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Abstract. The stochastic deformation and stress fields inside the fractal multilayer
system with active nanoelements are investigated. It is shown that in a coupled system
(fractal layer — fractal quantum dot) a decrease of semi-axes of the quantum dot leads to a
decrease of the amplitude and the appearance of "influx" from the main peak. With
increasing the semi-axes a broadened peak is formed on the background of the stochastic
base (signal in the form of halo type). As the active nanoelement a set of ultracold **Na
atoms in an optical trap is selected. It is shown that some of the physical properties
(speed, quantization of the flow; hysteresis) of excitations such as a pair of vortex-
antivortex associated with the influence on their Bose-Einstein condensate a superfluid
(where excitation is the Higgs boson). The analysis of the experiment and the relations
with the black hole model is carried out for the ring-shaped trap.
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1 Introduction

For creating various technical schemes in atomtronics atoms (instead of
electrons in electronics) are applied (Eckel et al.[1]). At that the set of ultracold
atoms, superfluids, where elementary excitations can be vortices, antivortices,
couples vortex-antivortex are used. Fractal dislocations (V. Abramov[2]),
oscillators (V. Abramov [3, 4]), traps (O. Abramova, S. Abramov[5]) may also
be as active objects. Separate electron, atom, dipole, quadrupole, spin placed
into a trap exhibit quantum and statistical properties (Balewski et al.[6],
Anderson et al.[7]). Studying the influence of different stochastic fields on
physical properties of individual objects in a trap represents one of the
fundamental problems of quantum systems. In (Balewski etal.[6]) the
relationship of properties of a single electron with the Bose-Einstein condensate
(BEC) is established. The experiments at the Large Hadron Collider (LHC) and
the 2013 Nobel Prize in Physics by F. Englert and P. Higgs confirmed the
mechanism of the origin of the mass of subatomic particles, which is associated
with spontaneous breaking of electroweak gauge symmetry, with the mass of
the Higgs boson (Higgs [8]). Modern technologies in atomtronics allow to
create multilayer nanosystems, synthetic mediums (metamaterials) [9], the
Bose-Einstein condensate in traps (Eckel et al. [1], Anderson et al.[7]). In the
work (Eckel et al.[1]) such condensate was created from a gas of laser-cooled
’Na atoms by evaporation, first in a magnetic trap and then in a ring-shaped
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optical dipole trap. In the work (V. Abramov[10]) the features of behavior of
deformation and stress fields in a fractal multilayer nanosystem with active
nanoelement (**Na ultracold atoms in an optical trap) were investigated. It is
shown that the excitation type of vortex-antivortex pair and Bose-Einstein
condensate of superfluid liquid influence each other. Coupled systems based on
fractal quasi-two-dimensional structures were considered in (O. Abramova,
S. Abramov[5, 11]). In cosmology a black hole is considered as an active object
(Hawking [12]). Coupled system from two black holes can generate
gravitational waves. In Sept. 14, 2015 the two detectors of the LIGO
simultaneously observed a transient gravitational-wave signal. The signal
sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave
strain of 1.0x102' (Abbott et al.[13]). Transient processes in the multilayer
nanosystem with nonlinear fractal oscillator were studied in (V. Abramov[4]).
The aim of this article is to investigate the behavior of deformation and stress
fields of the coupled system (fractal layer — fractal quantum dot), of the fractal
multilayer nanosystem with pairs of vortex-antivortex and the active
nanoelements (set of ultracold *’Na atoms in an optical trap).

