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1 Introduction

We are interested in stydying the chaotic behavior of solutions to reaction-
diffusion type equations with nonlocal and local nonlinearities; namely, we will
deal with the following problems

∂u

∂t
−∆u+ g (t, x, u) = 0, (t, x) ∈ (0, T )×Ω, (1)

u (0, x) = u0 (x) ∈W 1,2 (Ω) , x ∈ Ω, T > 0 (2)

u
∣∣
[0,T )×∂Ω = 0, Ω ⊆ Rn, n ≥ 1, ∂Ω ∈ Lip (3)
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where Ω ⊆ Rn is an open domain, the boundary ∂Ω satisfies the Lipschitz
condition, g : Lp1 ((0, T )×Ω) −→ Lp2 ((0, T )×Ω) is a nonlinear operator and
p1, p2 > 1 are fixed numbers. We assume that g (t, x, u) is represented in one
of the following forms:

(α) : g (t, x, u) := a ‖u‖ρ2 u+h (t, x) , or (β) : g (t, x, u) := a (t, x) |u|ρ u+h (t, x) ,
(4)

where ‖·‖2 denotes the norm in L2 (Ω), h (t, x) and u0 (x) are given functions
and ρ > 0, a > 0 are given constants. The problems posed above are investi-
gated for the both cases separately: in the case of a nonlocal nonlinearity (i.e.
(4(α))), and in the case of a local nonlinearity (i.e. (4(β))).

We shall demonstrate that the partial differential equation (1) in the case of
the nonlocal nonlinearity (i.e. the case (4(α))) can possess an infinite number of
different non-stable solutions. In the local case (4(β)), which differs markedly
from the nonlocal case (4(α)), the problem allows an infinite number of dif-
ferent both non-stable solutions, traveling along the space axis with arbitrary
speeds, and traveling impulses, as well as an infinite number of different spatio-
temporal (diffusion) chaotic states. These solutions are generated by cascades
of static bifurcations of the evolution equation, which were studied, in partic-
ular, in [20]. As Ya. Sinai asserts in [19] ”... the future of the chaos theory
will be connected with new phenomena in nonlinear PDEs and other infinite-
dimensional dynamical systems, where we can encounter absolutely unexpected
phenomena”.

The dynamics becomes much more complicated in the case of dynamical
systems generated by partial differential equations (PDEs) largely due to the
formation of spatially chaotic patterns. More generally, such systems may
display interactions between spatially and temporally chaotic modes. One of
the most challenging problems in this field is that of turbulence which displays
statistical behavior in temporal and spatial directions, whose correlations decay
with distance in space and time, see e.g. [9,14,25]. It should be pointed out
that there have been many investigations on this and related topics (see, for
example, [1,2,6,7,5,11,15–17,19,25,26] and the references therein).

In what follows we study the Cauchy problem for an equation of the non-
dissipative reaction-diffusion equation type with an infinite-dimensional solu-
tion space; in particular, the corresponding steady-state problem has also infi-
nite number of the different solutions. We show that the trajectories of solutions
in the phase space depend on choosing the starting point from a sphere of the
initial values. To be more precise, this choice determines how the solution be-
have beginning at this initial value and depending on the related Lyapunov ex-
ponent. The choice of starting point allows to determine the point at which the
solution of the problem will end up. If the limiting set is not one-dimensional,
more complications can arise, including even the existence of absorbing man-
ifolds. Moreover, if such absorbing manifolds exist, their associated dynamics
tends to be chaotic. We study this type of dynamic behavior and explain how
space-time chaos can arise.
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2 Existence in the autonomous case

2.1 The nonhomogeneous case

We begin by studying the problem in the case (4(α)) when g (t, x, u) := a ‖u‖ρ2 u+
h (x), i.e. we consider the problem

∂u

∂t
−∆u− a ‖u‖ρH u = h (x) , (t, x) ∈ (0, T )×Ω, (5)

u (0, x) = u0 (x) ∈W 1,2
0 (Ω) := H1

0 (Ω) , u
∣∣
[0,T )×∂Ω = 0. (6)

