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Abstract In this article, we give the exact interval of the cross section of the Multi-
brot sets generated by the polynomial zp + c where z and c are complex numbers and
p ≥ 2 is an even integer. Furthermore, we show that the same Multibrots defined
on the hyperbolic numbers are always squares. Moreover, we give a generalized 3D
version of the hyperbolic Multibrot set and prove that our generalization is an octa-
hedron for a specific 3D slice of the tricomplex polynomial ηp + c where p ≥ 2 is an
even integer.
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Introduction

Multicomplex dynamics appears for the first time in 2000 (see [11] and [12]).
The author of these articles used a commutative generalization of complex
numbers called the bicomplex numbers, denoted M(2), BC or T, to extend the
well known Mandelbrot set in four dimensions and to give a 3D version of it.

Another way to generalize the Mandelbrot set is to consider the Multibrot
sets (also called Mandelbrot set). In [5], [7], [9] and [18], a Multibrot set of
order p is defined as

Mp :=
{
c ∈ C :

{
Qn

p,c(0)
}∞

n=1 is bounded
}
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where Qp,c(z) = zp + c with z, c ∈ C and p ≥ 2 is an integer. For p = 2, this
is exactly the classical Mandelbrot set. It is well known that the Mandelbrot
set is connected and it crosses the real axis on the interval [−2, 1

4 ]. Moreover,
from [9] and [10], we know that

Mp ∩ R =
[
− p− 1
pp/(p−1) ,

p− 1
pp/(p−1)

]
(1)

for any odd integer p > 2. The proof was based on a precise analysis of the roots
of the polynomial gc(z) := zp − z + c. However, the following characterization

Mp ∩ R =
[
−21/(p−1),

p− 1
pp/(p−1)

]
(2)

for an even integer p ≥ 2 was left unresolved in [10]. In this article, we use a new
approach to prove that the Conjecture (2) is true and has many consequences
in tricomplex dynamics.

The article is separated into three sections. In the first section, we recall
some basics of the theory of tricomplex numbers. In the second section, we give
the proof of the main theorem related with the Conjecture (2). In the third
section, we prove that the Hyperbrot set of order p defined as

Hp :=
{
c ∈ D :

{
Qm

p,c(0)
}∞

m=1 is bounded
}

(3)

where D is the set of hyperbolic numbers (see [13], [15] and [16]) is a square
when the degree p ≥ 2 is an even integer. Finally, we define the generalized 3D
version of the Hyperbrot sets and prove that they are regular octahedrons.

1 Preliminaries

In this section, we begin by introducing the tricomplex space M(3). One may
refer to [1], [3], [4], [8] and [17] for more details on the next properties.

A tricomplex number η is composed of two coupled bicomplex numbers ζ1,
ζ2 and an imaginary unit i3 such that

η = ζ1 + ζ2i3 (4)

where i23 = −1. The set of such tricomplex numbers is denoted by M(3). Since
ζ1, ζ2 ∈ M(2), we can write them as ζ1 = z1 + z2i2 and ζ2 = z3 + z4i2 where
z1, z2, z3, z4 ∈M(1) ' C. In that way, (4) can be rewritten as

η = z1 + z2i2 + z3i3 + z4j3 (5)

where i22 = −1, i2i3 = i3i2 = j3 and j2
3 = 1. Moreover, as z1, z2, z3 and z4 are

complex numbers (in i1), we can write the number η in a third form as

η = a+ bi1 + (c+ di1)i2 + (e+ f i1)i3 + (g + hi1)j3

= a+ bi1 + ci2 + dj1 + ei3 + f j2 + gj3 + hi4 (6)
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where i21 = i24 = −1, i4 = i1j3 = i1i2i3, j2 = i1i3 = i3i1, j2
2 = 1, j1 =

i1i2 = i2i1 and j2
1 = 1. After ordering each term of (6), we get the following

representations of the set of tricomplex numbers:

M(3) := {η = ζ1 + ζ2i3 : ζ1, ζ2 ∈M(2)}
= {z1 + z2i2 + z3i3 + z4j3 : z1, z2, z3, z4 ∈M(1)}
= {x0 + x1i1 + x2i2 + x3i3 + x4i4 + x5j1 + x6j2 + x7j3

: xi ∈M(0) = R for i = 0, 1, 2, . . . , 7} . (7)