2 The deformation field of the coupled system:
fractal layer — fractal quantum dot

We consider a model multilayer nanosystem: discrete lattice Ny = Ny = Ny |

whose nodes are given by integers n,m, j (n=1,N;; m=LN,; j=1N3).
Inside this nanosystem we investigate the behavior of the deformation field of
the coupled system: fractal layer — fractal quantum dot. The nonlinear equation
for the dimensionless displacement function u; of lattice node of fractal layer ]

is given in the form (O. Abramova, S. Abramov[5, 11], V. Abramov[14])

U = (1—aq)(1—25n (Uy —Ugy, kK)) / Q1 QL = Pos .- (1)
Here ¢y is the fractal dimension of the deformation field u; along the Oz -axis
(q €[0,1]); ugy is the constant (critical) displacement; the modulus of the
elliptic sine k; and constant pg; characterize the different states of the layer j.
In the general case, the parameters k;(j) and pg;(j) depend on the index layer
J - When k; =1 the nonlinear equation (1) has the form
U = (1—eq)(L— 2th* (g — gy )) / Poy - &)
The solution of this equation for py; =0.1523 is the separate plane with the

negative value u =—uy; =—3.2829. Changing module k; in equation (1) leads

to the formation of a stochastic layer instead of a separate plane. For the values
of module &; € [ky¢, 1) (ki is the critical value of module close to unity) the
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condition snz(ul —Ugy, kic) <0.5 is satisfied. Therefore, the whole stochastic layer
is close to the lower boundary plane v =-uy; . For values of module &, = [0.k;.]
the displacement of lattice nodes change in interval (—yq,u;;) . The sign change
in the parameter pg; =-0.1523 leads to the appearance at k; =1 of the separate
plane with the positive value uj; =3.2829 . Now for k; €[kic,1) the whole
stochastic layer is close to the upper boundary plane uy = uy4 .
Dimensionless displacement function u, of lattice node of fractal quantum dot is
determined by solving a nonlinear equation (O. Abramova, S. Abramov[5, 11])
Uy = (L— ) (1 25n° (U —Ugp, Kp)) / Qo

Qa2 (n,m) = pop —(N—ngp)? / Nep” —(M—Mgp)? / mgy?, ©)
where «, is the fractal dimension of the deformation field u, along the Oz -
axis (a €[0,1]); up, is the constant (critical) displacement; the modulus of the
elliptic sine k, and constant pgy, characterize different states of the layer j;
Ngy , Mgy are the centre coordinates and n,, m, are half-axis of the quantum

dot. Here parameters ng»(j) and mg»(j) depend on the index layer j .

Separate layer and quantum dot, which are in the same layer or in different
layers, influence each other and to the state of the whole multilayer nanosystem.
Therefore, the dimensionless displacement function u of the such fractal
coupled systems, in contrast to (1) and (3) is determined by solving the
nonlinear equation (O. Abramova, S. Abramov[5, 11])

U= (1-c)(A— 250" (U—Ugg, ky))/ Q + (L— e )(A— 250" (U— U, kp)) / Q. (4)
The solution of the nonlinear equation (4) is performed by iteration method over
the variable m at fixed values N; =120; N, =162; ¢q=a,=05; ky,=05;
Ugy =Ugo =29.537; pgp = ~3457-107°; Ny =59.1471; my, =80.3267. Influence of
a single layer and the quantum dot at each other is shown in fig. 1, 2.

The behavior of the deformation field of the coupled system | (separate plane
with parameters k; =1, pp; =0.1523 and quantum dot with semi-axes
Mgz = 29.8793 ., my, =40.4295) is given in fig. 1 &, b, c. In this case, the main

peak (fig. 1 a) and the stochastic behavior of the core at the quantum dot

(fig. 1 b, ¢), the emergence of “influx” (almost a regular convex region) near the
main peak (fig. 1 b) are observed.