From (5) we compute that

1

2

d

dt
‖u (t)‖22 + ‖∇u (t)‖22 − a ‖u (t)‖ρ+2

2 = 〈h, u〉 , ‖u (0)‖22 = ‖u0‖22 (7)

which entails the inequalities

d
dt ‖u (t)‖22 ≤ −‖∇u (t)‖22 + 2a ‖u (t)‖ρ+2

2 + ‖h‖2H−1 ≤
≤ −λ1||u||22) + 2a ‖u (t)‖ρ+2

2 + ‖h‖2H−1 ,

where ‖u (t)‖H1
0

:= ‖∇u (t)‖2 and λ1 > 0 is the first eigenvalue of the

Laplace operator −∆ : H1
0 (Ω) −→ H−1 (Ω).

Now we consider the solvability of this problem, which will be analyzed

making use of the general results from [21]. We take u0 ∈ B
H1

0
r0 (0) , where r0 <

λ1, and study the operator A generated by the problem: it acts, by definition,
from X := W 1,2

(
0, T ;H−1 (Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)
∩ {u (t, x) | u (0, x) = u0}

to L2
(
0, T ;H−1 (Ω)

)
. Next, we study the image of this operator A on the

ball BXr (0) for r ∈ (0, r0); more precisely, we define a subset M of the space
L2
(
0, T ;H−1 (Ω)

)
and a number r ∈ (0, r0) , such that A

(
BXr (0)

)
⊆ M ⊂

L2
(
0, T ;H−1 (Ω)

)
. In other words, we shall show that the problem is solvable

in BXr0 (0) for any (h, u0) ∈ M × B
H1

0
r0 (0). A detailed investigation requires

some preliminary estimates.

So, let u0 ∈ B
H1

0
r0 (0) for some number r0 < λ1; then we obtain

d

dt
‖u (t)‖22 ≤ −λ1 ‖u (t)‖22 + 2a ‖u (t)‖ρ+2

2 + ‖h‖2H−1 .

Consequently, it is enough to study the following initial problem

d (y + c1) /dt+ λ1 (y + c1) ≤ 2a (y + c1)
ρ1+1

, y (0) = ‖u0‖2H1
0
, (8)

where y (t) := ‖u (t)‖22, ρ1 = ρ
2 . Assume that the constant c1 is chosen in such

a way that the inequality

2a (y + c1)
ρ1+1 − λ1c1 ≥ ‖h‖2H−1 + 2ayρ1+1

holds.
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Whence, one finds that

z′ − λ1ρ1z ≥ −aρ, z = (y + c1)
−ρ1 , z (0) =

(
‖u0‖22 + c1

)−ρ1
,

which gives

(y + c1)
−ρ1 ≥

(
‖u0‖22 + c1

)−ρ1
eλ1ρ1t +

2a

λ1
− 2a

λ1
eλ1ρ1t =⇒

‖u (t)‖22 + c1 ≤ e−λ1t
(
‖u0‖22 + c1

)[
1− 2a

λ1

(
‖u0‖22 + c1

)ρ1 (
1− e−λ1ρ1t

)]ρ−1
1

.

(9)
Therefore, we see from (9) that the functions u0 and h should be selected

from balls of respective spaces so as to satisfy the inequality

1− 2a

λ1

(
‖u0‖22 + c1

)ρ1
> 0 =⇒ ‖u0‖22 + c1 <

∣∣∣∣λ12a

∣∣∣∣ 2ρ . (10)

Moreover, it follows readily from (9) that c1 < 0.
So, we obtained that for the solvability of the problem posed the initial data

and the exterior source should be [20,21] small enough. Consequently, one can
formulate the following proposition.

Proposition 1. Let the initial data u0 and h satisfy the inequality (10) with
parameters λ1, a, ρ and c1 defined above hold. Then the problem (5) - (6) is
solvable in the ball BXr0 (0) for any h ∈M ⊂ H−1
where M :=

{
h ∈ H−1 | 〈h, u〉 ≤ 〈A (u) , u〉 , u ∈ SXr0 (0)

}
and

r0 < min

{(
λ1

a

) 2
ρ ;λ

1
ρ

1

}
some number.

