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Abstract. The stochastic deformation and stress fields inside the fractal multilayer 
system with active nanoelements are investigated. It is shown that in a coupled system 

(fractal layer – fractal quantum dot) a decrease of semi-axes of the quantum dot leads to a 

decrease of the amplitude and the appearance of "influx" from the main peak. With 

increasing the semi-axes a broadened peak is formed on the background of the stochastic 
base (signal in the form of halo type). As the active nanoelement a set of ultracold 23Na 

atoms in an optical trap is selected. It is shown that some of the physical properties 

(speed, quantization of the flow; hysteresis) of excitations such as a pair of vortex-

antivortex associated with the influence on their Bose-Einstein condensate a superfluid 
(where excitation is the Higgs boson). The analysis of the experiment and the relations 

with the black hole model is carried out for the ring-shaped trap. 

Keywords: Fractal quantum nanosystem, Stochastic deformation and stress fields, 

Optical trap, Ultracold atoms, Pairs of vortex-antivortex, Higgs boson. 
 

1  Introduction 
 

For creating various technical schemes in atomtronics atoms (instead of 

electrons in electronics) are applied (Eckel et al.[1]). At that the set of ultracold 

atoms, superfluids, where elementary excitations can be vortices, antivortices, 

couples vortex-antivortex are used. Fractal dislocations (V. Abramov[2]), 

oscillators (V. Abramov [3, 4]), traps (O. Abramova, S. Abramov[5]) may also 

be as active objects. Separate electron, atom, dipole, quadrupole, spin placed 

into a trap exhibit quantum and statistical properties (Balewski et al.[6], 

Anderson et al.[7]). Studying the influence of different stochastic fields on 

physical properties of individual objects in a trap represents one of the 

fundamental problems of quantum systems. In (Balewski et al.[6]) the 

relationship of properties of a single electron with the Bose-Einstein condensate 

(BEC) is established. The experiments at the Large Hadron Collider (LHC) and 

the 2013 Nobel Prize in Physics by F. Englert and P. Higgs confirmed the 

mechanism of the origin of the mass of subatomic particles, which is associated 

with spontaneous breaking of electroweak gauge symmetry, with the mass of 

the Higgs boson (Higgs [8]). Modern technologies in atomtronics allow to 

create multilayer nanosystems, synthetic  mediums (metamaterials) [9], the 

Bose-Einstein condensate in traps (Eckel et al. [1], Anderson et al.[7]). In the 

work (Eckel et al.[1]) such condensate was created from a gas of laser-cooled 
23

Na atoms by evaporation, first in a magnetic trap and then in a ring-shaped 
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optical dipole trap. In the work (V. Abramov[10]) the features of behavior of 

deformation and stress fields in a fractal multilayer nanosystem with active 

nanoelement (
23

Na ultracold atoms in an optical trap) were investigated. It is 

shown that the excitation type of vortex-antivortex pair and Bose-Einstein 

condensate of superfluid liquid influence each other. Coupled systems based on 

fractal quasi-two-dimensional structures were considered in (O. Abramova, 

S. Abramov[5, 11]). In cosmology a black hole is considered as an active object 

(Hawking [12]). Coupled system from two black holes can generate 

gravitational waves. In Sept. 14, 2015 the two detectors of the LIGO 

simultaneously observed a transient gravitational-wave signal. The signal 

sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave 

strain of 1.0x10
-21 

(Abbott et al.[13]). Transient processes in the multilayer 

nanosystem with nonlinear fractal oscillator were studied in (V. Abramov[4]). 

The aim of this article is to investigate the behavior of deformation and stress 

fields of the coupled system (fractal layer – fractal quantum dot), of the fractal 

multilayer nanosystem with pairs of vortex-antivortex and the active 

nanoelements (set of ultracold 
23

Na atoms in an optical trap). 

 

2  The deformation field of the coupled system: 

fractal layer – fractal quantum dot 
 

We consider a model multilayer nanosystem: discrete lattice   , 

 whose nodes are given by integers
 

, ,n m j  ( 11,n N ; 21,m N ; 31,j N ). 

Inside this nanosystem we investigate the behavior of the deformation field of 

the coupled system: fractal layer – fractal quantum dot. The nonlinear equation 

for the dimensionless displacement function 1u  of lattice node of fractal layer j  

is given in the form (O. Abramova, S. Abramov[5, 11], V. Abramov[14]) 

2
1 1 1 01 1 1(1 )(1 2 ( , )) /u sn u u k Q    ;   1 01Q p .                       (1) 

Here 1  is the fractal dimension of the deformation field 1u  along the Oz -axis 

( 1 [0,1]  ); 01u
 
is the constant (critical) displacement; the modulus of the 

elliptic sine 1k  and constant 01p  characterize the different states of the layer
 

j . 