The behavior of the deformation field of the coupled system 11 (stochastic layer
with parameter k; =0.5, different py; and quantum dot with semi-axes

Mgz = 29,8793 .m,, =40.4295) is given in fig. 1 d, e, f. Increasing the parameter
Po1 in stochastic layer leads to a decrease in the amplitude of the deformation
field out the region of localisation of the quantum dot in a coupled system I1.
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Fig. 1. The behavior of the displacement function u of coupled systems I, Il on
n,m . general view (a), cross-section u €[-5;5] (b), top view of cross-section (c)
for system I; cross-section u € [-5;5] for different pgq (d, e, f) for system 1.
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Fig. 2. The behavior of u (a, b, ¢) and cross-sections u [-500;500]
(d, e, f) system 111 on n,m for different semi-axes: n.,,m., increased
by 16 (a, d), 64 (b, €), 256 (c, f) times as compared with fig. 1.
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The behavior of the deformation field of the coupled system 111 (stochastic layer
with parameters k =05, pgy =0.1523 and quantum dot with increased semi-axes

in comparison with fig. 1) is shown in fig. 2. Increasing the semi-axes by the
guantum dot leads to the expansion of influence zone of stochastic behavior of
guantum dot on the whole stochastic layer (fig. 2 a, b, ¢). For the displacement
function of the coupled system 111 (fig. 2 ¢) the presence of broadened peak in
the background of a pronounced stochastic base with large amplitudes (form a
halo-type signal) is characteristic. These results can be used for modelling the
phenomenon of BEC in nanosystems with vortex-antivortex pairs.

3 The deformation field in the nanosystem with pairs
of vortex-antivortex

In paper (Eckel et al.[1]) an expression for the energy E of a vortex-antivortex
pair in a ring trap in the presence of a velocity field is given

E=E, +EyIn(dsin(zs/d)/n&); E, =ndeV2 +2mhpsv/my ;
Em =2nph” /mZ; &= (h"/2megN |y [ 2. ®)

Expression (5) is written in the limit, when the narrowing width d is
considerably smaller than the radius of the trap R (d <« R). Here s is the
separation between the vortices and antivortices in a pair; v is the velocity of
superfluid; 2 is Planck’s constant; m, is rest mass of the **Na atom; p is the

effective two-dimensional mass density in the area of narrowing; & is the
healing length of the condensate; g is the interaction strength; N is the number
of atoms in the trap; v is the BEC wavefunction. From (5) we find

sin(nfy) =n€exp(E—E,)/Ey)/d; fy=s/d; fJ+fs=1. (6)
On the other hand, in our model for the nonlinear lattice parameter is defined as

fg=05-200/myg; Up=F(ogiky); ki =0-0)Q"; ki+(k,)*=1;

Q=pp+Psi-by(i-io)ic”. U]
Here | a| is the fractal dimension of the deformation field u along the Oz -axis
(ae[-L1]); k, is the variable modulus of the elliptic sine; ug is the critical
displacement, dependent on the angle oy, k,; F is an incomplete elliptic
integral of the first kind; pg, p3, by, Jp, J. are some of the governing
parameters; n =0,41,£2,... are integers, defining a set of different states of
the deformation field. When n,q >0 the state with the left polarisation is
realised, when 1,5 == O the state with the right polarisation is realised.
Description of the deformation field in the nanosystem with a vortex-antivortex
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pairs leads to two branches (r =12) for the dimensionless displacement u, of
lattice node. Model nonlinear equations have the form (V. Abramov [14])

U=ty =kZ(@-2sn%(U; —Ug, ky)); U=Uy =kZ(1—25n%(uy —Ug,k,)). (8)
The alteration of the deformation field states can be carried out by changing ¢ ,
Neo, Up and parameter fg . The analysis of the behavior of the deformation field is
carried out in terms of averaged (along n,m) complex functions M, = M, + iM;

M, (3)=Sp(PUr); p=ENzéna/NoNyi Mp=ReM; M =ImM,, (9)
where Sp is an operation of calculating the trace of a square matrix; i is an
imaginary unit; «T » denotes transposition; &y;, £y, are row-vectors with
elements equal to one. On the basis of dependencies M, on j, f; from (9) for
the inverse states with a=-0.5 and the fixed layer j=30 the numerical
simulations can be carried out. Initial parameters are N; =30, N, =40,
Ny =67, jo=30.5279; governing parameters are py=-1.5123, p3=0, by =1.
The solution of equations for u, from (8) we find by iteration method over the
variable m with the initial conditions w =u, =0. Further, the description of
hysteresis is conveniently carried out in terms of the functions M s,, mp,

