theory. Nevertheless, the δ3/2 scaling, corresponding to a k−2

spectrum, found for δ ' (1 − 10) km confirms that dispersion is local in this
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Fig. 6. Diffusivity as a function of the separation: fixed-time average K(t) vs δ =
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scale range and that submesoscales are more energetic than expected in a direct
enstrophy cascade.

5 Numerical results

We now compare the results of the drifter data analysis with those issued from
numerical simulations of the Lagrangian dispersion process in the same geo-
graphical area in the period 20/9/2007-21/10/2008 (corresponding to MONDO
project). More details about the numerics can be found in [3]. Here we simply
recall that O(102) virtual trajectories are considered and that the spatial res-
olution of the model (HYCOM, see e.g. [16]) generating the advecting surface
flow is approximately 7 km.

Two numerical experiments, that we indicate with E1 and E2, were con-
ducted. In the first one (E1) the drifters are uniformly deployed in an area
of about (10× 10) km2 centered around a position corresponding to the mean
initial location of MONDO drifters. The average initial distance between syn-
thetic particle pairs is 〈R(0)〉 ' 5 km. The lifetime of trajectories is between
150 days and 200 days. In the second experiment (E2) the initial distribu-
tion of the drifters is characterized by larger separations, namely comparable
to the spacing of the numerical grid (∼ 10 km); the average initial distance
between particle pairs is 〈R(0)〉 ' 40 km and the duration of trajectories is
(250− 400) days.

For the comparison between the results obtained from real and model tra-
jectories, here we focus on the FSLE and the FSRV, Fig. 7, but a similar
picture is returned by other indicators too. To increase the statistics we now
select trajectories with a larger initial separation: R(0) < 50 km (similar results
are found for smaller values of R(0), though they are more noisy). Moreover
we set the amplification factor to ρ =

√
2. The behaviors of both FSLE and

FSRV support a double-cascade scenario on scales comparable to those found
with actual drifters. The plateau value of FSLE at scales O(δR) is very close
to the one found in the real experiments, λ(δ) ' 0.15 day−1. At larger scales,
for both numerical experiments E1 and E2 the behavior of FSLE is compatible
with λ(δ) ∼ δ−2/3, supporting Richardson dispersion and an inverse energy
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cascade process. Experiment E2, which is characterized by longer trajectories,
shows a clearer scaling, thanks to a larger number of pairs reaching this range
of large scales. Mean square velocity differences in the same range of scales dis-
play a reasonably clear δ2/3 scaling, also supporting an inverse energy cascade,
with values close to those found with actual drifters. At separations smaller
than the Rossby deformation radius, both indicators point to the presence of
a direct enstrophy cascade: the FSLE is constant and the FSRV behaves as
〈[∆V (δ)]2〉 ∼ δ2. This only partially agrees with the results found for real
drifters, namely only in the scale range 10 km < δ < 30 km. At subgrid scales,
velocity field features are not resolved and relative dispersion is necessarily a
nonlocal exponential process driven by structures of size of the order of (at
least) the Rossby radius. Correspondingly, the FSLE computed on model tra-
jectories does not display the enhanced dispersion regime (with λ(δ) ∼ δ−1/2)
at scales smaller than 10 km.
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Fig. 7. FSLE (left panel) and FSRV (right panel) for R(0) ≤ 50 km and ρ =
√

2 for
real and virtual drifters from numerical experiments E1 and E2. For virtual drifters
errors are on the order of point size. The large-scale saturation of the FSLE (E1)
depends on the value of the trajectory integration time.

6 Conclusions

In this study we considered a set of surface drifter trajectories to analyse relative
dispersion in the Southwestern Atlantic Ocean, by means of both fixed-time and
fixed-scale statistical indicators. Fixed-time indicators, like the mean square
displacement and the relative diffusivities as functions of the time lag from the
release, point to a long-time regime compatible with Richardson superdiffusion,
at least to some extent. As for the early regime of dispersion, no clear evidence
of exponential separation is detected.

Scale-dependent indicators (FSLE, FSRV and related quantities) seem to
more clearly reveal the different dispersion regimes, compatibly with the avail-
able statistics and the nonhomogeneous and nonstationary characteristics of
the flow. In the mesoscale range δ ≈ (30 − 300) km, both the FSLE and the
FRSV display scaling behaviors compatible with Richardson superdiffusion and
a 2D inverse energy cascade scenario. In a rather narrow range of scales close
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to the Rossby radius of deformation δR ' 30 km, a more nonlocal dispersion
regime is found, indicative of exponential separation and, possibly, compatible
with a 2D direct enstrophy cascade. However, at scales considerably smaller
than δR, particularly for δ ≈ (1 − 10) km, enhanced relative dispersion is ob-
served, corresponding to the scaling λ(δ) ∼ δ−1/2 of the FSLE. Such a local
dispersion regime suggests energetic submesoscale motions compatible with a
kinetic energy spectrum E(k) ∼ k−2, as found in high-resolution numerical
simulations of upper-layer ocean turbulence [8,9]. It is interesting to observe
that evidences of increased dispersion rates and energetic submesoscales have
been recently reported also in other studies based on Lagrangian drifter data,
in different regions of the world oceans [17–19].

The data analysis was compared with the results of numerical simulations
of the Lagrangian dynamics performed with a general circulation model. The
comparison shows that the characteristics of the relative dispersion process
found with real drifters are consistent with those obtained with virtual ones
for scales δ & δR ' 30 km. The model, however, fails to reproduce a local
dispersion regime in the submesoscale range (1 − 10) km, of course due to its
finite spatial resolution (which is of the order of 10 km) and does not allow to
address the dynamical role played by very small scale flow features.

We would like to conclude mentioning that further investigation on subme-
soscale processes would be extremely useful to clarify the origin of the observed
deviations from classical QG turbulence. In particular, we believe that taking
into account seasonality effects could allow to get more insight on relative dis-
persion at submesoscales in the region. This is left for future work.
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