In the general case, the parameters 1( )k j  and 01( )p j  depend on the index layer 

j . When 1 1k   the nonlinear equation (1) has the form 

2
1 1 1 01 01(1 )(1 2 ( )) /u th u u p    .                                  (2) 

The solution of this equation for 01 0.1523p   is the separate plane with the 

negative value 1 11 3.2829u u    . Changing module 1k  in equation (1) leads 

to the formation of a stochastic layer instead of a separate plane. For the values 

of module  , 1) ( 1Ck  is the critical value of module close to unity) the 
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condition 2
1 01 1sn ( , ) 0.5Cu u k   is satisfied. Therefore, the whole stochastic layer 

is close to the lower boundary plane 1 11u u  . For values of module ] 

 the displacement of lattice nodes change in interval 11 11( , )u u . The sign change 

in the parameter 01 0.1523p    leads to the appearance at 1 1k   of the separate 

plane with the positive value 11 3.2829u  . Now for 1 1[ ,1)Ck k  the whole 

stochastic layer is close to the upper boundary plane 1 11u u . 

Dimensionless displacement function 2u  of lattice node of fractal quantum dot is 

determined by solving a nonlinear equation (O. Abramova, S. Abramov[5, 11]) 
2

2 2 2 02 2 2(1 )(1 2 ( , )) /u sn u u k Q    ; 

2 2 2 2
2 02 02 2 02 2( , ) ( ) / ( ) /c cQ n m p n n n m m m     ,            (3) 

where 2  is the fractal dimension of the deformation field 2u  along the Oz -

axis ( 2 [0,1]  ); 02u
 
is the constant (critical) displacement; the modulus of the 

elliptic sine 2k  and constant 02p  characterize different states of the layer
 

j ; 

02n , 02m  are the centre coordinates and 2cn , 2cm  are half-axis of the quantum 

dot. Here parameters 2 ( )cn j  and 2 ( )cm j
 
depend on the index layer j . 

Separate layer and quantum dot, which are in the same layer or in different 

layers, influence each other and to the state of the whole multilayer nanosystem. 

Therefore, the dimensionless displacement function u  of the such fractal 

coupled systems, in contrast to (1) and (3) is determined by solving the 

nonlinear equation (O. Abramova, S. Abramov[5, 11]) 
2 2

1 01 1 1 2 02 2 2(1 )(1 2 ( , )) / (1 )(1 2 ( , )) /u sn u u k Q sn u u k Q         .   (4) 

The solution of the nonlinear equation (4) is performed by iteration method over 

the variable m  at fixed values 1 120N  ; 2 162N  ; 1 2 0.5   ; 2 0.5k  ; 

01 02 29.537u u  ; 5
02 3.457 10p    ; 02 59.1471n  ; 02 80.3267m  . Influence of 

a single layer and the quantum dot at each other is shown in fig. 1, 2. 

The behavior of the deformation field of the coupled system I (separate plane 

with parameters 1 1k  , 01 0.1523p   and quantum dot with semi-axes  

2 40.4295cm  ) is given in fig. 1 a, b, c. In this case, the main 

peak (fig. 1 a) and the stochastic behavior of the core at the quantum dot 

(fig. 1 b, c), the emergence of “influx” (almost a regular convex region) near the 

main peak (fig. 1 b) are observed. 

The behavior of the deformation field of the coupled system II (stochastic layer 

with parameter 1 0.5k  , different 01p  and quantum dot with semi-axes 

2 40.4295cm  ) is given in fig. 1 d, e, f. Increasing the parameter 

01p  in stochastic layer leads to a decrease in the amplitude of the deformation 

field out the region of localisation of the quantum dot in a coupled system II. 
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a) b) c) 

 

 

 

d) 01 0.1523p   e) 01 0.3169p   f) 01 1.0171p   
 

Fig. 1. The behavior of the displacement function u  of coupled systems I, II on 

,n m : general view (a), cross-section [ 5;5]u   (b), top view of cross-section (c) 

for system I; cross-section [ 5;5]u   for different 01p  (d, e, f) for system II. 

