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Abstract. Direct numerical simulations of nonlinear vector light evolution in a Raman 

fiber amplifier with a random birefringence were performed in both Stokes and Jones 
representations. The Jones representation allows separating a stochastic part governed by 

material birefringence from a vector field dynamics governed by generalized vector 

nonlinear Schrödinger equation. The material part can be calculated independently from 

a system of stochastic ordinary differential equations and represented in the form of a 
universal library of stochastic coefficients for any type of dynamic vector partial 

differential equations. This approach demonstrated a resonance stochastization of the 

signal state of polarization within diapasons of the polarization mode dispersion 

parameter ≈0.02 ps/km1/2 and the fiber length ≈6 km. The effect can be interpreted as a 
simultaneous manifestation of stochastic anti-resonance and Raman nonlinearity, i.e. 

depletion of the pump by a signal with intra-fiber propagation. Pump-signal noise 

transfer is maximum near stochastic anti-resonance, but it does not vanish and can even 

grow with a decrease of the polarization mode dispersion. It was found, that the growth 
of signal power, i.e. enhancement of pump depletion, suppresses signal stochastization. 

Two multi-scale averaging analytical techniques were developed. They agree perfectly 

with numerical results in the limits of small and large propagation lengths as well as for 

arbitrary fiber length in the case of small polarization mode dispersions.  The obtained 
results can be usable for both design of new generation of high-speed telecommunication 

systems and development of new multi-scale averaging mathematical techniques. 

Keywords: Stochastic modeling, Multi-scale averaging techniques, Vector Raman 

amplification, Stochastic anti-resonance, Pump-signal noise transfer. 
 

1  Introduction 

 

Raman amplification became an efficient tool for high-speed telecommunication 

due to its high efficiency and the possibility to provide homogeneous 

amplification within broad spectral range and, thereby, to increase the number 

of communication channels substantially (see C. Headley & G.P. Agrawal [1]). 

The characteristic feature of Raman amplification is its vector nature that is 

dependence on relative states of polarization (SOP) of pump and signal. Both 

pump and signal propagate through a fiber with inherent birefringence caused, 

for instance, by noncircularity of fiber core or mechanical stress, which are 

randomly distributed along a fiber. Their combined effect on the evolution of 

pump and signal SOPs is described by so-called polarization mode dispersion 
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parameter (PMD) 2p s c bsD L cL , where s  is a signal wavelength, c is a 

light speed, bsL  is a signal polarization beat length and cL  is a coherence length 

of random birefringence (see A. Galtarossa and C.R. Menyuk [2]). If the scales 

of regular and random birefringence differ substantially so that bs cL L , pump 

SOP pulls signal one after sufficiently long propagation (the so-called 

phenomenon of “polarization pulling” or “trapping,” V.V. Kozlov et al. [3]). In 

this regime, the signal SOP fluctuates slightly relatively the pump one (see V.L. 

Kalashnikov et al. [4]). Such a limit, when a fiber acts as an effective polarizer 

relatively pump SOP, will be called as the “Manakov limit” thereafter. Opposite 

limit of c bsL L  corresponds to complete decorrelation of signal and pump 

SOPs due to their fast relative rotation so that a fiber acts as an isotropic 

medium (so-called “diffusion limit,” V.V. Kozlov et al. [3]). Most nontrivial 

regime corresponds to c bsL L  and manifests itself in abrupt stochastization of 

the signal SOP evolution. It is so-called “stochastic anti-resonance” (SAR) 

regime (V.L. Kalashnikov et al. [4]). 

In this work, we present the results of a systematic investigation of 

stochastic and noise properties of a fiber Raman amplifier in dependence on 

PMD and a fiber length L with taking into account nonlinearity in the form of 

pump depletion. New multi-scale averaging techniques are presented and 

compared with the numerical results. The latter are based on an original 

approach dividing the initial system of stochastic evolutionary equations (PDEs 

in general case) for pump and signal in Jones representation on the systems of 

evolutionary PDEs with stochastic birefringence coefficients for pump and 

signal, and the independent system of stochastic ODEs for the birefringence 

coefficients. These coefficients are calculated on one occasion only and can be 

used for a multitude of dynamical problems, i.e. realization of a fiber Raman 

amplifiers. Finally, we touch on problem pump-signal noise transfer.    