(normalised half sum, half difference averaged functions M, from (9), fig. 3, 4)
Mg =M po +iM gy =—Log[My (fsing )+ My (f5;—ng)1/ 2;
Mpo = Mgy +iMjgy =—Pa[Ma(fsing) =My (fs; )1/ 2;

-1/2
foo =((M30)> +(M30)?) 75 MA(f;0)=Msg; M3(f5;0)=Mg. (10)
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Fig. 3. Behavior Mz, on f;: 1is solid line for jy =11.8247;
2 is dash line for j., =2.9562.

According to the calculated values Mjo =—0.5404, M3, =1.1062-10° the
parameter of normalisation S,y =1.8505 is found. Examples of the behavior of
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the hysteresis curves for integer n,, and semi-integer values n,, for two values

of semi-axes j. = jq =11.8247 and j, = j., =2.9562 are given in fig. 3, 4.

mpg), L p— mg)
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a) Nyo =1; n, =1.5 b) Ngo =1; Ny, =2 €) Ny =3; Ny =3.5

Fig. 4. Behavior mj, on fs: 1issolid line for joy =11.8247;
2 is dash line for j., =2.9562.

Alteration of the structural states due to changes fs; n,o, @o; n,, @ is
accompanied by changes in the position of the local maxima and minima, wells
and barriers, polarisation on dependences M, from (9). The choice of two
different semi-axes j., jcp according to (7) leads to two different Q =Q,
Q=Q, and, respectively, to two different modules k, =k, k, =k;o. The
alteration of the structural states due to changes j. is accompanied by
hysteresis phenomena (fig. 3 b, c; 4 a, b, c). Double hysteresis loops (fig. 3;
4 b, c) indicate the presence of coupled states (vortex-antivortex pairs).

4 Coupled nanosystem: pairs of vortex-antivortex
and Higgs boson

Experimentally vortex-antivortex pairs were created in the ring-shaped BEC

which contains N ~4-10° 2*Na atoms (Eckel etal.[1]). This condensate is
created from a gas of laser-cooled ?*Na atoms by evaporation, first in a magnetic
trap and then in a ring-shaped ( R =19.5um) optical dipole trap. The area of the

ring narrowing, where there was a vortex-antivortex pair, was created by a blue
laser. The estimates of radius Ry, of the trap, the wave length A, for the laser

transition and their relationship with the parameters of the *Na atoms we will
get by the formulas

R, —Roa=8,; R,=2GM,/c%; Ry =Nrpa/2; Re=Nr/2;
Roa—Rk =hg; Ag=hnCleg; Toa—T =0k O =244 /N. (11)
Here R, =20.5688um allows the interpretation as the Schwarzschild radius of
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the black hole with a mass M, =N;M;
mass of the atom *Na; N, is Avogadro's number; c is speed of light in

M, =Nam, =22.99g is the molar

vacuum; G=6.672-10‘8cm3g‘1s‘2 is Newton's gravitational constant. The
energy spectrum ¢, (where x=1,2,3,4) of elementary excitations is defined
by formulas (V. Abramov and Kopvillem[15])

Lot . 2 2 12 . 2 2 V2.

€y = i280]_sx ;& = iZeOZSX, 2801 = (Sog +4Aq )1/ ) 2802 = (80g —4Aq )1/ )
12 . o 2

€og = 9rbyang (F(F +1)77 5 2A4 =bpepg; ng =3c0s” 6y —1. (12)

Here by =117.68308k0e-meV(MHz)™; v, /2m=1.12677MHz(kOe) ~ is the
nuclear gyromagnetic ratio of the *Na atom; gr =2/3 is the spectroscopic
splitting factor. The **Na atom has the nuclear spin 1 =3/2. We consider the
basic electron shell 1322522p53s2 with angular momentum J=3/2. Then,
the total angular momentum F of atom can take integer values F =0,1,2,3.

