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Abstract. We shall refer shortly to some problems involving stochastic calculus in
connection with the Brownian motion, a very useful model in the study of the systems
and implicitly in the study of the chaotic and complex systems. Finally, an applica-
tion based on the Brownian motion model is presented.
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1 Introduction

Many practical problems conduct us to the following notion: the equation ob-
tained by allowing randomness in the coefficients of a differential equation is
called a “stochastic differential equation”.

Therefore, it is clear that any solution of a stochastic differential equation
must involve some randomness. In other words one can hope to be able to say
something about the probability distribution of the solutions.

At the same time, results on almost sure convergence of stochastic approx-
imation processes are often proved by a separation of deterministic (pathwise)
and stochastic considerations. The basic idea is to show that a “distance” be-
tween estimate and solution itself has the tendency to become smaller. The
so-called first Lyapunov method of investigation does not use knowledge of a
solution. Thus, in deterministic numerical analysis gradient of Newton pro-
cedures for minimizing or maximizing F by a recursive sequence (Xn) are
investigated by a Taylor expansion of F (Xn+1) around Xn - a device which
has been used in stochastic approximation for the first time by Blum, Kush-
ner, Z. Schuss, M.T. Wasan, Nevel’son and Has’minskii. The second Lyapunov
method in its deterministic and stochastic version uses knowledge of a solution.

On the other hand, the Brownian motion was firstly investigated by L.
Bachelier and A. Einstein, and then N. Wiener had the possiblity to put it on
a firm mathematical foundation. Then, many of the scientific works has been
done on their applicatios in physics, chemistry, communications, population
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genetics, and other fields. In this way the Markov processes and many related
topics become of a special interest.

In fact, the construction of the Brownian motion as a limit of a rescaled
random walk can be generalized to a class of Markov chain. In such a context
one can refer to Markov processes from a pespective of K Itô.

Some aspects will be discussed below.

2 A problem of stochastic approximation

The basic Stochastic Approximation Algorithms introduced by H. Robbins &
S. Monro and by J. Kiefer & J. Wolfowitz have been the subject of an enormous
literature.

This is due to the large number of applications and the interesting theoret-
ical issues in the analysis of dynamically defined stochastic processes.

In recent years, algorithms of the stochastic approximation type have found
applications in new and diverse areas, and new techniques have been developed
for proofs of convergence and rate of convergence. The actual and potential
applications in signal processing have exploded. Indeed, whether or not they are
called stochastic approximations, such algorithms occur frequently in practical
systems for the purposes of noise or interface cancellation, the optimization of
post processing or equalization filters in time varying communication channels,
adaptive antenna systems, and many related applications.

In such applications, the underlying processes are often nonstationary, the
optimal value of the parameter of the system (say, for example θ) changes with
time, and we keeps the step size (say for example εn) strictly away from zero
in order to allow tracking. Such tracking applications lead to new problems
in the asymptotic analysis (e.g. when εn are adjusted adaptively); one wishes
to estimate the tracking errors and their dependence on the structure of the
algorithm.

We shall refer to a problem discussed by J.H. Venter and J.L. Gastwirth
and also studied by M.T. Wasan.

For an unknown parameter λ > 0 let us consider a distribution function
defined as follows

F (x) = 1− e−λx for x ≥ 0

F (x) = 0 for x < 0. (1)

F (x) can be the distribution function of a system or item, with a life time
for which inspections are made at time t1, t2, t3, · · ·. If the conclusion of the
inspections is that the system is inoperative, then it will be repared or replaced.
In any other case nothing is done. Thus, the problem is to choose the inspection
plan, that is to choose the sequence t1, t2, t3, · · · in an optimal way in a suitable
sense. In this way a problem of stochastic approximation, discussed by J.H.
Venter & J.L. Gastwirth and M.T. Wasan, is obtained.