 

 

 

 

a)  

 
b)  c)  

 

 

 

d)  e)  f)  
 

Fig. 2. The behavior of u  (a, b, c) and cross-sections [ 500;500]u   

(d, e, f) system III on ,n m  for different semi-axes: 2 2,c cn m  increased 

by 16 (a, d), 64 (b, e), 256 (c, f) times as compared with fig. 1. 
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The behavior of the deformation field of the coupled system III (stochastic layer 

with parameters 1 0.5k  , 01 0.1523p   and quantum dot with increased semi-axes 

in comparison with fig. 1) is shown in fig. 2. Increasing the semi-axes by the 

quantum dot leads to the expansion of influence zone of stochastic behavior of 

quantum dot on the whole stochastic layer (fig. 2 a, b, c). For the displacement 

function of the coupled system III (fig. 2 c) the presence of broadened peak in 

the background of a pronounced stochastic base with large amplitudes (form a 

halo-type signal) is characteristic. These results can be used for modelling the 

phenomenon of BEC in nanosystems with vortex-antivortex pairs. 

 

3  The deformation field in the nanosystem with pairs 

of vortex-antivortex 
 

In paper (Eckel et al.[1]) an expression for the energy E  of a vortex-antivortex 

pair in a ring trap in the presence of a velocity field is given 

v ln( sin(π / ) / πξ)mE E E d s d  ;   2
v =πρ v 2π ρ v / aE dR s m ; 

2 22πρ /m aE m ;   2 2 1/2ξ ( / 2 | ψ | )am gN .                        (5) 

Expression (5) is written in the limit, when the narrowing width d  is 

considerably smaller than the radius of the trap R  ( ). Here s  is the 

separation between the vortices and antivortices in a pair; v  is the velocity of 

superfluid;  is Planck’s constant; am  is rest mass of the 23
Na atom; ρ  is the 

effective two-dimensional mass density in the area of narrowing; ξ  is the 

healing length of the condensate; g  is the interaction strength; N  is the number 

of atoms in the trap; ψ  is the BEC wavefunction. From (5) we find 

vsin(π ) πξexp(( ) / ) /s mf E E E d  ;   /sf s d ;   1s sf f   .        (6) 

On the other hand, in our model for the nonlinear lattice parameter is defined as 

0 φ00.5 2φ / πsf n  ;   0 0F(φ ; )uu k ;   2 1(1 α)uk Q  ;   2 2( ) 1u uk k  ; 

2 2
0 3 3 0( ) cQ p p j b j j j     .                                     (7) 

Here | α |  is the fractal dimension of the deformation field u  along the Oz -axis 

( α [ 1;1]  ); uk  is the variable modulus of the elliptic sine; 0u  is the critical 

displacement, dependent on the angle 0φ , uk ; F  is an incomplete elliptic 

integral of the first kind; 0p , 3p , 3b , 0j , cj  are some of the governing 

parameters; 0 0, 1, 2,...n     are integers, defining a set of different states of 

the deformation field. When 0 0n   the state with the left polarisation is 

realised, when   the state with the right polarisation is realised. 

Description of the deformation field in the nanosystem with a vortex-antivortex 
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pairs leads to two branches ( 1,2r  ) for the dimensionless displacement ru  of 

lattice node. Model nonlinear equations have the form (V. Abramov [14]) 

2 2
1 1 0(1 2sn ( , ))u uu u k u u k    ;   2 2

2 2 0(1 2sn ( , ))u uu u k u u k    .   (8) 

The alteration of the deformation field states can be carried out by changing , 

φ0n , 0u  and parameter sf . The analysis of the behavior of the deformation field is 

carried out in terms of averaged (along ,n m ) complex functions  

ˆ ˆ( ) Sp(ρ )r rM j u ;   2 1 2 1
ˆ ˆρ̂ ξ ξ /T

N N N N ;   Rer rM M  ;   Imr rM M  ,     (9) 

where Sp  is an operation of calculating the trace of a square matrix; i  is an 

imaginary unit; «T » denotes transposition; 1
ˆ
N , 2

ˆ
N  are row-vectors with 

elements equal to one. On the basis of dependencies rM  on j , sf  from (9) for 

the inverse states with α 0.5   and the fixed layer 30j   the numerical 

simulations can be carried out. Initial parameters are 1 30N  , 2 40N  , 

3 67N  , 0 30.5279j  ; governing parameters are 0 1.5123p   , 3 0p  , 3 1b  . 