 

2  Model and Methods 

 

We base our analysis on the Manakov PMD equations in Jones representation 

without taking in account group-delay, group-velocity dispersion, and Kerr 

nonlinearity. These assumptions are quite valid for the pump powers 1inP   W 

and the propagation lengths 100L   km. The corresponding system of 

equations for a signal sA  and a pump pA   taking into account stochastic 

birefringence and pump depletion is (C.R. Menyuk and B.S. Marks [5]; and 

V.L. Kalashnikov and S.V. Sergeyev [6]):  
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 where z is a propagation coordinate, gR is a Raman gain coefficient, p  is a 

pump wavelength, bpL  is a pump polarization beat length, p and s are the loss 

coefficients for pump and signal, respectively.  and  are the corresponding 

components of the standard Pauli matrix. The last equation in (1) has to be 

treated as a stochastic differential equation (SDE) of Stratanovich type, where 

an angle  defines an orientation of birefringence axis and is treated as a 

stochastic variable with        0, .cz z z z z L     

 Rotation (C.R. Menyuk and B.S. Marks [5]): 
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split the initial system of SDE (in partial derivatives, in general case) into a set 

of evolutionary equations for fields: 
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with stochastic coefficients 3 3  pre-determined by independent SDEs: 
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The main advantage of the system (4,5) is that SDEs (5) can be solved 

independently once for an arbitrary PMD, L and a number of stochastic 

trajectories. Then, obtained “library” of stochastic coefficients 3  can be used 

for the solution of any modification, including time-dependent and Kerr-

nonlinear, of Eqs. (4) without a need for a solution of stochastic nonlinear 

PDEs. That provides unprecedented acceleration of calculations and allows 

analyzing the real-world long stochastic fiber lasers and amplifiers. 

Both Eqs. (4) and Eqs. (5) were solving with the help of Matlab. Especial 

thoroughness is required for the solution of SDEs (5) where unitarity has to be 

provided for all z and stochastic trajectories. Fastest and best convergence was 

provided by the Weak Order 2 Stochastic Runge-Kutta Method (B. Riadh and H. 

Querdiane [7]), which for a formal Stratanovich type SDE: 

 

       , ,X z A z X dz B z X dW z     (6) 

can be written in the form: 
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where    1 1,n n n nz z W W z W z       , W(zn) is a Wiener process and X, 

A and B can be multicomponent. After calculation of the stochastic coefficients 

from Eq. (5) on the basis of (6,7), Eqs. (4) were solved by the ordinary second-

order Runge-Kutta method with an extended step . 

 Alternative approaches use the multi-scale averaging techniques and 

lead to systems of ODEs for averaged field parameters. Let us express the 

matrix (5) in the form: 
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  (8) 

where  
22

1 bpX L z   ,  2 2 bpX i z L   , 3 0X  , 

 4 2 bpX i z L   ,   22
5 bpX L z     and   22

6 bpX i L z     

which obeys Eq. (6) with the coefficients 

 3 2 6 50, 2 ,2 ,0, 2 ,2
T

bp bp bp bpA X L X L X L X L       and 

 2 1 5 42 , 2 ,0,2 , 2 ,0
T

B X X X X   . If one assumes the stochastic birefringence 

as a fast variable and average over it (D. Marcuse et al. [8]), applying the Dunkin 

formula and the Stratanovich generator (B. Øksendal [9]): 
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after cumbersome calculations, the resulting equations for the evolution of 

signal and pump Stokes parameters are: 
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where the connection between Stokes and Jones parameters is ,S U U  

P V V .   is expressed through Pauli matrixes and unit basis vectors: 

1 2 3 .i j k       Eq.(9) corresponds to Manakov limit of Eq. (1).  