Proof. We will make use of the formal solution to the problem (5) - (6):

u (t) = exp {t∆}u0 + a0t

∫
exp {(t− τ)∆} ‖u (τ)‖ρH u (τ) dτ+

0+t

∫
exp {(t− τ)∆} dτ ◦ h .

For the evolution operator exp {t∆} one has the estimate: ‖exp {t∆}‖ ≤
exp {−λ1t} (see, for example, [13] ). Thus, we obtain:

‖u (t)‖H ≤ exp {−λ1t} ‖u0‖H + a0t

∫
exp {−λ1 (t− τ)} ‖u (τ)‖ρ+1

H dτ+

0+t

∫
exp {−λ1 (t− τ)} dτ · ‖h‖H = e−λ1t ‖u0‖H +

1− e−λ1t

λ1
‖h‖H +

+a0t

∫
exp {−λ1 (t− τ)} ‖u (τ)‖ρ+1

2 dτ,
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where λ1 > 0 is, as before, the first Laplace operator eigenvalue. Whence,
one observes that there exists a number r1 = r1 (λ1, ‖h‖ , a, ρ) < λ1 such that

‖u0‖ρ+1
2 < r1. Then ‖u (t)‖2 decreases as t ↑ ∞ (at least, for t ∈ (0, t1) where

t1 > 0 is some positive value), and consequently for any t > 0.
Now, taking account the above property of the solution in the equation

d

dt
‖u (t)‖22 + ‖∇u (t)‖22 ≤ 2a ‖u (t)‖ρ+2

2 + ‖h‖2H−1 ,

it follows from (7) and (8) we obtain a priori estimates, which suffice to com-
plete the proof of this proposition. Moreover, we have the following estimates

−〈∆u, u〉 − a 〈‖u (t)‖ρ2 u, u〉 = ‖∇u (t)‖22 − a ‖u (t)‖ρ+2
2 ≥ ‖∇u (t)‖22−

a

λ1
‖u (t)‖ρ2 ‖∇u (t)‖22 = ‖∇u (t)‖22

(
1− a

λ1
‖u (t)‖ρ2

)
≥ δ ‖∇u (t)‖22

as in this case ‖u0‖ρ2 <
λ1

a , and consequently ‖u (t)‖ρ2 <
λ1

a for t > 0. Hence,
it is enough to use the existence theorem from [21] on the ball BXr0 (0) , where

r0 ≤
(
λ1

a

) 2
ρ and u ∈ SXr0 (0). Indeed, this implies following inequalities on

W 1,2
(
0, T ;H1

0

)
〈
∂u

∂t
−∆u− a ‖u‖ρ u, ∂u

∂t
+ u

〉
=

∥∥∥∥∂u∂t
∥∥∥∥2 +

1

2

d

dt
‖∇u‖2−

a

ρ+ 2

d

dt
‖u‖ρ+2

+
1

2

d

dt
‖u‖2 + ‖∇u‖2 − a ‖u‖ρ+2

=⇒

∥∥∥∥∂u∂t
∥∥∥∥2 + ‖∇u‖2 − a ‖u‖ρ+2

+
d

dt

[
1

2
‖u‖2 +

1

2
‖∇u‖2 − a

ρ+ 2
‖u‖ρ+2

]
≥

∥∥∥∥∂u∂t
∥∥∥∥2 + ‖∇u‖2

(
1− a

λ1
‖u‖ρ

)
+
d

dt

[
1

2
‖u‖2 +

1

2
‖∇u‖2 − a

ρ+ 2
‖u‖ρ+2

]
,

(11)
which when integrated with respect to t yield

0T

∫ [∥∥∥∥∂u∂t
∥∥∥∥2 + δ1 ‖∇u‖2

]
dt+

1

2
‖u‖2 (T )+

1

2
‖∇u‖2 (T )− a

ρ+ 2
‖u‖ρ+2

(T )−

1

2
‖u0‖2−

1

2
‖∇u0‖2+

a

ρ+ 2
‖u0‖ρ+2 ≥ 0T

∫ [∥∥∥∥∂u∂t
∥∥∥∥2 + δ1 ‖∇u‖2

]
dt+

1

2
‖u‖2 (T ) +

‖∇u‖2 (T )