Let η1 = ζ1 + ζ2i3 and η2 = ζ3 + ζ4i3 be two tricomplex numbers with
ζ1, ζ2, ζ3, ζ4 ∈ M(2). We define the equality, the addition and the multipli-
cation of two tricomplex numbers as

η1 = η2 iff ζ1 = ζ3 and ζ2 = ζ4 (8)
η1 + η2 := (ζ1 + ζ3) + (ζ2 + ζ4)i3 (9)
η1 · η2 := (ζ1ζ3 − ζ2ζ4) + (ζ1ζ4 + ζ2ζ3)i3. (10)

Table 1 shows the results after multiplying each tricomplex imaginary unity
two by two. The set of tricomplex numbers with addition + and multiplication
· forms a commutative ring with zero divisors.

· 1 i1 i2 i3 i4 j1 j2 j3

1 1 i1 i2 i3 i4 j1 j2 j3
i1 i1 −1 j1 j2 −j3 −i2 −i3 i4
i2 i2 j1 −1 j3 −j2 −i1 i4 −i3
i3 i3 j2 j3 −1 −j1 i4 −i1 −i2
i4 i4 −j3 −j2 −j1 −1 i3 i2 i1
j1 j1 −i2 −i1 i4 i3 1 −j3 −j2
j2 j2 −i3 i4 −i1 i2 −j3 1 −j1
j3 j3 i4 −i3 −i2 i1 −j2 −j1 1

Table1. Products of tricomplex imaginary units

A tricomplex number has a useful representation using the idempotent ele-
ments γ2 = 1+j3

2 and γ2 = 1−j3
2 . Recalling that η = ζ1+ζ2i3 with ζ1, ζ2 ∈M(2),

the idempotent representation of η is

η = (ζ1 − ζ2i2)γ2 + (ζ1 + ζ2i2)γ2. (11)

The representation (11) of a tricomplex number allows to add and multiply
tricomplex numbers term-by-term. In fact, we have the following theorem (see
[1]):

Theorem 1. Let η1 = ζ1 + ζ2i3 and η2 = ζ3 + ζ4i3 be two tricomplex numbers.
Let η1 = u1γ2 + u2γ2 and η2 = u3γ2 + u4γ2 be the idempotent representation
(11) of η1 and η2. Then,

1. η1 + η2 = (u1 + u3)γ2 + (u2 + u4)γ2;
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2. η1 · η2 = (u1 · u3)γ2 + (u2 · u4)γ2;
3. ηm

1 = um
1 γ2 + um

2 γ2 ∀m ∈ N.

Moreover, we define the norm ‖ · ‖3 : M(3) → R of a tricomplex number
η = ζ1 + ζ2i3 as

‖η‖3 :=
√
‖ζ1‖2

2 + ‖ζ2‖2
2 =

√√√√ 2∑
i=1
|zi|2 +

4∑
i=3
|zi|2 (12)

=

√√√√ 7∑
i=0

x2
i .

According to the Euclidean norm (12), we say that a sequence {sm}∞m=1 of
tricomplex numbers is bounded if and only if there exists a real number M
such that ‖sm‖3 ≤M for all m ∈ N.

Finally, we recall (see [3] and [9]) an important subset of M(3) that is useful
to section 3.

Definition 1. Let ik, il, im ∈ {1, i1, i2, i3, i4, j1, j2, j3} with ik 6= il, ik 6= im
and il 6= im. We define a 3D subset of M(3) as

T(im, ik, il) := {x1ik + x2il + x3im : x1, x2, x3 ∈ R} . (13)

2 Proof of the main theorem

In this section, we show that the intersection of a Multibrot set with the real
line is exactly an interval. Then, our aim is to prove the following result.

Theorem 2. Let p be an even integer with p ≥ 2. Then

Mp ∩ R =
[
−21/(p−1),

p− 1
pp/(p−1)

]
. (14)

The following lemma will be useful.

Lemma 1. Let f : R→ R be a continuous function such that lim infx→∞(f(x)−
x) > 0. Let a := sup {x : f(x) = x} (or a := −∞ if f has no fixed points).
Then, for each x > a, we have fn(x)→∞ as n→∞.