 If both stochastic and regular components of birefringence are treated 

as the fast variables, the multi-scale averaging procedure ignoring pump 

depletion leads to the sets of ODEs for averaged Stokes parameters and their 

momentums described in S. Sergeyev [10] and S. Sergeyev et al. [11]: 
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(k=1,2,3) are amplitudes and unit vectors describing the orientation of 

corresponding Stokes vectors, respectively. Tildes mean that the chosen 

coordinate system corresponds to the reference frame where the birefringence 

vector oriented along the principal state of polarization on the Poincaré sphere 

(S. Sergeyev et al. [11]). We will name this limit (Eqs. (11)) as “diffusion” one. 

 

 

Fig. 1. 1000 stochastic trajectories for the signal power  S z  obtained from  

Eqs. (4,5) for gR=0.8 W
-1

km
-1

,  0 10S  mW,  0 1P   W, Lc=100 m, 

p≈s =0.2 dB/km,  0S  and  0P  are collinear, Lbs=125 m, Lbp= Lbssp, 

L=5 km (a) and 40 km (b). Dp=0.026 ps/km
1/2

 (see Fig. 2). 

     

3  Results and Discussion 

 

Fig. 1 demonstrates the 1000 independent stochastic trajectories for the signal 

powers  S z in dependence on propagation distance for the case of 

bs cL L (Dp=0.026 ps/km
1/2

) that satisfies the SAR requirement (V.L. 

Kalashnikov et al. [4]). One can see a substantial wandering and divergence of 
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trajectories for L=5 km (Fig. 1 (a)). Dispersion of the mean Raman gain 

    10log 0G S L S  is defined as    
22

1S L S L    

and has a sharp maximum near SAR if the fiber length L is located within 

diapason ≈ 5 ÷ 10 km (see Fig. 2). It is clear that a trajectory wandering has no 

sufficient time to develop for smaller propagation lengths. Therefore, the gain 

dispersion decreases with the L-decrease (Fig. 2). As is seen from Fig. 2, the 

maximum of gain dispersion shifts to larger PMD parameters with the L 

decrease. 
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Fig. 2. Dependencies of the relative mean gain dispersions   on the PMD 

parameter Dp for the different fiber lengths L (inscribed). All other parameters 

correspond to Fig. 1. 

 

The interesting effect takes place with the propagation length growth (Fig. 1 

(b)). In this case, the gain depletion intensifies that decreases the signal power 

with z and the SOP pulling “squeezes” an assemblage of trajectories and presses 

them to some maximum value (see Fig. 1 (b)). Distribution of signal powers at L 

changes from a Gaussian-like to extreme-like one with a sharp high-power edge 

and a stretched low-power tale (Fig. 3, S. Coles [12]). The presence of such low-

power trajectories is clearly visible in Fig. 1 (b). A similar behavior takes place 

for small L and small Dp where the SOP pulling is maximum that corresponds to 

the Manakov limit (see Eqs. (10) and the left side of Fig. 2 with extremely low 

gain dispersion). PMD corresponding to SAR decreases with the L growth (Fig. 

2). 
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 The Manakov limit obtained from Eqs. (10) in dependence on the fiber 

length L is shown in Fig. 4 by the solid curve. As one can see from the first Eq. 

(10), the contributions of both regular and stochastic birefringence to the 

evolution of relative pump-signal SOP is suppressed exponentially with 

distance. It corresponds to the case of a full polarization pulling (trapping). The 

decrease of the mean gain with distance is a consequence of pump depletion.     

 
Fig. 3. Probability distribution function (PDF) of signal power for 1000 

stochastic trajectories. Fitting red curve corresponds to a generalized extreme 

PDF. Dp=0.026 ps/km
1/2

, L= 40 km. All other parameters correspond to Fig. 1. 

 

 Circles and triangles show the results of exact numerical calculations 

based on Eqs. (4, 5). One can see, that the Monakov limit describes perfectly the 

situations of long fibers and/or small PMD. Simultaneously, the multi-scale 

averaging procedure leading to Eqs. (11) gives an exact result for relatively 

short fibers regardless of PMD value (dotted and dashed curves in Fig. 4). Such 

a multi-scale averaging technique describes a system in diffusion limit and in 

the vicinity of SAR (V. Kalashnikov et al. [4]). The source of discrepancy 

between the results of Eqs. (4, 5) and Eqs. (11) for long fibers is an absence of 

taking into account of pump depletion in the procedure of multi-scale averaging 

technique. 