[
1

2
− a

λ1 (ρ+ 2)
‖u‖ρ (T )

]
− 1

2
‖u0‖2−

1

2
‖∇u0‖2 +

a

ρ+ 2
‖u0‖ρ+2 ≥

0T

∫ [∥∥∥∥∂u∂t
∥∥∥∥2 + δ1 ‖∇u‖2

]
dt+

1

2
‖u‖2 (T ) + δ2 ‖∇u‖2 (T )− C (‖u0‖H1 , a, ρ) .
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Now we consider the following inequality (u− v = w)〈
∂u

∂t
−∆u− a ‖u‖ρ u− ∂v

∂t
+∆v + a ‖v‖ρ v, u− v

〉
=〈

∂w

∂t
−∆w − a (‖u‖ρ u− ‖v‖ρ v) , w

〉
=

1

2
‖w‖2 (t) + ‖∇w‖2 (t)−

a 〈‖u‖ρ u− ‖v‖ρ v, w〉 ≥ 1

2
‖w‖2 (t) + ‖∇w‖2 (t)− a (ρ+ 1) ‖û‖ρ ‖w‖2 (t) (12)

where û = l (u, v) is a bilinear mapping. Thus, we conclude that all condi-
tions of the general theorem from [21] are fulfilled on the ball BXr0 (0) , thereby
completing th proof of the proposition by virtue of the inequalities (11) and
(12).

2.2 The homogeneous case

Next, we consider the homogeneous case of (5) - (6) and study the behavior of
its solutions. First, we need note that in this case (i.e. h (t, x) = 0, a = 1) that
(8) and (10) yield the following inequalities:

‖u (t)‖−ρ2 ≥ 2a

λ1
+ 2

[
‖u0‖−ρ2 −

a

λ1

]
eλ1

ρ
2 t,

or, at a = 1,

‖u (t)‖2 ≤
[

2

λ1
+ 2

(
‖u0‖−ρ2 −

1

λ1

)
eλ1

ρ
2 t

]−ρ
.

Therefore, 2
λ1

+ 2
(
‖u0‖−ρ2 −

1
λ1

)
eλ1

ρ
2 t > 0 for any t > 0, for which the the

inequality ‖u0‖ρ2 ≤ λ1 is sufficient.
We now set h (t, x) = 0, a = 1 and investigate the problem (5) - (6) for the

initial data satisfying the condition u0 ∈ B
H1

0 (Ω)
r0 (0) ⊂ H1

0 (Ω) if rρ0 < λ1. In
this case we have

d

dt
‖u (t)‖22 + 2 ‖∇u (t)‖22 − 2rρ (t) ‖u (t)‖22 = 0,

which gives rise to the differential inequality

d

dt
‖u (t)‖22 ≤ −2 (λ1 − rρ (t)) ‖u (t)‖22 ,

equivalent to

‖u (t)‖22 ≤ exp

{
−2

(
t0

∫
(λ1 − rρ (τ)) dτ

)}
‖u (0)‖22 .

Under the conditions imposed above there exists, owing to the continuity of
the function u (t) , an interval (0, t′) , (t′ > 0) such that λ1 − rρ (t) > 0 for
t ∈ (0, t′) . Thus, one easily computes that

‖u (t)‖22 < exp {−2 (λ1 − rρ0) t} ‖u0‖22 < ‖u0‖
2
2 < r20 (13)

for any t > 0. As in the previous case, it is easy to prove the following result.
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Proposition 2. Let h (t, x) = 0 and a = 1. Then for any u0 ∈ B
H1

0 (Ω)
r0 (0) ⊂

H1
0 (Ω) the problem (5) - (6) is solvable for any t > 0 if rρ0 < λ1. More-

over the mapping (semi-flow) F (t) : u0 −→ u (t) is such that L2 strongly

F (t)
(
B
H1

0 (Ω)
r0 (0)

)
−→ 0 as t ↑ ∞.