We consider the state with F =3, ny=-1, &5q =2¢egq. Then, on the basis of
the spectrum (12) the values wavelength A, =535.5224nm, parameter
8 =0.0268A are obtained. The numerical values parameters by, S, of the
theory are given below. If to accept that Ry, = R=19.5pm, then by (11) we
obtain estimates of the radii r, =0.9489A and ry, =0.9757A , which are close
to the ionic (for ®Na*) and atomic (for *Na’) radii r, =0.95A and
lha =0.98A, respectively, (Kittel[16]). Then we obtain parameter
3, =1.0688um and radius R, =18.978um. Atoms in the state with F =0 can

enter the Bose condensate superfluid with the formation of elementary
excitations of the Higgs boson type, and the atoms in the excited states with
F =1,2,3 can enter elementary excitations of a vortex-antivortex pair type. A

superposition of atom states with different F is possible. The physical
parameters of these excitations are related as follows (V. Abramov [10])

2. 2 2 . ’o. 2.

boEg1/Na =maVe; Egp =MgiC” =My Chios CHo =CSi1: Eqo =Mpyoc”;
Ea:macz; Va =2VsMyo /Mg, Mg, =2mem, /(2mg +m, ) ; %vszﬁ-vc.
(13)

Here My, me,m, are rest Higgs boson, electron, muon masses; S/; =1-S,

i
is parameter of the theory. According to the calculation of the lower critical
speed of movement v, =4.9791-10%cm-s™* on the basis relations from (13)
the estimates of the basic parameters of the theory are obtained:
Eg1 =115.1183GeV (such value earlier had expected in the theory of the
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supersymmetry for the Higgs boson); Ep g =125.0324GeV is consistent with the
experimental value at the LHC for the Higgs boson; the upper critical speed is

Vg =22.7824-10%cm-s7L; E, =214072GeV . Further we give the detailed
formulas for calculating the parameters of the theory S, S, , by, b, by, &;-
For the quasi-one-dimensional lattice with two atoms per unit cell (such as the
electron and proton rest masses m, and my), when the condition bé <1 are

fulfilled, parameters S, are given in (V. Abramov and Kopvillem[15])
45 =1-0q; 4S3=1+0dq; 4S;=0q2-1; 4S4=0qp +1;

g =@-bD)Y2; gqo =(@+bI)Y%; BT =455+ D) ;
&q = ksn(Ug.K)/[1+dn(ug.K)]Fmoq / avg (14)
where Ug is effective dimensionless displacement of the lattice node, which
depends nonlinearly on the wave vector ¢, the lattice parameter fi ; w1q and wpq

are frequencies of the optical and acoustic branches of the vibrational spectrum

(heng)? = (heoyg)*(1+dn(Ug, k) /25 (hgg)? = (haye)*(1-dn(ug, k) /2;  (15)

2 .

g =49yo /My; ml:memp/(me"‘mp)- (16)
Here g, is the lattice force constant between the particles with the rest mass
Mg, Mp. In the centre of the Brillouin zone at [¢|=0 the condition

dn(ug,k)=1 is fulfilled. Then from (15) follows that the energy of the optical
and acoustic modes are equal Aoy = hoyg| and hwyg =0, respectively,

parameter &3 =0. At the boundary of the Brillouin zone at |q|=7/[f | the
condition sn?(uq.k) =sin? (G- /2)=1 is fulfilled. Then from (15), (14) we
find
(hong)? = (hoyg)? (1K) /2= (hop)? ; (hwgg)? = (Toyg) (1 -K) /2 =(Tw ) ?;
&g =t =w5/af =me/my =k?/(1+K)?; (K)?+k*=1.  (17)

