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Abstract. It is presented firstly in this paper that one-dimensional (1-D) chaos solutions 

give 1-D and 2-D solvable chaos maps, which are related to the delayed logistic map and 

the Smith map. From 2-D general chaos solutions, the most general 2-D solvable chaos 

map is derived, and it is shown that the map relates to the generalized Hénon map and the 
Holmes map. Then, 2-D chaotic maps by time-discretizing the Duffing equation and the 

Van der Pol equation are obtained, which are known to have a strange attractor or the 

Japanese attractor on the Poincaré section or the phase-plane. Finally, the Lorenz system 

and the Rössler system are time-discretized, and the 3-D chaotic maps are discussed from 
the standpoint of a 3-D solvable chaos map derived from general chaos solutions. 
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Holmes map, Duffing equation, Van der Pol equation, Lorenz system, Rössler system, 

Poincaré section, Strange attractor, Japanese attractor. 

 

1  Introduction 
 

It is well known for the study of nonlinear dynamics that nonlinear difference 

equations and differential equations have arisen widely in the field of biological, 

physical, chemical, mechanical and social sciences, and possess a rich spectrum 

of dynamical behavior as chaos in many respects [1-4]. As an example, a 

population growth in biology is modeled [5], and has been afforded by a 

nonlinear difference equation called the logistic map. For one-dimensional (1-

D) chaotic maps, a bifurcation diagram of the two parameter quadratic family 

has been observed [6], and the edge of chaos in the self-adjusting logistic map 

with a slowly changing parameter has been considered [7]. Moreover, various 

chaotic sequences have been proposed for the generation of pseudo-random 

numbers, the synchronization and the application to cryptosystems [8-10].  

In the meantime, a family of shapes and many other irregular patterns in nature 

called fractals has been discussed for the geometric representation as an 

irregular set consisting of parts similar to the whole [11-13]. However, since the 

Mandelbrot map is defined by complex functions, it has been pointed out that 

the physics of fractals is a research subject to be born [14]. As an application, 

fractal compression has been presented to compress images using fractals [15], 

and chaotic and fractal dynamics have been widely expanded to physical, 

chemical, mechanical and electrical observations with the mathematical models 

[4]. Recently, a construction method of 2-D and 3-D chaotic maps has been 

proposed, and nonlinear dynamics of the map on the fractal sets have been 

studied for the physical analogue [16]. 
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In this paper, it is shown that from 1-D chaos solutions, 1-D and 2-D solvable 

chaos maps are derived in Section 2, which are related to the delayed logistic 

map and the Smith map [17, 18]. From 2-D general chaos solutions, the most 

general 2-D solvable chaos map is derived in Section 3, and it is explained that 

the map relates to the generalized Hénon map [19] and the Holmes map [20]. 

Then, 2-D chaotic maps are obtained by time-discretizing the Duffing equation 

and the Van der Pol equation [21], which are known to have a strange attractor 

or the Japanese attractor [22, 23]. In Section 4, a 3-D solvable chaos map is 

derived from general chaos solutions, and the time-discretized map of the 

Lorenz system [24] and the Rössler system [25] are discussed with the 3-D 

solvable chaos map. The last Section is devoted to conclusions. 

 

2  1-D Solvable Chaos Maps 
 

In this section, we discuss the following three cases of 1-D chaos solutions to 

find 1-D and 2-D solvable chaos maps. 

Case 1 

Firstly, from a chaos solution; 

 

)2(sin2 n

n Cx                                                  (1) 

 

with lmC 2/  and finite positive integers {l, m} to the well-known logistic 

map; 

 )1(41 nnn xxx 
,                                                (2) 

 

which is a 1-D solvable chaos map, we have a 2-D solvable chaos map, by 

introducing a real parameter 0  [16], as 
 

,4)1(44 2

1 nnnn yxxx  
                                  (3) 

nnn yxy 2

1 )1(16 
 

nnn yyx )21(16                                         (4) 

with                               ,)2(sin 24

n

n

n xCy                                      (5) 

 

where the condition (5) is used for the order reduction in (4). Here, it is known 

that the first equation (3) has the same form as the Helleman map, which has 

been obtained from the motion of a proton in a storage ring with periodic 

impulses [26].  