Let 0 < a < b two constants and it is supposed that a < λ < b. The
inspection times are defined as follows

T1 = t1, Ti = ti − ti−1, i = 2, 3, 4, · · · . (2)
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Now let us consider an arbitrary sequence of random variables {Xn} for
which the joint distribution of any finite number does not depend on λ. Denote
T1 = max{0, X1} and one defines {Tn} as follows

Tn+1 = max{0, fn(Y1, · · · , Yn) +Xn} for n = 1, 2, 3, · · · (3)

where fn is a real-valued measurable function of (Y1, · · · , Yn), functionally in-
dependent of λ. And Yi, i = 1, 2, 3, · · · , are random variables with conditional
distribution

Yi :

(
0 1

1− e−λTi e−λTi

)
(4)

given {Y1, · · · , Yi−1, T1, · · · , Ti}. Hence one has Yi = 1 if the ith inspection
conducts to the conclusion that the system is operative and Yi = 0 if it is
inoperative.

We can understand that after n inspections, the next inspection time Tn+1

depends on the past observations (Y1, · · · , Yn) through fn while Xn allows for
additional randomization.

Let us denote by G the class of all inspection plans and let I be a generic
element of G.

Now, a criterion of optimality can be obtained (following the plan of M.T.
Wasan).

Let Jn(I, λ) be defined by the equality

Jn(I, λ) =

E

(
d

dλ
logLn(λ)

)2

n
(5)

the average information obtainable from a plan I after n inspections, where
Ln(λ) is the probability function of λ based on (Y1, Y2, · · · , Yn, T1, T2, · · · , Tn).
At the same time, the limiting average information J(I, λ), obtainable from
plan I, is defined by the following equality

J(I, λ) = lim
n→∞

inf Jn(I, λ). (6)

Let Jn(I, λ) be defined by the equality

Jn(I, λ) =

E

(
d

dλ
logLn(λ)

)2

n
(7)

the average information obtainable from a plan I after n inspections, where
Ln(λ) is the probability function of λ based on (Y1, Y2, · · · , Yn, T1, T2, · · · , Tn).
At the same time, the limiting average information J(I, λ), obtainable from
plan I, is defined by the following equality

J(I, λ) = lim
n→∞

inf Jn(I, λ). (8)

Now, the following question arises: how one can maximizing Jn(I, λ) and
J(I, λ) by a judicious choice of I ? Hence we attain to a well known method of
efficient estimation of λ, which conduct us to the theorem below
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Theorem 1.

Jn(I, λ) ≤ Tλ(2− λTλ)

λ
(9)

for each n and for all λ and I, where Tλ is the solution of the equation

λT = 2(1− e−λT ). (10)

[Tλ = − log p
λ and Tλ is the 100(1− p)th percentile of exponential distribution,

where p ≈ 0.203].

Let us observe that the equality in (9) follows if and only if Ti = Tλ with
probability one for each i. That is to say if λ were known, the optional inspec-
tion plan in the sense of maximizing Jn(I, λ) for each n and λ would call for
periodic inspection with interinspection times Tλ. But within the class G (what
means that λ is unknown) there is no optimal plan for which the equality is
obtained in (9).

Now an optimality criterion can be defined by using the concept of adaptive
inspection plan. But this will be discussed on another occasion.

Other problems, proofs and related topica can be found in [1], [2], [12], [7],
[23], [19].

3 Markov processes in the generalized sense and
Brownian motion

The Brownian motion can be represented as a random sum of integrals of
orthogonal functions. Such a representation satisfies the theoretician’s need to
prove the existence of a process with the four defining properties of Brownian
motion, but it also serves more concrete demands, one of the most important
being the “chaotic and complex systems analysis”.

Especially, the series representation can be used to derive almost all of the
most important analytical properties of Brownian motion.

It can also give a powerful numerical method for generating the Brownian
motion paths that are required in computer simulation.

Starting from the observation that many a time we refer to chaos and chaotic
and complex systems to describe the comportment of some natural phenomena,
it is very useful, from a mathematical point of view, to talk about a passing
from chaotic and complex systems to Brownian motion. In this way we can refer
to the Brownian motion which is a more realistic model of such phenomena.