3 Longtime behavior of solutions

Let h ∈ L2
(
(0,∞) ;H−1 (Ω)

)
and u0 ∈ H1

0 (Ω) with the norm ‖◦‖2H1
0 (Ω) :=

‖∇◦‖22. We assume that the Laplace operator −∆ : H1
0 (Ω) −→ H−1 (Ω) has

only a point spectrum, i.e. σ (−∆) := σP (−∆) ⊂ (0,∞) . Denote the eigenval-
ues of the Laplace operator −∆ by λj , j = 1, 2, ... (σP (−∆) := {λj | j ∈ N }).
This, of course, requires that the domain Ω is sufficiently regular in a geometric
sense.

Now we consider the problem (5) - (7) in the case g (t, x, u) := ‖u‖ρ2 u +

h (t, x), and investigate the inverse mapping of the operator f (t) : B
H1

0 (Ω)
r0 (0) ⊂

H1
0 (Ω) −→ H−1 (Ω) , where f (t)u := ∂u/∂t − ∆u − ‖u‖ρ2 u and r0 > 0 is

some positive number.
For simplicity, we assume that the eigenfunctions and adjoint eigenfunc-

tions are total in the space H1
0 (Ω) ; moreover, we may assume without loss of

generality that they generate an orthogonal basis in this space.
Let inf {λj ∈ σP (−∆) : λj > rρ0 , j = 1, 2, ...} = λk0 . Then, we can rep-

resent [12,13,18,20,24] the space H1
0 (Ω) in the form H1

0 (Ω) := Hk0 ⊕ H−k0 ,

where the subspace Hk0 ⊂ H1
0 (Ω) is related to {λj}k0−1j=1 and has dimension

dimHk0 = k0− 1 and H−k0 is a subspace of codimH−k0 = k0− 1. We can now
introduce the projections Qk0 and Pk0 ; Qk0 : H1

0 (Ω) −→ H−k0 ⊂ H1
0 (Ω) and

Pk0 : H1
0 (Ω) −→ Hk0 ⊂ H1

0 (Ω) , giving rise to the splitting u := Qk0u+ Pk0u.
(It is well known that such a decomposition allows to introduce either a spectral
measure or a family of spectral projections (see, for example, [10,?], etc.)

Thus, it is easy to see that −∆ : Hk0 −→ H−k0 and −∆ : H−k0 −→ H−−k0 ,

where the subspaces H−k0 , H
−
−k0 possess bi-orthogonal bases (see, for instance,

[10,?,?] ), and owing to the evident commutativity of operators Pk0 and Qk0
with the Laplacian ∆ in H1

0 (Ω) , one can rewrite the problem as

∂

∂t
Pk0u−∆Pk0u− ‖u‖

ρ
2 Pk0u = P ∗k0h (t, x) , (14)

∂

∂t
Qk0u−∆Qk0u− ‖u‖

ρ
2Qk0u = Q∗k0h (t, x) , (15)

Pk0u (0, x) = Pk0u0 (x) ∈ Hk0 ⊂ H1
0 (Ω) , (16)

Qk0u (0, x) = Qk0u0 (x) ∈ H−k0 ⊂ H1
0 (Ω) , (17)

with imposed above the condition (3), where P ∗k0 and Q∗k0 are the adjoint
operators to Pk0 and Qk0 , respectively.

For the investigation of the problem above we shall consider the following
differential-functional expression

E (u) :=
1

2

d

dt
‖u (t)‖22 + ‖∇u‖22 (t)− ‖u‖ρ2 (t) · ‖u‖22 (t) ,
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for u ∈ H1 ((0, T )×Ω).
As our aim is the investigation of the behavior of solutions of the problem

under the condition u0 ∈ B
H1

0 (Ω)
r0 (0), 0 < rρ0 < λk0 it is enough to study the

homogeneous equation case. Therefore, we assume h (t, x) = 0. Then for the
problem (14) - (15) we obtain

E (Pk0u) =
1

2

d

dt
‖Pk0u‖

2
2 (t) + ‖∇Pk0u‖

2
2 (t)−

(
‖u‖ρ2 ‖Pk0u‖

2
2

)
(t) = 0, (18)