Case 2 

For a chaos solution; 

                                            ),2cos( n

n Cx                                                  (6) 

we have a 1-D solvable chaos map; 
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                                            ,12 2

1  nn xx                                                   (7) 

 

which is also called the logistic map, because the solution (1) can be 

transformed by 2/))2cos(1()2(sin 12  nn CC  to the solution (6). From (6), by 

introducing a real parameter 0 , we find a 2-D solvable chaos map [16]; 

 

,)1()1( 2

1 nnn yxx  
                                   (8) 

nnn yxy
2

1 4
                                                                      (9) 

 

with )2(sin2 n

n Cy  , where the first equation (8) has the same form as the 

Hénon map [19]. If we put 0  in (8) and define )2sin( n

n Cy  , then we 

obtain a 2-D generalized chaotic map; 
1

22

1 kyxx nnn 
 and 

21 2 kyxy nnn 
 

with parameters {k1, k2}, including the Mandelbrot map and the Julia map in 

terms of real variables [11][16]. 

Case 3 

Similarly, in the case of a chaos solution; 

 

),2sin( n

n Cx                                                       (10) 

 

we have a 1-D delayed solvable chaos map; 

 

),21(2 2

11   nnn xxx                                               (11) 

 

which can be rewritten into a 2-D solvable chaos map as 

 

),1(21 nnn yxx 
                                                  (12) 

2

1 2 nn xy 
                                                                (13) 

with  

                             ),2(sin22 122

1



  n

nn Cxy                                      (14) 

 

where the map (12) and (13) has chaos solutions (10) and (14). Here, it is 

interesting to note that the time-delayed logistic map; 

 

)1( 11   ttt xxx                                                    (15) 

 

with a real parameter λ, can be rewritten into a 2-D chaotic map as 

 

),1(1 ttt yxx                                                      (16) 
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       ,1 tt xy 
                                                                 (17) 

 

which is called the Smith map [17], and has been discussed as a simplest 

population growth model [27]. It is found that the first equation (16) of the 

Smith map has the same form as the first equation (12) of the 2-D solvable 

chaos map (12) and (13). Then, the map (16) and (17) has been developed to the 

following 2-D map [18]; 

 

),)1(1(1 tttt byxbxx                                        (18) 

tt xy 1
                                                                         (19) 

 

with parameters {λ, b}, where the first equation (18) has the same form as the 

second equation (4) of the 2-D solvable chaos map (3) and (4) derived from the 

chaos solution (1). Here, we call functions (1), (6) and (10) ‘chaos function.’ 

 

3  2-D Solvable Chaos Maps 
 

By introducing the following general solutions consisting of chaos functions; 

 

,)2sin()2cos( 11211 bCaCax nn

n                              (20) 

,)2sin()2cos( 22221 bCaCay nn

n                             (21) 

we have  

 

                                      























2

11

)2sin(

)2cos(

by

bx
A

C

C

n

n

n

n

                                       (22) 

with  

 

       ,
2221

1211











aa

aa
A  ,

1

2221

1211

1121

1222

21122211

1


























AA

AA

aa

aa

aaaa
A  ,0A        (23) 

 

and (22) gives 

 

                         .
(

)(

)2sin(

)2cos(

2221212221

2121111211























bAbAyAxA

bAbAyAxA

C

C

nn

nn

n

n

                  (24) 

 

Then, from general solutions (20) and (21), we find 

 

,
)2sin()2cos(2

)2(sin)2(cos

2

1
22

1

1

















 














b

b

CC

CC
A

y

x
nn

nn

n

n                        (25) 

and obtain the following map by substituting (24) into the rhs of (25); 
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,22