Brownian motion was frequently explained as due to the fact that parti-
cles were alive. An origin of mathematical Brownian motion is a game theo-
retic model for fluctuations of stock prices due to L. Bachelier from 1900. In
his doctoral thesis, Théorie de la spéculation, Ann. Sci. École Norm. Sup.,
17, 1900, 21-86, he hinted that it could apply to physical Brownian motion.
Therein, and in his subsequent works, he used the heat equation and, proceed-
ing by analogy with heat propagation he found, albeit formally, distributions of
various functionals of mathematical Brownian motion. Heat equations and re-
lated parabolic type equations were used rigorously by Kolmogorov, Petrovsky,
Khintchine.



Chaotic Modeling and Simulation (CMSIM) 1: 57–67, 2017 61

It was frequently explained as due to the fact that particles were alive. It is
only in 1905 that kinetic molecular theory led Einstein to the first mathematical
model of Brownian motion. He began by deriving its possible existence and
then only learned that it had been observed.

Now we shall refer shortly to some results due to K. Itô relating to the
3-dimensional Brownian motion and the k-dimensional Brownian motion.

Let now consider C = C(S) to be the space of all continuous functions (it is
a separable Banach space with the supremum norm). The transition operators
can be defined in a similar manner:

Definition 1. The operators pt, defined by

(ptf)(x) =

∫
S

pt(x, dy)f(y), f ∈ C

are called “transition operators”.

And the conditions for the transition probabilities can be adapted to the tran-
sition operators.

On the other hand, a Markov process is usually defined as a system of
stochastic processes

{Xt(ω), t ∈ T, ω ∈ (Ω,K,Pa)}a∈S ,

that is for each a ∈ S, {Xt}t∈S is a stochastic process defined on the proba-
bility space (Ω,K,Pa).

The transition probabilities of a Markov process will be denoted by {p(t, a,B)};
also let us denote by {Ht} the transition semigroup and by Rα the resolvent
operator of {Ht}.

The next results shows that p(t, a,B), Ht and Rα can be expressed in terms
of the process as follows:

Theorem 2. Let f be a function in C(S). Then

1. p(t, a,B) = Pa(Xt ∈ B).
2. For Ea(·) =

∫
Ω
·Pa(dω) one has Htf(a) = Ea(f(Xt)).

3. Rαf(a) = Ea
(∫∞

0
e−αtf(Xt)dt

)
.

Now regarding to the Markov process one can observe that a definition as it
is given above not correspond to many processes that are of a real interest. For
this reason it is useful to obtain an extension of this notion (as it was proposed
by K. Itô).

Let E be a separable Banach space with real coefficients and norm || · || and
let also L(E,E) be the space of all bounded linear operators E −→ E. It can
be observed that L(E,E) is a linear space.

Definition 2. The collection of stochastic processes

X = {Xt(ω) ≡ ω(t) ∈ S, t ∈ T, ω ∈ (Ω,K,Pa)}a∈S

is called a “Markov process” if the following conditions are satisfied:
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1) the “state space” S is a complete separable metric space and K(S) is a
topological σ-algebra on S;

2) the “time internal” T = [0,∞);
3) the “space of paths” Ω is the space of all right continuous functions

T −→ S and K is the σ-algebra K[Xt : t ∈ T ] on Ω;
4) the probability law of the path starting at a, Pa(H), is a probability measure

on (Ω,K) for every a ∈ S which satisfy the following conditions:
4a) Pa(H) is K(S)-measurable in a for every H ∈ K;
4b) Pa(X0 = a) = 1;
4c) Pa(Xt1 ∈ E1, · · · , Xtn ∈ En) =∫

. . .

∫
ai∈Ei

Pa(Xt1 ∈ da1)Pa1(Xt2−t1 ∈ da2) . . .

. . . Pan−1
(Xtn−tn−1

∈ dan) for 0 < t1 < t2 < . . . < tn.

According to Definition 2, X will be referred as a Markov process in the
generalized sense.

Now let X be a Markov process in a generalized sense and let us consider
a function f ∈ B(S) where B(S) denote the space of all bounded real K(S)-
measurable functions.