The solution of equations for ru  from (8) we find by iteration method over the 

variable m  with the initial conditions 1 2 0u u  . Further, the description of 

hysteresis is conveniently carried out in terms of the functions 2M , 2m  

(normalised half sum, half difference averaged functions 2M  from (9), fig. 3, 4) 

2 2 2 20 2 φ 2 φ[ ( ; ) ( ; )] / 2s sM M iM M f n M f n          ; 

2 2 2 20 2 φ 2 φ[ ( ; ) ( ; )] / 2s sm m i m M f n M f n          ; 

 
1/2

2 2
20 20 20( ) ( )M M


   ;   2 20( ;0)sM f M  ;   2 20( ;0)sM f M  .   (10) 

 

  
 

a) φ0 1n  ; φ 1.5n   b) φ0 1n  ; φ 2n   c) φ0 3n  ; φ 3.5n   
 

Fig. 3. Behavior 2M  on sf : 1 is solid line for 1 11.8247cj  ; 

2 is dash line for 2 2.9562cj  . 

 

According to the calculated values 20 0.5404M    , 
16

20 1.1062 10M     the 

parameter of normalisation 20 1.8505   is found. Examples of the behavior of 
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the hysteresis curves for integer φ0n  and semi-integer values φn  for two values 

of semi-axes 1 11.8247c cj j   and 2 2.9562c cj j   are given in fig. 3, 4. 
 

  

 

a) φ0 1n  ; φ 1.5n   b) φ0 1n  ; φ 2n   c) φ0 3n  ; φ 3.5n   
 

Fig. 4. Behavior 2m  on sf : 1 is solid line for 1 11.8247cj  ; 

2 is dash line for 2 2.9562cj  . 

 

Alteration of the structural states due to changes sf ; 0n , 0 ; n ,   is 

accompanied by changes in the position of the local maxima and minima, wells 

and barriers, polarisation on dependences 2M  from (9). The choice of two 

different semi-axes 1cj , 2cj  according to (7) leads to two different 1cQ Q , 

2cQ Q  and, respectively, to two different modules 1u ck k , 2u ck k . The 

alteration of the structural states due to changes cj  is accompanied by 

hysteresis phenomena (fig. 3 b, c; 4 a, b, c). Double hysteresis loops (fig. 3; 

4 b, c) indicate the presence of coupled states (vortex-antivortex pairs). 
 

4  Coupled nanosystem: pairs of vortex-antivortex 

and Higgs boson 
 

Experimentally vortex-antivortex pairs were created in the ring-shaped BEC 

which contains 54 10N    
23

Na atoms (Eckel et al.[1]). This condensate is 

created from a gas of laser-cooled 
23

Na atoms by evaporation, first in a magnetic 

trap and then in a ring-shaped ( 19.5μmR  ) optical dipole trap. The area of the 

ring narrowing, where there was a vortex-antivortex pair, was created by a blue 

laser. The estimates of radius 0aR  of the trap, the wave length 4λ  for the laser 

transition and their relationship with the parameters of the 
23

Na atoms we will 

get by the formulas 

ρ 0 ρδaR R  ;   
2

ρ 2 /aR GM c ;   0 0 / 2a aR Nr ;   / 2k kR Nr ; 

0 4λa kR R  ;   4 4λ π / εc ;   0 δa k kr r  ;   4δ 2λ /k N .           (11) 

Here ρ 20.5688μmR   allows the interpretation as the Schwarzschild radius of 
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the black hole with a mass ρa aM N M ; ρ 22.99g a aM N m   is the molar 

mass of the atom
 23

Na; aN  is Avogadro's number; c  is speed of light in 

vacuum; 8 3 1 26.672 10 cm g sG      is Newton's gravitational constant. The 

energy spectrum εx  (where 1,2,3,4x  ) of elementary excitations is defined 

by formulas (V. Abramov and Kopvillem[15]) 

01ε 2εx xS  ;  02ε 2εx xS   ;  
2 2 1/2

01 02ε (ε 4 )g q   ;  
2 2 1/2

02 02ε (ε 4 )g q   ; 

1/2
0 1ε γ ( ( 1))g F n gg b n F F  ;   0 02 εq gb   ;   

23cos θ 1g gn   .         (12) 

Here 1
1 117.68308kOe meV(MHz)b   ; 1γ / 2π=1.12677MHz(kOe)n

  is the 

nuclear gyromagnetic ratio of the 
23

Na atom; 2 / 3Fg   is the spectroscopic 

splitting factor. The 
23

Na atom has the nuclear spin 3 / 2I  . We consider the 

basic electron shell 2 2 5 21 2 2 3s s p s  with angular momentum 3 / 2J  . Then, 

the total angular momentum F  of atom can take integer values 0,1,2,3F  . 

