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Abstract: A cardiorespiratory system with a strong internal interaction, when a 

respiratory tract was modeled as a self-oscillating system under an impulsive influence of 
heartbeats, was studied. The internal interaction gives rise to chaotic steady-state regimes. 

Analysis of bifurcation curves of the largest Lyapunov exponent, projections of phase 

portraits, temporal realizations and power spectrums showed the basic laws of dynamics 

of the cardiorespiratory system. The chaotic dynamics of heartbeat and respiratory 
systems are in good correspondence with an experimental information of healthy man.  
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1. Introduction 
The human cardiovascular system directly and indirectly interacts with different systems 

of entire organism. Realized self-oscillations in a cardiovascular system are under an 
activity of practically all organs (see [2-5, 9-11]). There are numerous interactions of 

heart rhythms between itself and with an internal and external environment. Cardiac and 

respiratory rhythms form up during embryo stage, and even the brief break of these 

rhythms after a birth results in death. 
Existence of breathing and heart rhythm synchronization effect, found experimentally in 

the cardiovascular system, is well-proven by Toledo [10] in 2002. Dynamic process of 

mutual synchronization can be realized only in a case of presence of a subsystem 

mechanical interaction. So, this effect display testifies the presence of both direct and 
feedback interactions between the cardiovascular and respiratory systems. Namely these 

direct and feedback interactions are main goal of our modelling and study in present 

paper. 

 

2. The mathematical model with strong interaction  

 
A heart system and organism of man in general have one of major descriptions of 

activity, such as a blood pressure dynamics. His time-history, along with 

electrocardiogram (ECG), is an important information generator for research and 

diagnostics of laws of the cardiovascular system. The task of mathematical model 
construction, describing the dynamics of arterial blood pressure, is far from completion. 

The DeBoer model of a cardiovascular system is under direct action of a respiratory 

system (what corresponds to experimental data) [3]. This model was substantially 

developed. The sinus node responsiveness (and other detailed factors) is taking into 
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account in the work of Seidel and Herzel [9] (the so-called SH-model). In this model 
chaotic dynamics was found in dynamics of a cardiosystem. 

The models of  DeBoer and SH only considered direct respiratory influence on 

heartbeats.  The SH-model got further development [5], where an effect of heartbeat and 
the resultant changes in the baroreceptor afferent activity to the SH-model are added and 

the cardiorespiratory synchronization found due to this modification. Interaction of blood 

pressure and amplitudes of breathing oscillations revealed in accordance with principles 

of optimum control in the DeBoer model is investigated in the Grinchenko-Rudnitsky 
model [2]. This model allowed, in particular, to explain appearance of a peak on the 

Meyer frequency in the spectrums of pressure oscillations and synchronization of cardiac 

and respirator rhythms. 

 

 
 

Fig. 1. Schema of a self-oscillating system as a generator of central type. 

 
However, this model does not consider the reverse mechanical influence effect of the 
heartbeat changes on a breathing phase (frequency). In the present study, we add to the 

DeBoer model a self-oscillating system (which describes dynamics of the respiratory 

system as a generator of central type [4], shown in Figure 1) which is under impulsive 

influence of heartbeat. 
The DeBoer model describes the followings main characteristics of  the heartbeat  

system: systolic pressure S , diastolic pressure D, R-R interval I and arterial time 

constant T (in a state of rest for a healthy man S=120 mmHg, D=80 mmHg, 

I=800 ms, T=1500 ms).  This mathematical model has five discrete nonlinear maps 

and contains only a direct mechanical influence of the respirator system on the 
cardiosystem. It can be written in the form: 
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real time, A=3 mmHg is a breathing amplitude, f=0.25 Hz is a breathing frequency, 

01 00 0/ exp( / ),c D TS I  2 0 0 0 ,c S D I    3 0 0 ( ),vc I S G G    

0.016   mmHg,  18G   ms/mmHg, 9G   ms/mmHg, 9G   

ms/mmHg, 4,     0,v   is equal to 0 if frequency of heartbeat is less then 

75  beat/min, and v  is equal to 1, if frequency is more than 75 beat/min. Here we use a  

parameter 01 00 0/ exp( / )c D S TI as it was in the original DeBoer model [3], it 

was different in our previous paper [6]. 