Now let us suppose that

Ea

( ∞∫
0

|f(Xt)|dt
)

(11)

is bounded in a such that

Uf(a) = Ea

( ∞∫
0

f(Xt)dt

)
(12)

is well-defined and is a bounded K(S)-measurable function of a ∈ S.
The Uf is called the potential of f with respect to X and having in view

that Uf = limα↓0Rαf , it is reasonable to write R0 instead of U . Based on this
fact, Rαf will be called the potential of order α of f .

Now the name potential is justified by the following theorem on the 3-
dimensional Brownian motion

Theorem 3. Let X be the 3-dimensional Brownian motion. If f ∈ B(S) has
compact support, then f satisfies (11) and

Uf(a) =
1

2π

∫
R3

f(b)db

|b− a|
=

1

2π
×Newtonian potential of t. (13)

Now let X be a k-dimensional Brownian motion defined as follows

Definition 3. The k-dimensional Brownian motion is defined on S = Rk by
the equality

pt(a, db) = (2πt)−
k
2 e−

|b−a|2
2t db = Nt(b− a)db,

where |b− a| is the norm of b− a in Rk.
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Now let us define
NB = RαB(S)

and
N = {f ∈ B(S) : Rαf = 0}.

The NB and N are both independent of α. Therefore we can regard Rα as
a one-to-one map from the quotient space B(S)/N onto NB.

By using the k-dimensional Brownian motion the following result is obtained

Theorem 4. Let X be a k-dimensional Brownian motion. Then

N = {f ∈ B(Rk) : f = 0 a.e.},

D(A) = {u ∈ B(Rk) : ∆u is a measurable function bounded a.e.},

and

Au =
1

2
∆u,

where the Laplacian ∆ is to be understood in the Schwarts distibution sense.

For more details and some related topics see ([8], [9], [10]).

4 Application

It is known that the construction of the Brownian motion as a limit of a rescaled
random walk can be generalized to a class of Markov chains. In such a context
we shall consider an application to genetics studied by W. Feller ([4]). Such a
problem was firstly discussed in detail by S. Wright and R. A. Fisher; and its
Markovian nature was pointed out by G. Malécot1 . The topic has been also
considered by H.J. Kushner ([11]); and then has been developed by Z. Schuss
as an example in connection with a study concerning the problem of diffusion
approximation to Markov chains ([21]). It was also presented at lenght in [18].

It is known that the heritable characters depend on special carries, called
genes, which appear in pairs. Each gene of a particular pair can suggest two
forms A and a which determine a genetic type in a population. Therefore,
three different pairs can be formed AA,Aa, aa, such that the organism belongs
to one of these three genotypes. On the other hand, the reproductive celles,
called gametes, are assumed to have one gene. In this way, the gametes of
an organism of genotype AA or aa have the gene A or respective the gene a,
whereas the gametes of an organism of genotype Aa may have the gene A or
the gene a with equal probability. We can view such a problem in the context
of the binomial distribution

Pn(k) = Cknp
kqn−k.

We can imagine an urn with 2N elements (that is the genes of types A
and a). Then, the genotype structure of N offsprings will be the result of

1G. Malécot: Sur un problèm de probabilités en chaine que pose la génétique, Comptes
Rendus de l’Académie des Sciences, vol.219, 1944, pp.379-381.
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2N independent drawings from the urn. Furthermore, it is considered that a
population consists of N individuals in each generation. Now, if i of the genes
are of the type A (0 ≤ i ≤ 2N) in some generation, then it is said that the
generation is in the state Ei. In this way a Markov chain is connected to such
a genetic process. It has 2N + 1 states E0, E1, E2, · · · , E2N . Calculating the
transition probability from the state Ei to Ej , in one generation, one gets

PNij = Cj2N

(
i

2N

)j(
1− i

2N

)2N−j

. (14)

Now, one considers a population of N individuals consisting of XN (n) = i
individuals of type A in the nth generation. Then, the next generation con-
sists of N individuals randomly selected from a practically infinite offspring
of the previous generation. Obviously the selection process is binomial with
probability x = i

N for type A, the proportion i
N of A types being equal to the

probability in a large offspring population. Therefore, the transition probability
is given by the following equality

PNij = P (XN (n+ 1) = j |XN (n) = i) = CjN x
j(1− x)N−j .