〈Pk0u, Pk0u〉 | t=0 = ‖Pk0u‖
2
2 (0) = ‖Pk0u0‖

2
2 . (19)

Whence, it follows that for some t0 > 0 for t ∈ [0, t0) we have ‖u‖ρ2 (t) ≤
rρ0 + θ < λk0 , for some θ > 0. Indeed if ‖u0‖2 = r0, then we have from (18) -
(19) that

d

dt
‖Pk0u‖

2
2 (t) + 2(λk0−1 − rρ (t)) ‖Pk0u‖

2
2 (t) ≥

d

dt
‖Pk0u‖

2
2 (t) + 2(λk0−1 − rρ (0)) ‖Pk0u‖

2
2 (t) ≥ 0

and consequently we obtain the inequality

‖Pk0u‖
2
2 (t) ≥ exp {−2(λk0−1 − r

ρ
0)t} ‖Pk0u0‖

2
2 . (20)

Thus, we see that if ‖Qk0u‖2 (t) ≤ δ < θ < r0 for some sufficiently small
δ > 0 and t ∈ [0, t0) , then the solution of problem (18) - (19) exists and is an
exponentially increasing function.

Now consider the problem (16) - (17) for which one easily obtains

E (Qk0u) =
1

2

d

dt
‖Qk0u‖

2
2 (t) + ‖∇Qk0u‖

2
2 (t)−

(
‖u‖ρ2 ‖Qk0u‖

2
2

)
(t) = 0, (21)

〈Qk0u,Qk0u〉 | t=0 = ‖Qk0u‖
2
2 (0) = ‖Qk0u0‖

2
2 .

Therefore, the solution of problem (21) exists and is an exponentially decreasing
function. Consequently for ‖Qk0u0‖2 + ‖Pk0u0‖2 = r0 if ‖Qk0u0‖2 < ‖Pk0u0‖2
and ‖Qk0u0‖2 is sufficiently small, then the solution ‖u‖2 (t) exists and is an
increasing function up to some t1 > 0.

To study in detail the behavior of solutions to the problem we will make use
of the following assumption: the system of eigenfunctions {wk}∞k=1 ⊂ H1

0 (Ω)
comprises an orthonormal basis of this space. Then each function u (t, x) ∈
L2
(
(0, T ) ;H1

0 (Ω)
)

has the representation u (t, x) = k = 1∞
∑
uk (t)wk (x) .

Consequently, owing to (14) - (15), the problem is equivalent to studying the
system of equations

1

2

d

dt
|uk (t)|2 + λk |uk (t)|2 −

(
i = 1∞

∑
|ui (t)|2

) ρ
2 |uk (t)|2 = 0 (22)

with the Cauchy data

|uk (0)|2 = |u0k|2 , k = 1, 2, ..., k0.
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Let u (0, x) ∈ BH
1
0 (Ω)

r0 (0) and ‖u0‖2 < r0,

then we have ‖u‖22 (t) :=
(
i = 1∞

∑
|ui (t)|2

)
≤ r20 + ε for sufficiently small

t = t (ε, r0) > 0. But |uk (t)|2 will increase in this case for k = 1, 2, ..., k̃0 ≤
k0 depending on the relationship between ‖u0‖ρ2 and λk (therefore, between r0
and λk).

Consider the behavior of |uk (t)| for all k = 1, 2, .... Define ‖u0‖2 := r0
for some r0 > 0. Let us list all of possible cases: 1) rρ0 < λ1, 2) ∃λk0 :
λk0−1 < rρ0 < λk0 and 3) ∃λk0 : rρ0 = λk0 . The case 1) was already investigated,
therefore we will consider here only cases 2) and 3).