1 feydxcyybxaxx nnnnnnn 
                        (26) 

,22

1 fyexdycyxbxay nnnnnnn


                  (27) 

 

which is a 2-D solvable chaos map with general chaos solutions (20) and (21), 

where real parameters },,,,,,,,,,,{ fedcbafedcba   are given by (A1) and 

(A2) in Appendix. Here, it is interesting to note that a most general quadratic 

map  

,22

1 iiiiiii eyydxcxbyaxfx 
                           (28) 

22

1 iiiiiii yeyxdxcybxafy 
                       (29) 

 

depending on twelve parameters },,,,,,,,,,,{ edcbafedcbaf  , has been 

proposed as the generalized Hénon map, and the Jacobian is known to have a 

constant if some relations are satisfied by these parameters [19]. 

In addition, for a set of general solutions consisting of chaos functions; 

 

,)2cos( 111 bCax n

n                                                 (30) 

)2(sin2

22

n

n Cay                                                       (31) 

 

with a function )2(sin 2 nC  in (31) and nonzero parameters {a11, a22, b1}, we find 

the following map, from (30),  (31) and the condition ,1)/(/)( 22

2

11

2

1  ayabx nn
 as 

 

                              ),(
2

111

22

11
1 bay

a

a
x nn 












                                        (32) 

                              ),2(
4 2

1

2

12

11

1 nnnnnn ybyxyxb
a

y 
                             (33) 

 

which is a 2-D solvable chaos map with general chaos solutions (30) and (31), 

and has the third-order nonlinear term in (33). On the other hand, the Holmes 

map [20] has been suggested as 

 

,1 nn yx                                                                   (34) 

3

1 nnnn ydybxy 
                                             (35) 

 

with parameters {b, d}, which has some of the features of a negative stiffness 

Duffing oscillator [28], and it is found that the map has a similar form to the 

map (32) and (33) with general chaos solutions (30) and (31). 

For nonlinear differential equations of the second order, we discuss firstly the 

forced Duffing equation given by 
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                              ),cos(3 txxxx                                    (36) 

 

where )(txx   is the displacement at time t, x  is the velosity, and x  is the 

acceleration. The coefficients },,,{   are real constants, and the rhs of (36) 

gives a periodic driving force. Here, it should be emphasized that randam 

oscillations occuring in a nonlinear electric circuit, which is equivalent to (36), 

have been considered, and the points of orbit on the phase-plane are known to 

give the Japanese attractor representing the random oscillations [22][23]. Then, 

the differential equation (36) is rewritten into a 2-D form as 

 

                                  ,y
dt

dx
                                                                         (37) 

),cos(3 tyxx
dt

dy
                            (38) 

 

and by the difference method; 

 

                                 
t

yy

dt

dy

t

xx

dt

dx nnnn









  11 ,                            (39) 

 

with ),(txxn   )(tyyn   and the time step ,0t  we find the following 2-D 

map in the case of 0  from (37)-(39); 

 

,)(1 nnn ytxx 
                                                               (40) 

,))(1()()( 3

1 nnnn ytxtxty  
                      (41) 

 

which has a similar form to the Holmes map (34) and (35) with a cubic term, 

and to the 2-D solvable chaos map (32) and (33) with general chaos solutions 

(30) and (31). 

Secondly, we consider the forced Van der Pol oscillator [21] given by 

 

),sin()1( 2 tExxxx                                (42) 

 

which represents a model for a simple vacuum tube oscillator circuit with a 

nonlinear damping term, where )(txx   is the proposition coordinate function 

of the time t, and },,0{  E  are the system parameters. Equation (42) is 

rewritten into a 2-D form; 

 

),
3

1
( 3 yxx

dt

dx
                                                   (43) 
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),sin(
1

t
E

x
dt

dy



                                               (44) 

 

and by the difference method (39), we find the 2-D map in the case of E=0 as 

 

,)()(
3

1
))(1( 3

1 nnnn ytxtxtx                          (45) 

,)(
1

1 nnn yxty 


                                                           (46) 

 

which has also a similar form to the map (40) and (41) obtained from the 

Duffing equation, to the Holmes map (34) and (35), and to the 2-D solvable 

chaos map (32) and (33) with general chaos solutions (30) and (31). 