The relations (17) allow us to express modules k , k' of elliptic functions from
(14), (15) through the known rest mass m,, m, of the particles or through the
main parameter of the theory &gq in the following form

k? =483/ (1+E50)> =4memyy /(Mg +my)?s - (K2 =(m—my)2/ (me+my).  (18)
Other parameters from (14) at the boundary of the Brillouin zone have
numerical values by =by =0.30907377; S, =-1.224047510 % ; S, =1.16685107;
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Sy =48.775952.102; S, =511668510 2. Now changing modules of elliptic

functions in expressions (1), (3), (7), (8) based on the relations (18) can be
interpreted in terms of the rest mass of particles both in separate and in various
layers of the multilayer nanosystems. We note that in the general case

snz(uq,k);tl and for finding of dependencies u, on some parameters

q
( fs, j,nq)o) once again come to the nonlinear equations of the type (8). The
parameter 2A can be interpreted as an order parameter and it is associated
with an energy gap 24, in the spectrum of elementary excitations in a coupled
system (vortex-antivortex pair and Higgs boson) relationships
2 ) 2
ZAHO = bOEHO = Mpro = NaZApO' 2Ap0 = h(DpO = mano . (19)
Here parameters from (19) are the velocity
Vo0 = C(Mpohy / M, )2 = 5.1890-102cm- s and energy gap
2AH o =38.6442GeV . By analogy with (14) for a quasi one-dimensional lattice
(type of the electron and muon rest mass m, and m, ) we obtain the parameters

&g =& =(me/m)Y%;  by=b, =054545421 ; S, =-4046484510°%;
S =3.4771871.107; 8“3:45.9535155-10‘2; Su4 =53.4771871-1072 . For lattice
(type of an atom “Na and Higgs boson) we find the basic parameter of the
theory ég =m, /Myg =0.17121315 .The parameters T,y =1+2|&, | and by,
connected by the relation T%H —bﬁa =1 from which we find the value

bra =1.5296957 , i.e. in this case following condition bj, =bg >1 is fulfilled,
and formulas (14) are replaced by
454, = |sinBy, | — 1; 4S{3 =1+|sinBh, |; 4ShH» :(1+C0529Ha)ﬂ2 —1;

48}y, = (1+c0s% 0 2 +1; 155 =cos? 0y SINZ O, =bia /(1+bfa).  (20)

Using (20), the calculated values |sin®p, |=0.8370, the possible values of
angles 0p, ~156.83° and 0y, ~£123.42°, parameters Sp{1=—4.0745963-10’2,
S{;3 =45.925404-1072, S}, =3.4978505.10 %, S{;, =53.497851.1072 are
obtained. In the general case sinOp, =sn(Uyg,Kpa), COSOHa =cn(UpasKpa)
where Upy = F(OHasKna) is an effective displacement, which depend on angle

Opa and module kp, of elliptic functions. Note that when kp, =1 these
functions are converted into sinBp, =thup,, C0sOy, =sechup,. When the

condition bﬁa =1 is fulfilled, that from formulas (14) and (20) follows the

existence of threshold values of the parameters: égc =My /My, T%H Sy,



Chaotic Modeling and Simulation (CMSIM) 1: 69-83, 2017 79

Stix» Oac » rest mass mc, molar mass My, =m,.N, and energy E,c = macc2
of the particle. The numerical values of the parameters are equal:
€2 =42.893219-1072; 72, =2; S, =53 =Sy =Sjy3 =025, 4S, =4S};, =21,
48, =48{14=2+1; Op=*m4 and 0, =+3m4; M, =57590;
E,c =5.3630GeV . Spectra type of m,y =2wq;Sy and Q,, =2wmgpSy allow us
to obtain a characteristic frequency of rotation g, of superliquid in the ring
with radius Ry, of optical trap and critical velocities v, vg, , where