We consider the state with 3F  , 1gn   , 0 0ε 2εg g  . Then, on the basis of 

the spectrum (12) the values wavelength 4λ 535.5224nm , parameter 

δ 0.0268Ak   are obtained. The numerical values parameters 0b , xS
 
of the 

theory  are given below. If to accept that 0 19.5μmaR R  , then by (11) we 

obtain estimates of the radii 0.9489Akr   and 0 0.9757Aar  , which are close 

to the ionic (for 
23

Na 
+
) and atomic (for 

23
Na

0
) radii 0.95Akr   and 

0 0.98Aar  , respectively, (Kittel[16]). Then we obtain parameter 

ρδ 1.0688μm  and radius 18.978μmkR  . Atoms in the state with 0F   can 

enter the Bose condensate superfluid with the formation of elementary 

excitations of the Higgs boson type, and the atoms in the excited states with 

1,2,3F   can enter elementary excitations of a vortex-antivortex pair type. A 

superposition of atom states with different F  is possible. The physical 

parameters of these excitations are related as follows (V. Abramov [10]) 

2
0 1 / vg a a cb E N m ; 

2 2
1 1 0 0g g H HE M c M c  ; 0 μ1Hc cS  ;  

2
0 0H HE M c ; 

2
a aE m c ;   0 μv 2v /a s H eM m ;   μ μ μ2 / (2 )e e em m m m m  ;   0v 2 vs cb   .    

(13) 

Here 0HM , μ,em m  are rest Higgs boson, electron, muon masses; μ1 μ11S S    

is parameter of the theory. According to the calculation of the lower critical 

speed of movement 
2 1v 4.9791 10 cm sc
     on the basis relations from (13) 

the estimates of the basic parameters of the theory are obtained: 

1 115.1183GeVgE   (such value earlier had expected in the theory of the 
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supersymmetry for the Higgs boson); 0 125.0324GeVHE   is consistent with the 

experimental value at the LHC for the Higgs boson; the upper critical speed is 
2 1v 22.7824 10 cm ss
    ; 21.4072GeVaE  . Further we give the detailed 

formulas for calculating the parameters of the theory xS , μxS , 0b , μb , qb , ξq . 

For the quasi-one-dimensional lattice with two atoms per unit cell (such as the 

electron and proton rest masses em
 
and pm ), when the condition 

2 1qb   are 

fulfilled, parameters xS  are given in (V. Abramov and Kopvillem[15]) 

1 14 1 qS g  ;   3 14 1 qS g  ;   2 24 1qS g  ;   4 24 1qS g  ; 

2 1/2
1 (1 )q qg b  ;   

2 1/2
2 (1 )q qg b  ;   

2 4ξ (ξ 1)q q qb   ; 

2 1ξ sn( , )/[1+dn( , )]=ω / ωq q q q qk u k u k ,                         (14) 

where qu  is effective dimensionless displacement of the lattice node, which 

depends nonlinearly on the wave vector q , the lattice parameter kr ; 1ω q  and 2ω q  

are frequencies of the optical and acoustic branches of the vibrational spectrum 

2 2
1 0( ω ) ( ω ) (1 dn( , )) / 2q u qu k  ;   

2 2
2 0( ω ) ( ω ) (1 dn( , )) / 2q u qu k  ;    (15) 

2
0 0 1ω 4 /u ug m ;   1 / ( )e p e pm m m m m  .                          (16) 

Here 0ug  is the lattice force constant between the particles with the rest mass 

em , pm . In the centre of the Brillouin zone at | | 0q   the condition 

0dn( , )=1u k  is fulfilled. Then from (15) follows that the energy of the optical 

and acoustic modes are equal 1 0ω | ω |q u  and 2ω 0q  , respectively, 

parameter 0q  . At the boundary of the Brillouin zone at | | / | |kq r  the 

condition 
2 2sn ( , ) sin ( / 2)=1q ku k q r   is fulfilled. Then from (15), (14) we 

find 

2 2 2
1 0 1( ω ) ( ω ) (1 ) / 2 ( ω )q u k   ; 

2 2 2
2 0 2( ω ) ( ω ) (1 ) / 2 ( ω )q u k   ; 

2 2 2 2 2 2
0 2 1ξ ξ ω /ω / / (1 )q q e pm m k k     ;   2 2( ) 1k k   .         (17) 

The relations (17) allow us to express modules k , k   of elliptic functions from 

(14), (15) through the known rest mass em , pm  of the particles or through the 

main parameter of the theory 0ξq  in the following form 

2 2 2 2 2
0 04ξ / (1 ξ ) 4 / ( )q q e p e pk m m m m    ;   