Proof. Since f(x) − x has no zeros in (a,∞) and lim infx→∞(f(x) − x) > 0,
we have f(x) > x for all x > a. Thus, for each x > a, the sequence fn(x) is
increasing. If it does not tend to infinity, then it must tend to a finite limit
b > a, and letting n→∞ in the relation f(fn(x)) = fn+1(x), we get f(b) = b,
contradicting the fact that f(x) > x for all x > a. ut

Proof (of Theorem 2). We first consider the case where c ≥ 0. Observe that
Qp,c is an increasing function on [0,∞). Thus, if Qp,c has a non-negative fixed
point a ≥ 0, then Qp,c maps the interval [0, a] into itself, so Qn

p,c(0) ∈ [0, a] for
all integers n ≥ 1. On the other hand, if Qp,c has no fixed point a ≥ 0, then
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by Lemma 1, Qn
p,c(0)→∞ as n→∞. Thus, c ∈ Mp if and only if Qp,c has a

fixed point a with a ≥ 0.
Now, to say that Qp,c has a non-negative fixed point is equivalent to saying

that gc(x) = xp−x+c has a non-negative zero. Note that gc(x)→∞ as x→∞,
so gc has a non-negative zero if and only if minx≥0 gc(x) ≤ 0. As g′c(0) = −1 <
0, this minimum must be attained at a critical point of gc. The critical points
of gc are the solutions of pxp−1− 1 = 0 and the unique positive critical point is
thus x = (1/p)1/(p−1). Therefore minx≥0 gc(x) = g((1/p)1/(p−1)). In particular,
we have

min
x≥0

gc(x) ≤ 0 ⇐⇒
((

1
p

)p/(p−1)
−
(

1
p

)1/(p−1)
+ c

)
≤ 0

⇐⇒ c ≤ (p− 1)
(

1
p

)p/(p−1)
.

To summarize, we have shown that, for c ≥ 0, we have

c ∈Mp ⇐⇒ c ≤ p− 1
pp/(p−1) . (15)

Now we turn to the case c < 0. Letting gc(x) = xp − x + c once again,
we have gc(0) = c < 0 and gc(x) → ∞ as x → ±∞, so gc has at least two
zeros, one positive and one negative. Moreover, g′c(x) has a unique root, so
in fact gc has exactly two zeros, one positive and one negative. Then Qp,c

has exactly two fixed points, one positive and one negative. Denote by a the
positive fixed point. If Qp,c(c) > a, then by Lemma 1, Qn

p,c(Qp,c(c)) → ∞ as
n → ∞, and thus Qn

p,c(0) = Qn−2
p,c (Qp,c(c)) → ∞ as n → ∞. On the other

hand, if Qp,c(c) ≤ a, then, since Qp,c is decreasing on [c, 0] and increasing on
[0, a], it maps the interval [c, a] into itself, so Qn

p,c(0) ∈ [c, a] for all integers
n ≥ 1. Thus c ∈Mp if and only if Qp,c(c) ≤ a.

Now x > a if and only if x ≥ 0 and Qp,c(x) > x. Therefore,

Qp,c(c) > a ⇐⇒ Qp,c(c) ≥ 0 and Qp,c(Qp,c(c)) > Qp,c(c)
⇐⇒ cp + c ≥ 0 and (cp + c)p + c > cp + c

⇐⇒ cp + c > −c
⇐⇒ cp−1 < −2
⇐⇒ c < −21/(p−1).

Thus, for c < 0,

c ∈Mp ⇐⇒ c ≥ −21/(p−1). (16)

Finally, combining (15) and (16), we obtain the conclusion of the theorem. ut

Figure 1 shows examples of some Multibrot sets.
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(a) M2, [−2, 2]× [−2, 2] (b)M4,
[
−2 1

3 , 2 1
3

]
×
[
−2 1

3 , 2 1
3

]

(c) M6,
[
−2 1

5 , 2 1
5

]
×
[
−2 1

5 , 2 1
5

]
(d) M12,

[
−2 1

11 , 2 1
11

]
×[

−2 1
11 , 2 1

11

]
Figure1. Multibrots for several even integers

3 Consequences of the main theorem

In this section, we use Theorem 2 to prove that the Hyperbrots are always
squares. In addition, we give a generalized 3D version of the Hyperbrot sets
and prove that our generalization is a regular octahedron for even integers with
p ≥ 2.
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3.1 Characterization of the Hyperbrots

In 1990, Senn [14] generated the Mandelbrot set using the hyperbolic numbers.
Instead of obtaining a fractal structure, the set obtained seemed to be a square.
Four years later, in [6], Metzler proved that H2 is precisely a square with
diagonal length 2 1

4 and of side length 9
8
√

2. It was also proved in [10] that
the Hyperbrots are always squares for odd integers greater than 2. In this
subsection, we generalized their results for even integers.

