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Abstract. The problem of describing the reachable sets of nonlinear dynamical con-
trol systems with combined bilinear and quadratic nonlinearity and with uncertainty
in initial states is studied. We assume that the uncertainty is of a set-membership
kind when we know only the bounding set for unknown items and any additional sta-
tistical information on their behavior is not available. Applying results of the theory
of trajectory tubes of control systems and related techniques of differential inclusions
theory we present new approaches that allow finding external or internal ellipsoidal
estimates of reachable sets. The main result consists in obtaining the differential
equations describing the dynamics of centers and matrices of the external ellipsoids
estimating the reachable sets of the bilinear-quadratic control system under uncer-
tainty. Examples and numerical simulations related to the proposed techniques and
illustrating the theoretical results are also included.
Keywords: Control systems, Nonlinear dynamics, Estimation problem, Set-member-
ship uncertainty, Ellipsoidal calculus, Funnel equations, Trajectory tubes, Simulations
for uncertain systems.

1 Introduction

The paper deals with the estimation problems for uncertain systems in the
case when a probabilistic description of noise and errors is not available, but
only bounds on them are known (Chernousko[4], Schweppe[23], Kurzhanski
and Valyi[17], Kurzhanski and Varaiya[18]). Such models may be found in
many applied areas ranged from engineering problems from physics to eco-
nomics as well as to biological and ecological modeling when it occurs that
a stochastic nature of the errors is questionable because of limited data or
because of complexity of the model. An alternative to a stochastic character-
ization a so-called bounded-error characterization, also called set-membership
approach, has been proposed and intensively developed in the last decades
(Bertsekas and Rhodes[1], Chernousko[3], Kurzhanski and Valyi[17], Kurzhan-
ski and Varaiya[18], Milanese et al.[21]). The solution of many control and es-
timation problems under uncertainty involves constructing reachable sets and
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their analogs. For models with linear dynamics under such set-membership
uncertainty there are several constructive approaches which allow finding effec-
tive estimates of reachable sets (Chernousko[3], Chernousko[4], Filippova[11],
Kurzhanski and Valyi[17], Kurzhanski and Varaiya[18], Polyak et al.[22]). Cer-
tainly however concrete problems are mostly nonlinear in their parameters and
the set of feasible system states is usually non-convex or even non-connected.
The key issue in nonlinear set-membership estimation is to find suitable tech-
niques, which produce related bounds for the set of unknown system states
without being too computationally demanding, some of such approaches may be
found e.g. in Brockett[2], Chernousko and Rokityanskii[5], Dontchev and Lem-
pio[6], Filippova[7], Filippova[8], Kurzhanski and Filippova[16], Mazurenko[20],
Filippova and Lisin[12].

In this paper the modified state estimation approaches which use the special
structure of nonlinearity of studied control system are presented. We assume
here that the system nonlinearity is generated by the combination of two types
of functions in related differential equations, one of which is bilinear and the
other one is quadratic. We find here the set-valued estimates of related reach-
able sets of such nonlinear uncertain control system. The algorithms of con-
structing the ellipsoidal estimates for studied nonlinear systems and numerical
simulation results related to the proposed techniques are given.

In this paper we continue researches beginning in Filippova and Matviy-
chuk[13], Filippova and et al.[14,15]. The paper is organized as follows. Section
2 gives the problem statement and introduces the terminology used throughout
the paper. In Section 3 we provide some results on finite difference estimation
schemes. Here we present also an algorithm for calculating the external el-
lipsoidal estimate of reachable sets of the nonlinear system and consider the
example. In Section 4 we derive the differential equations describing the dy-
namics of upper estimates of reachable sets of uncertain control system with
bilinear - quadratic nonlinearity. Finally, Section 5 presents conclusions and
the last Section contains acknowledgments.