 

4  3-D Solvable Chaos Maps 
 

In this section, we begin with 3-D general solutions consisting of chaos 

functions; 

 

                    ,)2(sin)2sin()2cos( 1

2

131211 bCaCaCax nnn

n              (47)  

,)2(sin)2sin()2cos( 2

2

232221 bCaCaCay nnn

n            (48) 

,)2(sin)2sin()2cos( 3

2

333231 bCaCaCaz nnn

n             (49) 

 

and can derive a 3-D solvable chaos map with general chaos solutions (47)-(49). 

Here, as a simple set of chaos solutions, we introduce from (47)-(49); 

 

                                            ,)2cos( 111 bCax n

n                                         (50) 

,)2sin( 222 bCay n

n                                        (51) 

),2(sin2

33

n

n Caz                                              (52) 

 

and have the following conditions from (50)-(52) as  

 

                                      ,1)
1

()()
1

(
33

2

1

2

11

 nn z
a

bx
a

                                 (53) 

nn z
a

by
a

)
1

()()
1

(
33

2

2

2

22

                                       (54) 

 

with real parameters },,0,0,0{ 21332211 bbaaa  . Thus, we find from (50)-

(52) and the condition (53); 

                                   ),()
2

( 111

33

11
1 baz

a

a
x nn 

                                         (55) 
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                                   ,)1
2

())(
2

( 2

11

1
12

11

1 b
a

b
ybxbyx

a
y nnnnn 

                   (56) 

nnn zbx
a

z 2

1

2

11

1 )()
1

(4 
  

),)
1

(1(4
33

nn z
a

z                                                (57) 

 

which is a 3-D solvable chaos map with general chaos solutions (50)-(52), and 

the second-order nonlinear terms are included in (56) and (57), respectively. 

Here, it should be noted that the condition (53) is applied to the order reduction 

in (57). 

On the other hand, the Lorenz system has been well considered as a simplified 

mathematical model for atmospheric convection [24] and an identical model for 

instabilities of the single mode laser [29], and is known to have a strange 

attractor for certain parameter values and initial conditions. The model is a 

system of three ordinary differential equations given by  

 

                                             ,yx
dt

dx
                                                 (58) 

                                             ,yxzx
dt

dy
                                             (59) 

                                             ,zxy
dt

dz
                                                   (60) 

 

where },,{ zyx  are the system state variables, which are proportional to the 

circulatory fluid flow velocity, the temperature difference and the distortion of 

the virtical temperature profile, respectively. The coefficients },,{   are the 

system dimensionless parameters. By the difference method; 

 

                  
t

zz

dt

dz

t

yy

dt

dy

t

xx

dt

dx nnnnnn














  111 ,,            (61) 

 

with ),(txxn   ),(tyyn   )(tzzn   and the time step ,0t  we have from (58)-

(60) as 

 

                                  ,)())(1(1 nnn ytxtx                                         (62) 

                                  ,))(1()()(1 nnnnn ytzxtxty                              (63) 

                                  ,))(1()(1 nnnn ztyxtz                                      (64) 

 

which has the second-order nonlinear terms in (63) and (64). It is interesting to 

note that the map (62)-(64) has a similar form to the 3-D solvable chaos map 
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(55)-(57) with general chaos solutions (50)-(52). Moreover, the Rössler system 

[25] is given by 

 

                                             ,zy
dt

dx
                                                     (65) 

                                             ,ayx
dt

dy
                                                     (66) 