 

 
Fig. 2. The largest non-zero Lyapunov exponent of the complex system 
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We suppose that a healthy man at rest breathes periodically with a permanent frequency 
and an amplitude of motions of thorax. In that case a breathing process can be described 

as the self-oscillating system [4], which has a steady limit circle. Thus, equations of the 

Zaslavskiy map could be used for the mathematical modeling of  such system. Famous 
Zaslavsky map is the system of equations [8, 12] which describes the dynamics of an 

amplitude nr  and a phase n  of the system (in which periodic self-oscillations with a 

frequency   are realized) which is under T-periodic impulsive action of constant 

intensity  .  Such impulsive action is very similar to feedback action of  the heartbeat  

system on breathing process. The system has the following form: 
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where ,   are constant parameters. 

In our present model these equations are used to describe changes of an amplitude and 

phase of a respiratory system effect for every R-R interval with an intensity proportional 

to systolic pressure: 0( ) :nS S     
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where I   is R-R interval, 0,  ,   are constant parameters of interaction. 

Thus, we study the dynamics of the model of cardiorespiratory system, which consists of  

the DeBoer model with direct respiratory influence ( )sin ,i iA r   and with reverse 

influence modeled by the Zaslavskiy map system. 

 

 
                        a                                           b                                          c      

Fig. 3. Graphs of simulated systolic pressure data a), power spectra b) and projection of 

the phase portrait c) for 0.2   
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                        a                                           b                                          c      

Fig. 4. Graphs of simulated systolic pressure data a), power spectra b) and projection of 

the phase portrait c) for 0.8   

 

 
                        a                                           b                                          c      

Fig. 5. Graphs of simulated systolic pressure data a), power spectra b) and projection of 

the phase portrait c) for 1   

 

3. Numerical simulations results  
The following values of variables and constants are used in our numerical simulations: 

[0] 0.53,I    [ ] 1.08,S j    0,...,6,j   [0] 0,r   [0] 0,   0.001   

1/ms, 0.001   1/msmmHg. In order to study steady-state regimes the largest non-

zero Lyapunov exponent [1, 7] was calculated. The dependence of the largest non-zero 

Lyapunov exponent of the system  on values of the bifurcation parameter   is shown in 

Figure 2. The dynamics of the system changes with increasing of this parameter. There is 

the region where this Lyapunov exponent is equals to zero ( 0.2  ), what means that a 

limit circle is realized as steady-state regimes [1, 7]. We emphasize that   describes 

intensity of heart influence on a respiratory system. The next Figure 3 illustrates a 

behaviour of systolic pressure, power spectra and projection of the phase portrait for this 

value of intensity. The spectrum in Figure 3 b) has discrete peaks one of which 
corresponds to a peak on the Meyer frequency in the spectrum. So that, graphs indicate 

that there are regular regimes in the system. With increasing value of  the transition to 

chaos occurs. Thus,  at  =0.8 chaos is realized in the system, when the spectrum in 

Figure 4 b) is continuous and the projection of the phase portrait occupies some area in 

the  phase space. 
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Finally, at 1.0   the largest non-zero Lyapunov exponent is steady positive and the 

chaotic regime is fully developed, the power spectrum is continuous (Figure 5 b). So we 

have found such steady-state basic regimes:  at 0.2   periodic regime (Figure 3),  

at 0.8    and for 1.0   chaotic regimes (Figure 4 and Figure 5). 

 

4. Conclusions 
On the basis of the DeBoer model an interaction of the heartbeat and the respiratory 

system (as dissipative Zaslavskiy map) is studied and the complex model of cardiosystem 
is built out. This model takes into account both direct and reverse influence of  

subsystems – cardiovascular and respiratory. The methods of modern theory of the 

dynamical systems are used to study laws of the steady-state regimes of the complex 

model with strong interaction. The chaotic regimes were found out. The dynamics of 
heartbeat and respiratory systems are in good correspondence with experimental 

information of healthy man. Found irregularities of phase trajectories of the complex 

model depend on intensity of heart rhythm influence on breathing, what is well known 

characteristic for the dynamics of the cardiovascular system of healthy man. 
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