2001 =[(0a)” +15 (030)° 1'% 2007 =[(05)” — b (@) 17
hog =Eq/Na;  hogy =Mavg;  Qga = wpa =(Sy+S2)wp1;
2 . ' . ’ . .
Roa =/MNg IMpmoa;  Vex =SxVpoi  Vex +Vex =Vpoi Ve =Ve;
Ve +Ve3 =3V /2] Vea —Vep =Vep —Veg =Ver +Ve3 =V /2. (21)
On the basis of (14) and (21) we find the parameters: @, =53.985Hz;
g =89.726Hz; bywg, =27.732Hz; Ry, =19.5146pum; Q, =72.553-10 2Hz . In
experiment (Eckel et al.[1]) for changing governing parameter (in our case fg)
two sets of discrete critical velocities are observed. The calculated values of
critical velocities 2vi, =55499-102cm-s and vy +Vgg =7.7835-10 2cm-s
practically coincide with the experimental values 556-102cm-s and

7.78:102cm-s*  from the first and second set, respectively. These
dependencies of critical velocities from different sets intersect near values

6.67-102cm-s™. The effect of the formation of the double hysteresis loop
(analog of this effect for the B-phase in helium-3 ([17, p. 43, 48])) is possible.
The temperature T, =68.5305nK and Ty =100.0660nK of supercooled and

BEC superfluid liquids, respectively, are determined from the expression
2 . . . .
hogy =Mave =KgTa: MoV =2keTen s Teo = NioTok: Ta=Nio2Top
Toe /2Ty =2m I Mo =288 =Too /Tas Ta/ 2Ty =Teo /T =Niyo, (22
where kg is Boltzmann constant. The parameter Ny q from (22) is defined by
the spectrum Ny, = NgSfy,, taking into account (20). If Ny, =N/2, then

Ng =3.7385-10°, Nyq =Ny, =1.3077-10*, Nyy; =1.5233-10*. Further we find
temperatures T,y =0.8961mK, T, =2.6170mK, which are close to the phase
transition temperatures T.g =0.9mK, T, =2.6mK for helium-3 ([17, p. 43,
48]). If Npg =1, then from (22) follows T.g =Ty, Ta =2Tcy . Therefore
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Nyo, Npgp, it can be interpreted as the number of Higgs bosons, vortex-
antivortex pairs in the condensate superliquid. Next, on the basis of expressions
Ero = Na/oyo; ©40 =YHoHmo: YHo =Mp¥n/Muo; @ho =2mvio, (23)
we find the frequency vy =50.183Hz; yyo/2n=8.45557Hz Oe 1 and the
effective magnetic field Hy,q=5.9350e (analogue of Higgs field). The
frequency spectrum opy, = Ny 03, = Ngog, § , Which obtained without the
influence of vibrational modes in the parameter N, allow us to define the
frequency vy, =y, /2n=186.738kHz on the basis of relations

hop, =kgNpoTyk = NHzmavgl. This frequency can be measured by methods

of continuous and pulsed nuclear magnetic resonance (NMR) superliquid by
analogy with ([17, p. 68]). Then the mentioned frequency vy, can be

determined by the shift from the temperature dependence of the NMR
frequency. The influence of the vibrational modes ( wg, = 0) leads to a change

SPectrum gy, on
O = 20018015 O3x = 20081 2001 = (0 +45°)2;
2001 = (030 —48°)?; oo =Nowgn =vnHno; 25=w59 | cosOs |. (24)
Here the parameters are frequency vyg = ®ng/27n=5.339MHz, the effective
magnetic field Hyg =4.738kOe. The angular position of the weakest link

(neck, narrowing) in the ring-shaped condensate of superliquid can be controlled
by choosing of the frequencies wg, and angles 65, using impulse methods

(Eckel etal.[1]). If 25=wgy/2, then the possible values of angles are
05 =tm/3;£21/3. If |cosOs |=0, then parameters are 26=0 and 05 =xm/2.
The estimation of the molar masses of the weak link excluding (mp ) and taking
into account the presence of vortex-antivortex pairs in narrowing (mg) we will
perform by the formulas