Let now denote by s the fitness of A relative to a when selection forces act
on the population

s =
x− x
x(1− x)

where

x =
x(1 + s)

1 + sx
.

Therefore, one obtains

PNij = CjN x
j(1− x)N−j .

Now, if s = sN (n) is a random variable then, the probability of extinction
of a genotype, or the time until extinction, or the total A population, or other
characteristics of interest, become very hard to calculate. For this reason the
Markov chains {XN (n)} can be approximated by a diffusion process, or more
exactly, by a solution of a stochastic differential equation.

To this end the following form is considered for the process

XN ([Nt]) = N xN (t)

where [Nt] is the greatest integer not exceedingNt and t is any positive number.
Thus, xN (t) represents the proportion of A types in population. Now it is
supposed that

N EsN (n)→ σ(t)

as N → ∞, n = [Nt], and NEs2N (n) → ν(t) and NEskN (n) → 0 for all
k > 2.
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Let now be ∆t = 1
N . Then, one gets

aN ≡
1

∆t
Ex,t [xN (t+∆t)− xN (t)] =

= E[XN ([Nt] + 1)−XN ([Nt]) |XN ([Nt]) = xN ].

But XN (n) is a binomial variable B(N, x) such that it results

aN = NE(x− x) = NE

(
(1 + sN (n))x

1 + sN (n)x
− x
)
→

[σ(t)− ν(t)x]x(1− x) ≡ a(x, t) (15)

and respective

1
∆tEx,t[xN (t+∆t)− xN (t)]2 → x(1− x)[1 + ν(t)x(1− x)] ≡ b(x, t). (16)

The moments of higher order tend to zero as N →∞. Now it can be shown
that the convergence is sufficiently rapid as to satisfy the imposed conditions.
Let now consider again the specified model. Thus, we have

E[xN (t+∆t)− xN (t) |xN (t)] = 0

and

E[|xN (t+∆t)− xN (t)|2 |xN (t)] =
xN (t)[1− xN (t)]

N

E[|xN (t+∆t)− xN (t) |4 xN (t)] ≤ K

N2

for a constant K.

Now, it can be seen that the conditions for convergence hold, provided that
the stochastic differential equation

dx(t) = a(x, t)dt+
√
b(x, t) dw(t)

x(0) = x (17)

has a unique solution (with absorption at x = 0 and x = 1). But the conditions
of the existence and uniqueness theorem are not satisfied by the coefficient√
b(x, t) in (17). To show the existence and uniqueness it is necessary to

consider (17) in the interval Iε[ε, 1− ε] with absorption at the boundary δI of
Iε. The conditions of the existence and uniqueness theorem are satisfied in Iε.
Thus, it is a unique solution xε(t) in Iε up to the time

τε = inf{t |xε(t) ∈ δIε}.

If ε1 < ε2 then, τε1 ≥ τε2 and

xε1(t) = xε2(t) where 0 ≤ t ≤ τε2 ,
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by the so-called the localization principle.2 Now, as ε → 0, one gets that xε(t)
converges to a limit x(t) and τε → τ (here τ is the absorption of x(t)).

In this way it results that xN (t) → x(t), with x(t) the solution of the
stochastic differential equation

dx(t) = a(x, t)dt+
√
b(x, t) dw(t)

with absorbing boundaries at x = 0 and x = 1.
Thus, once a genotype is extinct, it will stay extinct for all future gene-

rations unless mutation occurs. Therefore, the pobability of extinction is the
probability of exit of x(t) from the interval (0, 1).

4.1 Conclusion

Obviously, verious situation may exist when the survival of a particular geno-
type can be very dynamic.

In general, the interaction of a population can have a great complexity, which
lead to the enhancement of the interdisciplinary coordination in these studies.

But, as we have already emphasized, for a random variable f = fN (n) the
“probability of extinction” of a genotype, or the “time until extinction”, or the
“total A population”, or other characteristics of interest, become very hard to
calculate. And this is the reason for which a Markov chain {XN (n)} is useful
to be approximated by a solution of a stochastic differential equation.
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