According to the tools introduced in [9] and Theorem 2, we have the fol-
lowing result.

Theorem 3. Let p ≥ 2 be an even integer. Then, the Hyperbrot of order p is
characterized as

Hp =
{
x+ yj ∈ D : |x− tp|+ |y| ≤

lp
2

}
where

tp := −p [(2p)1/(p−1) − 1]− 1
2pp/(p−1) and lp := p [(2p)1/(p−1) + 1]− 1

pp/(p−1) .

Proof. Using the notations and Lemma 7 in [9], and the remark right after,{
Hm

p,c(0)
}∞

m=1 is bounded if and only if the real sequences
{
Qm

p,x−y(0)
}∞

m=1
and

{
Qm

p,x+y(0)
}∞

m=1 are bounded. However, according to Theorem 2, these
sequences are bounded if and only if

−21/(p−1) ≤ x− y ≤ p− 1
pp/(p−1) and − 21/(p−1) ≤ x+ y ≤ p− 1

pp/(p−1) .

Then, subtracting tp from both sides gives the following inequalities

− lp2 ≤ x− tp − y ≤
lp
2 and − lp

2 ≤ x− tp + y ≤ lp
2 . (17)

Moreover, inequalities (17) are equivalent to

|x− tp|+ |y| ≤
lp
2 . (18)

Thus, c = x+ yj ∈ Hp if and only if (18) holds. ut

Figure 2 represents faithfully Theorem 3. We remark that each square is
centered at the point (tp, 0). Moreover, we note that the squares seem to have
a limit set as the even integer p tends to infinity.

Let S(R2) be the collection of non-empty compact subsets of R2 and define
the distance between A and B in S(R2) as

d(A,B) := max
x∈A
{d(x,B)}

= max
x∈A

{
min
y∈B
{‖x− y‖}

}
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(a) H2, [−2, 1] ×[
−3
2 ,

3
2

] (b) H4, [−2, 1] ×[
−3
2 ,

3
2

] (c) H8, [−2, 1] ×[
−3
2 ,

3
2

]

(d) H14, [−2, 1] ×[
−3
2 ,

3
2

] (e) H20, [−2, 1] ×[
−3
2 ,

3
2

] (f) H30, [−2, 1] ×[
−3
2 ,

3
2

]
Figure2. Hyperbrots for several even integers. The black color represents the Hy-
perbrots.

where ‖·‖ is the Euclidean distance on R2. Now, let (S(R2), h) be the so-called
Fractals metric space on R2 where S(R2) is the collection of all non-empty
compact subsets of R2 and h : S(R2) × S(R2) → [0,+∞) is the Hausdorff
distance on the collection S(R2) defined as h(A,B) := max {d(A,B), d(B,A)}.
With these definitions from [2], we have the following theorem.

Theorem 4. Let H := {x+ yj ∈ D : |x|+ |y| ≤ 1} . Then

lim
n→∞

h(H,H2n) = 0.

Proof. Let p ≥ 2 be an even integer. We start by computing d(H,Hp). Let
c := a + bj ∈ H. We now have to find d(c,Hp). If c ∈ Hp, then we have
d(c,Hp) = d(c, c) = 0. If c 6∈ Hp, then it is easy to see that the minimum
occurs on the boundary of Hp. It is also obvious that the maximum of d(c,Hp)
is attained on the boundary of H. Since the sides of H and Hp are parallel,
and tp + l2

2 = p−1
pp/(p−1) < 1, we have that d(c,Hp) attains its maximum at the



Chaotic Modeling and Simulation (CMSIM) 1: 37–48, 2017 45

right corner of H and Hp, that is

d(H,Hp) = |(tp + lp
2 )− 1|.

Similarly, we compute

d(Hp,H) = |(tp −
lp
2 ) + 1|.