                                             ),( cxzb
dt

dz
                                            (67) 

 

with system parameters },,{ cba , which has one nonlinear term in (67), and is 

known to have a strange attractor in the 3-D space. Then, we find the map by 

the difference method (61) as; 

 

                                   ),)((1 nnnn zytxx 
                                               (68) 

                                   ,))(1()(1 nnn ytaxty 
                                          (69) 

                                   ,)()()(1 btzcxztz nnnn 
                               (70) 

 

where if we approximate the nonlinear term 
nn zx  in (63) by 2

ny  and put a linear 

term 
nz  for the 2

ny  by the condition (54), then we find the linear equation (69). 

Here, it is notable that the Rössler system (65)-(67) is obtained by simplifying 

the Lorenz system (58)-(60), and is known to be useful in modeling chemical 

reactions. In a recent study, a simpler 3-D system given by 

 

                                            ,y
dt

dx
                                                               (71) 

                                            ,yzx
dt

dy
                                                   (72) 

                                            ,1 2y
dt

dz
                                                       (73) 

 

has been considered, and is shown to have a chaotic attractor [30]. By the 

difference method (61), we have the map; 

 

                                     ,)(1 nnn ytxx 
                                                      (74) 

                                     ,)()(1 nnnnn zytyxty 
                                    (75) 

                                     ,)1)(( 2

1 nnn zytz 
                                            (76) 

 

which has a quadratic nonlinear term in (76), and has a similar form to the 3-D 

solvable chaos map (55)-(57) with general chaos solutions (50)-(52). 
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Conclusions 
 

In this paper, we have derived 1-D, 2-D and 3-D solvable chaos maps by 

introducing chaos functions, and have considered the delayed logistic map, the 

Smith map, the Hénon map, the Holmes map, the Duffing equation, the Van der 

Pol equation, the Lorenz system and the Rössler system with strange attractors 

or the Japanese attractor. Then, it is found that the chaos functions play a 

keyrole for chaotic behaviors of the well-discussed maps, the differential 

equations and the chaotic systems, because the functions have non-periodicity 

and sensitivity on initial values. Therefore, chaos functions may underlye in 

nonlinear phenomena with chaotic dynamics, such as population growth in 

biology, mechanical vibration, oscillation in nonlinear electric circuit, 

atmospheric convection and chemical reaction, as many of the sciences. 

 

Appendix 
 

We find the parameters of (26) and (27) by substituting (24) into (25) as  

 

,2)( 211112

2

21

2

1111 AAaAAaa   

),(2)(2 21122211122221121111 AAAAaAAAAab   

,2)( 221212

2

22

2

1211 AAaAAac   

            ))()(([2 222121212121111111 bAbAAbAbAAad   

                      ))],()(( 212111212221211112 bAbAAbAbAAa                  (A1) 

            ))()(([2 222121222121111211 bAbAAbAbAAae   

                      ))],()(( 212111222221211212 bAbAAbAbAAa   

            ])()[( 2

222121

2

21211111 bAbAbAbAaf   

                    ,))((2 122212121211112 bbAbAbAbAa   

and  

    ,2)( 211122

2

21

2

1121 AAaAAaa   

            ),(2)(2 21122211222221121121 AAAAaAAAAab   

            ,2)( 221222

2

22

2

1221 AAaAAac   

            ))()(([2 222121212121111121 bAbAAbAbAAad   

                        ))],()(( 212111212221211122 bAbAAbAbAAa                (A2) 

            ))()(([2 222121222121111221 bAbAAbAbAAae   

                        ))],()(( 212111222221211222 bAbAAbAbAAa   

            ])()[( 2

222121

2

21211121 bAbAbAbAaf   

                     ,))((2 222212121211122 bbAbAbAbAa   

 

where parameters },,,{ 22211211 AAAA  in (A1) and (A2) are given by 

},,,{ 22211211 aaaa  as shown in (23). 
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