2 2 2( ) ( ) / ( )e p e pk m m m m    .     (18) 

Other parameters from (14) at the boundary of the Brillouin zone have 

numerical values 0 0.30907377qb b  ; 
2

1 1.2240475 10S    ; 
2

2 1.16685 10S   ; 
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2
3 48.775952 10S   ; 2

4 51.16685 10S   . Now changing modules of elliptic 

functions in expressions (1), (3), (7), (8) based on the relations (18) can be 

interpreted in terms of the rest mass of particles both in separate and in various 

layers of the multilayer nanosystems. We note that in the general case 
2sn ( , ) 1qu k   and for finding of dependencies qu  on some parameters 

( φ0, ,sf j n ) once again come to the nonlinear equations of the type (8). The 

parameter 02 H  can be interpreted as an order parameter and it is associated 

with an energy gap ρ02  in the spectrum of elementary excitations in a coupled 

system (vortex-antivortex pair and Higgs boson) relationships 

2
0 0 0 ρ ρ0 ρ02 v 2H H ab E M N     ;   

2
ρ0 ρ0 ρ02 ω vam   .          (19) 

Here parameters from (19) are the velocity 
1/2

ρ0 0 0 ρv ( / )Hc M b M  2 -15.1890 10 cm s   and energy gap 

02 38.6442GeVH  . By analogy with (14) for a quasi one-dimensional lattice 

(type of the electron and muon rest mass em  and μm ) we obtain the parameters 

1/2
μ μξ ξ ( / )q em m  ; μqb b  0.54545421  ; 

2
μ1 4.0464845 10S    ; 

2
μ2 3.4771871 10S   ; 

2
μ3 45.9535155 10S   ; 

2
μ4 53.4771871 10S   . For lattice 

(type of an atom 
23

Na and Higgs boson) we find the basic parameter of the 

theory 2
0ξ / 0.17121315a a Hm M  .The parameters 2τ 1 2 | ξ |H a   and Hab  

connected by the relation 2 2
2τ 1H Hab   from which we find the value 

1.5296957Hab  , i.e. in this case following condition 
2 2 1Ha qb b   is fulfilled, 

and formulas (14) are replaced by 

;   34 1 | sinθ |H HaS   ;   2 1/2
24 (1 cos θ ) 1H HaS    ; 

2 1/2
44 (1 cos θ ) 1H HaS    ;   2 2

2τ cos θH Ha
  ;   2 2 2sin θ / (1 )Ha Ha Hab b  .      (20) 

Using (20), the calculated values | sinθ | 0.8370Ha  , the possible values of 

angles θ 56.83Ha    and θ 123.42Ha   , parameters 
2

1 4.0745963 10HS     , 

2
3 45.925404 10HS    , 2

2 3.4978505 10HS    , 
2

4 53.497851 10HS     are 

obtained. In the general case sinθ sn( , )Ha Ha Hau k , cosθ cn( , )Ha Ha Hau k , 

where F(θ ; )Ha Ha Hau k  is an effective displacement, which depend on angle 

θHa  and module Hak  of elliptic functions. Note that when 1Hak   these 

functions are converted into sinθ thHa Hau , cosθ sechHa Hau . When the 

condition 
2 1Hab   is fulfilled, that from formulas (14) and (20) follows the 

existence of threshold values of the parameters: 
2

0ξ /ac ac Hm M , 2
2H , xS , 
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HxS  , θac , rest mass acm , molar mass ρc ac aM m N  and energy 2
ac acE m c  

of the particle. The numerical values of the parameters are equal: 
2 2ξ 42.893219 10ac

  ; 2
2 2H  ; 1 3 1 3 0.25H HS S S S     , 2 24 4 2 1HS S   , 

4 44 4 2 1HS S   ; θ π/4ac    and θ 3π/4ac   ; ρ 5.7596gcM  ; 

5.3630GeVacE  . Spectra type of 01ω 2ωax xS  and 022ωax xS   allow us 

to obtain a characteristic frequency of rotation 0a  of superliquid in the ring 

with radius 0aR  of optical trap and critical velocities v , vcx cx , where 

2 2 2 1/2
01 0 32ω [(ω ) (ω ) ]a nb  ;     2 2 2 1/2

02 0 32ω [(ω ) (ω ) ]a nb  ; 

ω /a a aE N ;     2
3 1ω vn a cm ;     0 0 1 2 01ω ( )ωa a S S    ; 