Then,

h(H,Hp) = max
{
|( lp2 + tp)− 1|, |(tp −

lp
2 ) + 1|

}
for any even integer p ≥ 2. A simple computation shows that

lim
p→∞

tp = 0, lim
p→∞

1− lp
2 = 0.

Thus,

lim
n→∞

h(H,H2n) = 0.

This completes the proof. ut

3.2 Characterization of the generalized Perplexbrot

In this subsection, we generalize Hyperbrots in three dimensions.
We begin by recalling the definition of the Multibrot sets for tricomplex

numbers (see [9] and [10]).

Definition 2. Let Qp,c(η) = ηp + c where η, c ∈ M(3) and p ≥ 2 an integer.
The tricomplex Multibrot set of order p is defined as the set

Mp
3 :=

{
c ∈M(3) :

{
Qm

p,c(0)
}∞

m=1 is bounded
}

. (19)

Moreover, a principal 3D slice of a Mp
3 set is defined as follows

T p(im, ik, il) :=
{
c ∈ T(im, ik, il) :

{
Qm

p,c(0)
}∞

m=1 is bounded
}

. (20)

Let us adopt the same notation as in [3], [9] and [10] for the generalized Hy-
perbrot, called the Perplexbrot,

Pp := T p(1, j1, j2) = {c = c0 + c5j1 + c6j2 : ci ∈ R and{
Qm

p,c(0)
}∞

m=1 is bounded
}

. (21)

In [10], it is proved that Pp is a regular octahedron for all odd integers p > 2.
We want to extend the result to all even integers p ≥ 2.

First, we need this following lemma.
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Lemma 2. We have the following characterization of the generalized Per-
plexbrot

Pp =
⋃

y∈
[
− lp

2 ,
lp
2

] {[(Hp − yj1) ∩ (Hp + yj1)] + yj2}

where Hp is the Hyperbrot for an even integer p ≥ 2.

Proof. The proof is similar to the one in [10]. We just replace mp by lp in the
proof. ut

As a consequence of Lemma 2 and Theorem 3, we have the following corol-
lary illustrated by Figure 3:

Corollary 1. Pp is a regular octahedron of edges
√

2
2 lp where p ≥ 2 is an even

integer. Moreover, the generalized Perplexbrot can be rewritten as the set

Pp =
{
x+ yj1 + zj2 : (x, y, z) ∈ R3 and |x− tp|+ |y|+ |z| ≤

lp
2

}
. (22)

Figure 3 shows some Perplexbrots in 3-dimensional space. We remark that
they are centered at the point (tp, 0, 0).

The next result is similar to Theorem 4, that is if p→∞, then the sequence
of generalized Perplexbrots converges to a non-empty compact subset of R3.
Theorem 5. Let P :=

{
x+ yj1 + zj2 : (x, y, z) ∈ R3 and |x|+ |y|+ |z| ≤ 1

}
.

Then

lim
n→∞

h(P,P2n) = 0.

Proof. The proof is similar to the two-dimensional case. ut

Conclusion

In this article, we treated Multibrot sets for polynomial of even degrees. The
characterization that we obtained for the intersection of the real line with a
Multibrot set implies that the Hyperbrots and the Perpexbrots for polynomial
of even degrees are squares and regular octahedrons respectively.

This work concludes a sequence of previous works on the same topic. If
we join all the results of this work with results of [9] and [10], we have finally
proved the following theorems.
Theorem 6. Let Mp be the Mandelbrot set for the polynomial Qp,c(z) = zp +
c where z, c ∈ C and p ≥ 2 an integer. Then, we have two cases for the
intersection Mp ∩ R:

i. If p is even, then Mp ∩ R =
[
−2

1
p−1 , (p− 1)p

−p
p−1

]
;

ii. If p is odd, then Mp ∩ R =
[
−(p− 1)p

−p
p−1 , (p− 1)p

−p
p−1

]
.

Theorem 7. The Hyperbrot Hp is a square for any integer p ≥ 2 and the
sequence {Hp}∞p=2 converges to a square with unit half-diagonal. Moreover,
the Perplexbrot is a regular octahedron for any integer p ≥ 2 and the sequence
{Pp}∞p=2 converges to a regular octahedron with unit half-diagonal.
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(a) P2, [−2, 2]3 (b) P12, [−2, 2]3

(c) P20, [−2, 2]3 (d) P30, [−2, 2]3

Figure3. Perplexbrots for several even integers
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