2 Preliminaries and problem formulation

Let us introduce the following basic notation. Let Rn be the n-dimensional
vector space, compRn be the set of all compact subsets of Rn, Rn×m stands
for the set of all real n × m-matrices, x′y = (x, y) =

∑n
i=1 xiyi be the usual

inner product of x, y ∈ Rn with prime as a transpose,

‖x‖ = ‖x‖2 = (x′x)1/2, ‖x‖∞ = max
1≤i≤n

|xi|

be vector norms for x ∈ Rn, I ∈ Rn×n be the identity matrix, tr (A) be the
trace of n × n-matrix A (the sum of its diagonal elements). We denote by
B(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r} the ball in Rn with a center a ∈ Rn and a
radius r > 0 and by

E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}
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the ellipsoid in Rn with a center a ∈ Rn and with a symmetric positive definite
n× n-matrix Q.

Consider the following system

ẋ = A(t)x+ f(x)d+ u(t), x0 ∈ X0, t ∈ [t0, T ], (1)

where x, d ∈ Rn, ‖x‖ ≤ K (K > 0), f(x) is the nonlinear function, which
is quadratic in x, f(x) = x′Bx, with a given symmetric and positive definite
n × n-matrix B. Control functions u(t) in (1) are assumed to be Lebesgue
measurable on [t0, T ] and satisfying the constraint u(t) ∈ U for a.e. t ∈ [t0, T ]
(here U is a given set, U ∈ compRn). The n × n-matrix function A(t) in (1)
has the form

A(t) = A0 +A1(t), (2)

where the n× n-matrix A0 is given and the measurable n× n-matrix A1(t) is
unknown but bounded, A1(t) ∈ A1 (t ∈ [t0, T ]),

A(t) ∈ A = A0 +A1, (3)

A1 =
{
A={aij}∈Rn×n : |aij |≤cij , i, j=1, . . . n

}
,

where cij ≥ 0 (i, j = 1, . . . n) are given.
We will assume that X0 in (1) is an ellipsoid, X0 = E(a0, Q0), with a sym-

metric and positive definite matrix Q0 ∈ Rn×n and with a center a0.
Let the absolutely continuous function x(t) = x

(
t;u(·), A(·), x0

)
be a solu-

tion to dynamical system (1)–(3) with initial state x0 ∈ X0, with admissible
control u(·) and with a matrix A(·) satisfying (13)–(3). The reachable set X (t)
at time t (t0 < t ≤ T ) of system (1)–(3) is defined as the following set

X (t) = {x ∈ Rn :∃x0∈X0, ∃u(·)∈U , ∃A(·)∈A,
x = x(t) = x

(
t;u(·), A(·), x0

)
}.

The main problems studied here are as follows.

• Problem 1. Find the external ellipsoidal estimate E(a+(t), Q+(t)) (with
respect to the inclusion of sets) of the reachable set X (t) (t0 < t ≤ T )
by using the analysis of a special type of nonlinear control systems with
uncertain initial data.
• Problem 2. Find differential equations that describe the dynamics of the

above ellipsoidal estimates of reachable sets.

3 Finite-difference approximations of trajectory tubes

Consider the general case (1)–(3) of the system dynamics and here we take
X0 = E(a0, Q0) and U = E(â, Q̂) where matrices B, Q̂ and Q0 are symmetric
and positive definite. The next theorem describes discrete external ellipsoidal
estimates of reachable sets X(t) of the uncertain control system (1)–(3), con-
taining both bilinear and quadratic nonlinearities. Denote the maximal eigen-
value of matrix B1/2Q0B

1/2 as k2.
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Theorem 1 (Filippova et al.[14,15]). The following external ellipsoidal es-
timate holds

X (t0 + σ) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ)) + o(σ)B(0, 1) (4)

where σ−1o(σ)→ 0 for σ → +0 and where

a∗(t0 + σ) = ã(t0 + σ) + σ(â+ a′0Ba0 · d+ k2d), (5)

Q∗(t0 + σ) = (p−1 + 1)Q̃(t0 + σ) + (p+ 1)σ2Q̂, (6)

with functions ã(t), Q̃(t) being solutions of the following differential equations

˙̃a = Ã0ã, ã(t0) = a0, t0 ≤ t ≤ T, (7)