2
0 ρ 0/ ωa a aR N M ;     μ ρ0v vcx xS  ;     ρ0v v vcx cx  ;    1v vc c ; 

1 3 ρ0v v 3v / 2c c  ;    4 2 2 4 1 3 ρ0v v v v v v v / 2c c c c c c         .       (21) 

On the basis of (14) and (21) we find the parameters: ω 53.985Hza  ; 

3ω 89.726Hzn  ; 0 3ω 27.732Hznb  ; 0 19.5146μmaR  ; 2
0 72.553 10 Hza

   . In 

experiment (Eckel et al.[1]) for changing governing parameter (in our case sf ) 

two sets of discrete critical velocities are observed. The calculated values of 

critical velocities 2 -1
42v 5.5499 10 cm sc

     and 2 -1
1 3v v 7.7835 10 cm sc c

   
 

practically coincide with the experimental values 
2 -15.56 10 cm s   and 

2 -17.78 10 cm s   from the first and second set, respectively. These 

dependencies of critical velocities from different sets intersect near values 
2 -16.67 10 cm s  . The effect of the formation of the double hysteresis loop 

(analog of this effect for the B-phase in helium-3 ([17, p. 43, 48])) is possible. 

The temperature 68.5305nKckT   and 100.0660nKcHT   of supercooled and 

BEC superfluid liquids, respectively, are determined from the expression 

2
3 1ω vn a c B ckm k T  ;  

2
0 1v 2H c B cHM k T ;  0 0c H ckT N T ;  0 2A H cHT N T ; 

2
0 0/ 2 2 / 2ξ /ck cH a H a c AT T m M T T   ;   0 0/ 2 /A cH c ck HT T T T N  ,      (22) 

where Bk  is Boltzmann constant. The parameter 0HN  from (22) is defined by 

the spectrum 0Hx HxN N S , taking into account (20). If 4 / 2HN N , then 

5
0 3.7385 10N   , 

4
0 2 1.3077 10H HN N   , 

4
1 1.5233 10HN   . Further we find 

temperatures 0 0.8961mKcT  , 2.6170mKAT  , which are close to the phase 

transition temperatures 0 0.9mKcT  , 2.6mKAT   for helium-3 ([17, p. 43, 

48]). If 0 1HN  , then from (22) follows 0c ckT T , 2A cHT T . Therefore 
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0HN , 1HN , it can be interpreted as the number of Higgs bosons, vortex-

antivortex pairs in the condensate superliquid. Next, on the basis of expressions 

0 0ωH a HE N ; 0 0 0ω γH H MH ; 0 0γ γ /H p n Hm M ; 0 0ω 2πνH H ,   (23) 

we find the frequency 0ν 50.183HzH  ; 1
0γ / 2π=8.45557Hz OeH

  and the 

effective magnetic field 0 5.935OeMH   (analogue of Higgs field). The 

frequency spectrum 3 0 3ω ω ωHx Hx n n HxN N S   , which obtained without the 

influence of vibrational modes in the parameter 0N , allow us to define the 

frequency 2 2ν ω / 2π=186.738kHzH H  on the basis of relations 

2
2 2 2 1ω vH B H ck H a ck N T N m  . This frequency can be measured by methods 

of continuous and pulsed nuclear magnetic resonance (NMR) superliquid by 

analogy with ([17, p. 68]). Then the mentioned frequency 2νH  can be 

determined by the shift from the temperature dependence of the NMR 

frequency. The influence of the vibrational modes ( δ0ω 0 ) leads to a change 

spectrum ωHx  on 

δ 012x HxS   ;   δ 02ω 2x HxS  ;   2 2 1/2
01 02 (ω 4δ )N   ; 

2 2 1/2
01 02 (ω 4δ )N   ;   0 0 3 0ω ω γN n n NN H  ;   δ0 δ2δ=ω | cosθ | .   (24) 

Here the parameters are frequency
 0 0ν ω / 2π=5.339MHzN N , the effective 

magnetic field
 0 4.738kOeNH  . The angular position of the weakest link 

(neck, narrowing) in the ring-shaped condensate of superliquid can be controlled 

by choosing of the frequencies δ0ω  and angles δθ , using impulse methods 

(Eckel et al.[1]). If δ02δ=ω / 2 , then the possible values of angles are 

δθ π/3; 2π/3   . If δ| cosθ | 0 , then parameters are 2δ=0  and δθ π/2  . 