2 2 . .
m, =puig =M S5 /4; mg=pns®; M, =p2nRp,dy, (25)

where &, is the limiting correlation length. From (25) we find
Eck =RoaSh /8=29.2600A ; dy =4&g =117.0401A; mg=m, fZ. It follows
that mass of the narrowing mg with the presence of vortex-antivortex pairs can
be changed by parameter f; and m, . This is confirmed by the dependencies of
the effective displacements on fg and parameters j. (fig. 3,4), n.o, Meo

(fig. 2), pgp (fig. 1), where there are changes of the potential relief, the
appearance of wells and barriers, hysteresis.
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The parameters Ry, Mo are related to the parameters of the black hole from
(11) as

2 . 2 M7 MY 2 .

Ry =&RHo: Ma=8&Mpo; Mo =NaMpo; My =NygMg - (26)
Here Mg =N,nmg and mg are the molar mass and the rest mass of the
graviton; Eg =Mgc? =12.1175mB ; Nyg = Eyo / Eg =1.0318-10'°. The

mass of a single black hole M,q, which appears after the merger of two black
holes, defined as

Mro =2NroMpo; Nrg=NoNra; Npa =T /2Tho: Tuo=Ta/2. (27)
Here T, =2.72548K is the cosmic microwave background radiation

temperature; parameters are N,g= 7.7867-108; N, =1.0414 10%. The
calculated frequency vijg =vioR, /45, =244.769Hz can be interpreted as the

frequency of the radiation of gravitational waves after the merger of two black
holes. Experimentally, after the merger of two black holes a transient signal
with near modulation frequency (Abbott et al.[13]) is observed.

Conclusions

In the multilayer nanosystem the displacements of lattice nodes of the layer at
module k; =1 are a separate plane, while at k; =1 they form a stochastic layer.

The width and the region of localisation of the stochastic layer can be controlled
by the changes of module k;, the parameter pg;. For the quantum dot at a
module k, =1 the presence of sharp peaks with high amplitude and stochastic
behavior near the core localisation of the basic peaks are characteristic. In the
coupled system the separate layer and the quantum dot influence each other. The
decrease in the semi-axes of the quantum dot leads to effects: decreasing of the
basic peak amplitude; narrowing of the stochastic behavior region; the
appearance of “influx” near the basic peak. The increase in the semi-axes of the
guantum dot leads to effects: the expansion zone of influence of the stochastic
behavior of the quantum dot on the whole stochastic layer; the appearance of
broadened peak in the background of a pronounced stochastic base with large
amplitudes (form a halo-type signal). For the coupled system the increase of
parameter pg; in stochastic layer leads to decrease of the deformation field

amplitude outside the region of localisation of the quantum dot.
When the temperature T <T.y the behavior of superliquid (a set of ultracold

**Na atoms in a ring-shaped optical trap) is characterised by: the quantized
rotation frequency g, of superliquid (or quantization of the flow n,€y,);
basic radius of trap Ry, ; two sets of discrete critical velocities (type 2vg, and
V¢ +Ve3); hysteresis and the appearance of the double hysteresis loops on the
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dependencies of the effective displacements Mg, , Mgy ON fg (that is

associated with the presence of a set of metastable and coupled states at Mo £0).

*Na atom and the Higgs boson form an elementary cell of quasi-one lattice in
superliquid. The elementary excitation of the type of vortex-antivortex pairs
(with Npq) influence on BEC of superfluid liquid (with parameters Ny,

2AHo, Hmo), where the elementary excitation is the Higgs boson (with an
effective mass My o). The relationship of temperatures T, Ty by parameter
Nyo with temperatures T.y,Ta (analogous temperatures of phase transition for

B and A phases of helium-3) are determined. The relations parameters of *Na
atoms, Higgs boson in a ring-shaped optical trap with the parameters of black
holes before merger (with a total mass 2M,) and after the merger (with mass

M{,o0) are determined. The estimate of radiation frequency of gravitational
waves v{,q after the merger of two black holes is performed.
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