 An important characteristic of a system under consideration is its 

ability to transfer the pump noise to the signal one (C. Headley and G. P. 

Agrawal [1]). Fig. 5 demonstrates the dependencies of the mean gain 

dispersions on the PMD parameters in the absence and in the presence of input 

pump noise (solid and dashed curves, respectively). One can see, that an input 

noise contributes mainly in the Manakov limit, that is in a regime of SOP 

pulling, enhancing the signal SOP noise substantially. Such an enhancement can 

even growth with the further PMD decrease. This conclusion is supported by the 

character of the behavior of the integral pump-noise transfer function (C. 
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Headley and G. P. Agrawal [1]):  2 2
int 10log G PH   . The dependence of 

this value on Dp is shown in Fig. 5 by filled circles connected by a dotted curve. 

One can see, that the maximum pump-noise transfer corresponds to SAR, but it 

does not vanish with the PMD decrease and can even grow in the Manakov 

limit.   
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Fig. 4. Mean gain G  vs. fiber length L in the Monakov limit (solid curve) 

from Eqs. (10) and from Eqs. (4, 5) (Dp=0.001 ps/km
1/2  

for circles and 0.065 

ps/km
1/2

 for triangles). Dotted and dashed curves are obtained from the multi-

scale averaging procedure leading to Eqs. (11) and correspond to Dp=0.001 

ps/km
1/2 

and 0.065 ps/km
1/2

, respectively.  

 

Conclusions 

 

We analyzed a fiber Raman amplifier in the presence of the stochastic 

birefringence and the pump depletion. The analysis was based on two 

approaches, namely the exact numerical solution of SDEs in the Jones and 

Stokes representations and the techniques of averaging over fast variables. The 

last approach was realized by two ways, that are i) averaging over stochastic 

birefringence as a fast variable, and ii) averaging over both stochastic 

birefringence and regular SOP beating as fast variables. It was found, that SAR, 

i.e. resonance-like enhancement of mean gain fluctuations within confined 

region of PMD, exists within bounded domain of fiber lengths and is suppressed 

for both short fibers (that is so-called diffusion limit where SAR has not time to 

develop) and long ones (that is so-called Manakov limit where SAR is 

suppressed by strong SOP pulling). Comparison of the numerical results with 

the results based on averaging techniques shown that the approach (i) gives an 

excellent agreement with the exact numerical solution of Eqs. (4, 5) in the 
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Manakov limit, that is for long fibers and/or small PMD. Approach (ii) is valid 

for arbitrary PMD in diffusion limit, i.e. for relatively short fibers. One has to 

note, that deviation of the results of approach (ii) from the exact numerical ones 

for long fibers is caused by the absence of pump depletion in Eqs. (11). Taking 

into account of a pump depletion in the frameworks of this approach is a goal of 

further analysis. Additionally, the pump-signal noise transfer was analyzed. It 

was found, that a stochastic behavior near SAR is defined mainly by the 

stochastic birefringence, but the pump-signal noise transfer is maximum here, as 

well. Simultaneously, such a transfer does not vanish and can even grow with 

the PMD decrease, i.e. in the Manakov limit. This effect can be explained by a 

strong coupling of pump and signal SOPs (polarization pulling). 

 The outlook for further analysis can be characterized in the following 

way. The presented numerical technique splitting the initial combined system of 

SDEs into two subsystems of the ODEs with the pre-defined stochastic 

coefficients for fields and the independent SDEs for a fiber allows generalizing 

on the case when group-delay, its dispersion, and Kerr nonlinearity are taken 

into account, i.e. on a system of PDEs with fixed stochastic coefficients.        
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Fig. 5. Dispersion  in absence and in the presence of pump noise (solid and 

dashed curves, respectively) and integral pump-noise transfer function Hint 

(filled circles connected by dotted curve) vs. PMD parameter Dp. Power pump 

fluctuations are Gaussian with 1% standard deviation. L= 5 km. Other 

parameters correspond to Fig. 1. 
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Supplementary materials 

 

“Stochastic Anti-Resonance in a Fibre Raman Amplifier” on 

http://info.tuwien.ac.at/kalashnikov/programs.html 
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