The estimation of the molar masses of the weak link  excluding ( ρm ) and taking 

into account the presence of vortex-antivortex pairs in narrowing ( sm ) we will 

perform by the formulas 
2 2

ρ ρ μ2ρπξ / 4ckm M S  ;   2ρπsm s ;   ρ 0ρ2π a kM R d ,               (25) 

where ξck  is the limiting correlation length. From (25) we find 

2
0 μ2ξ / 8 29.2600Ack aR S  ; 4ξ 117.0401Аk ckd   ; 

2
ρs sm m f . It follows 

that mass of the narrowing sm  with the presence of vortex-antivortex pairs can 

be changed by parameter sf  and ρm . This is confirmed by the dependencies of 

the effective displacements on sf  and parameters cj  (fig. 3, 4), 2cn , 2cm  

(fig. 2), 01p  (fig. 1), where there are changes of the potential relief, the 

appearance of wells and barriers, hysteresis. 
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The parameters 0HR , 0HM   are related to the parameters of the black hole from 

(11) as 

2
ρ 0ξa HR R ;   2

0ξa a HM M  ;   2
0 0H a HM N M  ;   0H HG GM N M .   (26) 

Here G a GM N m  and Gm  are the molar mass and the rest mass of the 

graviton; 2 12.1175мкэВG GE M c  ; 16
0 / 1.0318 10HG H GN E E   . The 

mass of a single black hole 0rM , which appears after the merger of two black 

holes, defined as 

0 0 02r r HM N M  ;   0 0r raN N N ;   0/ 2ra r HN T T ;   0 / 2H AT T .   (27) 

Here 2.72548KrT   is the cosmic microwave background radiation 

temperature; parameters are 8
0 7.7867 10rN   ; 31.0414 10raN   . The 

calculated frequency 0 0 ρ ρ/ 4δ 244.769HzH H R     can be interpreted as the 

frequency of the radiation of gravitational waves after the merger of two black 

holes. Experimentally, after the merger of two black holes a transient signal 

with near modulation frequency (Abbott et al.[13]) is observed. 

 

Conclusions 
 

In the multilayer nanosystem the displacements of lattice nodes of the layer at 

module 1 1k   are a separate plane, while at 1 1k 
 
they form a stochastic layer. 

The width and the region of localisation of the stochastic layer can be controlled 

by the changes of module 1k , the parameter 01p . For the quantum dot at a 

module 2 1k   the presence of sharp peaks with high amplitude and stochastic 

behavior near the core localisation of the basic peaks are characteristic. In the 

coupled system the separate layer and the quantum dot influence each other. The 

decrease in the semi-axes of the quantum dot leads to effects: decreasing of the 

basic peak amplitude; narrowing of the stochastic behavior region; the 

appearance of “influx” near the basic peak. The increase in the semi-axes of the 

quantum dot leads to effects: the expansion zone of influence of the stochastic 

behavior of the quantum dot on the whole stochastic layer; the appearance of 

broadened peak in the background of a pronounced stochastic base with large 

amplitudes (form a halo-type signal). For the coupled system the increase of 

parameter 01p  in stochastic layer leads to decrease of the deformation field 

amplitude outside the region of localisation of the quantum dot. 

When the temperature cHT T  the behavior of superliquid (a set of ultracold 
23

Na atoms in a ring-shaped optical trap) is characterised by: the quantized 

rotation frequency 0a  of superliquid (or quantization of the flow φ0 0an  ); 

basic radius of trap 0aR ; two sets of discrete critical velocities (type 42vc  and 

1 3v vc c ); hysteresis and the appearance of the double hysteresis loops on the 
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dependencies of the effective displacements 2M , 2m  on sf  (that is 

associated with the presence of a set of metastable and coupled states at φ0 0n  ). 

23
Na atom and the Higgs boson form an elementary cell of quasi-one lattice in 

superliquid. The elementary excitation of the type of vortex-antivortex pairs 

(with 1HN ) influence on BEC of superfluid liquid (with parameters 0HN , 

02 H , 0MH ), where the elementary excitation is the Higgs boson (with an 

effective mass 0HM ). The relationship of temperatures ,ck cHT T  by parameter 

0HN  with temperatures 0 ,c AT T  (analogous temperatures of phase transition for 

B  and A  phases of helium-3) are determined. The relations parameters of 
23

Na 

atoms, Higgs boson in a ring-shaped optical trap with the parameters of black 

holes before merger (with a total mass 2 aM ) and after the merger (with mass 

0HM  ) are determined. The estimate of radiation frequency of gravitational 

waves 0H   after the merger of two black holes is performed. 
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