˙̃Q = Ã0Q̃+ Q̃(Ã0)′ + qQ̃+ q−1G, Q̃(t0) = Q0, t0 ≤ t ≤ T, (8)

where
Ã0 = A0 + 2d · a′0B, q =

(
n−1 Tr ((Q̃)−1G)

)1/2
, (9)

G = diag
{

(n− v)
[ n∑
i=1

cji|ãi|+
(

max
σ={σij}

n∑
p,q=1

Q̃pqcjpcjqσjpσjq
)1/2]2}

, (10)

the maximum in (10) is taken over all σij = ±1, i, j = 1, . . . , n, such that
cij 6= 0 and v is a number of such indices i for which we have: cij = 0 for all
j = 1, . . . , n, and p is the unique positive root of the equation

n∑
i=1

1

p+ αi
=

n

p(p+ 1)

with αi ≥ 0 (i = 1, ..., n) being the roots of the following equation

|Q̃(t0 + σ)− ασ2Q̂| = 0.

The following iterative algorithm is based on Theorem 1.

Algorithm. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a0, Q0), find the smallest k = k0 > 0 such that E(a0, Q0) ⊆
E(a0, k

2B−1) (k2 is the maximal eigenvalue of the matrix B1/2Q0B
1/2).

• Take σ = h and define by Theorem 1 the external ellipsoid E(a1, Q1) such
that X (t1) ⊆ E(a1, Q1) = E(a∗(t0 + σ), Q∗(t0 + σ)).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.

Next steps continue iterations 1–3. At the end of the process we will get
the external estimate E(a∗(t), Q∗(t)) of the tube X (t) with accuracy tending
to zero when m→∞.

Example. Consider the following control system{
ẋ1 = x2 + x21 + x22 + u1,
ẋ2 = c(t)x1 + u2.

(11)
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Fig. 1. Reachable sets X (t) and their external estimates E(a∗(t), Q∗(t)) for t =
0.14; 0.26; 0.4.

Here we take x0 ∈ X0 = B(0, 1), 0 ≤ t ≤ 0.4 and U = B(0, 0.1), the
uncertain but bounded measurable function c(t) satisfies the inequality

|c(t)| ≤ 1, 0 ≤ t ≤ 0.4.

The reachable sets X (t) and their external ellipsoidal estimates E(a∗(t), Q∗(t))
calculated by the Algorithm on the base of Theorem 1 are given in Figures 1-2.
We see in the figures that the reachable sets X (t) lose their convexity with
increasing time. Nevertheless, their external estimates remain valid. More-
over, in some directions, we see that the sets X (t) and E(a∗(t), Q∗(t)) concern
the each other, that is, it is impossible to reduce the estimating ellipsoids
E(a∗(t), Q∗(t)).

4 Differential equations of external ellipsoidal estimates

Earlier some approaches had been proposed to obtain differential equations de-
scribing dynamics of external ellipsoidal estimates for reachable sets of control
system under uncertainty, e.g., in Chernousko and Rokityanskii[5] the authors
studied estimation problems for systems with uncertain matrices in dynami-
cal equations, but additional nonlinear terms in dynamics were not considered
there. In Filippova[10] differential equations of ellipsoidal estimates for reach-
able sets of a nonlinear dynamical control system were derived for the case
when system state velocities contain quadratic forms but in that case the un-
certainty in matrix coefficients was not assumed. Here we consider the complex



90 Tatiana F. Filippova

Fig. 2. Trajectory tube X (t) and its ellipsoidal estimating tube E(a∗(t), Q∗(t)) for
the bilinear-quadratic control system with uncertain initial states.

situation but in order to slightly simplify related formulas we assume that the
system has the following form

ẋ = A(t)x+ f(x)d, x0 ∈ X0, t ∈ [t0, T ], (12)

where x, d ∈ Rn, ‖x‖ ≤ K (K > 0), f(x) is the nonlinear function, which
is quadratic in x, f(x) = x′Bx, with a given symmetric and positive definite
n× n-matrix B.

The n× n-matrix function A(t) in (12) has the form

A(t) = A0 +A1(t), (13)

where the n× n-matrix A0 is given and the measurable n× n-matrix A1(t) is
unknown but bounded, A1(t) ∈ A1 (t ∈ [t0, T ]),

A(t) ∈ A = A0 +A1, (14)

A1 =
{
A={aij}∈Rn×n : |aij |≤cij , i, j=1, . . . n

}
,

where cij ≥ 0 (i, j = 1, . . . n) are given.
We will assume that X0 in (12) is an ellipsoid, X0 = E(a0, Q0), with a

symmetric and positive definite matrix Q0 ∈ Rn×n and with a center a0.

Lemma 1 (Filippova[10]). The maximal number k+0 > 0 such that the in-
clusion holds

E(a0, Q0) ⊆ E(a0, (k
+
0 )2B−1), (15)
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is defined by the following equality

(k+0 )2 = max
l∈{l∈Rn:||l||=1}

l′B1/2Q0B
1/2l. (16)

The following theorem provides the differential equations describing the dy-
namics of centers and matrices of the external ellipsoids estimating the reach-
able sets X(t) of the bilinear-quadratic control system (12)-(14) under uncer-
tainty in matrix coefficients and initial states and with nonlinear (quadratic)
term in state velocities.

Theorem 2. The following inclusion is true

X(t) ⊆ E(a+(t), Q+(t)), t ∈ [t0, T ], (17)

where Q+(t) = r+(t)B−1 and functions a+(t), r+(t) are the solutions of the
following nonlinear ordinary differential equations

da+(t)

dt
= A0a+(t) + a+′(t)Ba+(t)d+ r+(t)d,

dr+(t)

dt
= max
‖l‖=1

{l
′
(2B̃+(t)B1/2Q̃(t)B1/2+

B1/2q−1+ (t)G(t)B1/2)l}+ q+(t)r+(t),

q+(t) = {(nr+(t))−1Tr(BG(t))}1/2,

B̃+(t) = B1/2(A0 + 2d · (a+(t))′B)B−1/2,

(18)

G(t) = diag
{

(n− v)
( n∑
i=1

cji|a+i (t)|

+
(

max
σ={σij}

n∑
p,q=1

Q+
pq(t)cjpcjqσjpσjq

)1/2)2}
,

(19)

where the maximum in (10) is taken over all σij = ±1, i, j = 1, . . . , n, such
that cij 6= 0 in (3) and v is a number of such indices i for which we have:
cij = 0 for all j = 1, . . . , n, with initial conditions

a+(t0) = a0, r+(t0) = (k+0 )2. (20)

Proof. Analyzing results of Theorem 1 and using the general scheme of the
proof of Theorem 2 in Filippova[10] (see also techniques in Filippova[9,11]) we
obtain the formulas (18) of the Theorem.

Remark 1. Here the differential equations (17)-(18) describing the evolution
of upper ellipsoidal estimates of reachable sets X(t) of the studied system
are much more complicated then e.g. in Filippova[11] because we assume here
simultaneously both the uncertainty in matrix coefficients and also the presence
of nonlinear (quadratic) terms in the system dynamics.
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5 Conclusion

The paper deals with the problems of state estimation for uncertain dynam-
ical control systems for which we assume that the initial state is unknown
but bounded with given constraints and the matrix in the linear part of state
velocities is also unknown but bounded.

We study here the case when the system nonlinearity is generated by the
presence of bilinear terms and quadratic forms in related differential equations.
The problem may be reformulated as the problem of describing the motion
of set-valued states in the state space under nonlinear dynamics with state
velocities having bilinear-quadratic type.

Basing on results of ellipsoidal calculus developed earlier for some classes
of uncertain systems we present the modified state estimation approach which
uses the special structure of nonlinearity and uncertainty in the control system
and allows constructing the external ellipsoidal estimates of reachable sets.

The differential equations describing the dynamics of the estimating exter-
nal ellipsoids are derived.
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