Consider either the case 2) or 3), i.e. ∃λk0 : λk0−1 < rρ0 < λk0 and ∃λk0 :
rρ0 = λk0 . We have the following system of equations

0 =
1

2

d

dt
|uk (t)|2 + λk |uk (t)|2 − r (t)

ρ |uk (t)|2 =

=
1

2

d

dt
|uk (t)|2 + (λk − r (t)

ρ
) |uk (t)|2 , |uk (0)|2 = |u0k|2 , k = 1, 2, ..., (23)

where u (t, x) := k = 1∞
∑
uk (t)wk (x). It is easy to see that this system of

equations is of interest only for the cases k ≥ k0, k ≤ k0 − 1 and k = k0
separately. In case 2) if k ≥ k0 this part of the system has a solution that is
unique as t ≤ t2 (k, r0) for some t2 (k, r0) > 0. Formally, we can determine the
solution of each equation from (21) to be

|uk (t)|2 = exp

{
−2

(
λkt− t0

∫
r (τ)

ρ
dτ

)}
|u0k|2 . (24)

Thus, if we consider the expression (21) for k ≤ k0−1 in the case 2), it follows
from (22) that

|uk (t)|2 = exp

{
−2

(
λkt− t0

∫
r (τ)

ρ
dτ

)}
|u0|2 ≥ exp {2 (r (0)

ρ − λk) t} |u0|2 ,

as r (t)
ρ
> λk for 1 ≤ k ≤ k0 − 1 and some t > 0. Consequently, the sequence

|uk (t)| increases for each k : 1 ≤ k ≤ k0 − 1 leading to the the increase of r (t)
as long as ‖Pk0u0‖2 is sufficiently greater than ‖Qk0u0‖2.

For case 3) for some k = k0 one has rρ0 = λk0 for which

|uk0 (t)|2 = exp

{
−2t0

∫
(λk0 − r (τ)

ρ
) dτ

}
|u0k0 |

2

by virtue of (22). Here the function r1 (t) := λk0 − r (t)
ρ

equals zero at t = 0,
but in general its variation is not known. Thus, it is impossible to obtain a
monotonicity result for a solution to this equation, since the behavior of r (t)
is not known. As we shall explain further in the sequel, the behavior of r (t)

depends on the geometrical properties of the initial data u0 of sphere S
H1

0
r (0),

0 < r ≤ r0.
From the previously mentioned relationships it is clear that in order to

investigate the behavior of the parameter r (t) one should study both ‖Pk0u‖2
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and ‖Qk0u‖2 . It is easy to see that if the condition 2) is assumed, then ‖Pk0u‖2
increases, and ‖Qk0u‖2 decreases as t > 0 at least nearby zero in virtue of (18)
and (22). Using the orthogonal splitting u = Pk0u+Qk0u, we also find that

‖u‖22 = ‖Pk0u‖
2
2 + ‖Qk0u‖

2
2 . (25)

Thus, the behavior of the functional ‖u‖22 (t) depends on the relationship be-
tween the values ‖Pk0u0‖2 and ‖Qk0u0‖2 . Let ‖u0‖2 := r0, λk0−1 < rρ0 < λk0
and consider (25) , i.e.

‖u‖22 (t) = ‖Pk0u‖
2
2 (t) + ‖Qk0u‖

2
2 (t) = k ≤ k0

∑
|uk (t)|2 + k > k0

∑
|uk (t)|2 .

(26)
It is now necessary to investigate the following three cases:
a) u0 := k ≤ k0 − 1

∑
u0kwk ∈ Pk0

(
H1

0 (Ω)
)

:= Hk0 ; b) u0 := k ≥ k0
∑
u0kwk ∈

Qk0
(
H1

0 (Ω)
)

:= H−k0 and c) u0 := k ≥ 1
∑
u0kwk , when c1) ‖Qk0u0‖2 <

‖Pk0u02‖2 and c2) ‖Qk0u0‖2 ≥ ‖Pk0u0‖2, separately.
Consider a): in this case we have

|uk (t)|2 = exp
{
−2
(
λkt− t0

∫
rρ (τ) dτ

)}
|u0k|2 for any k = 1, ..., k0 − 1, thus

, uk (t) = 0 for k ≥ k0 since r20 = r (0)
2

:= k ≤ k0 − 1
∑

(u0k)
2

and r (t)
2

:=

k ≤ k0 − 1
∑
|uk (t)|2.

On the other hand, in this case
(
λkt− t0

∫
rρ (τ) dτ

)
< 0 as rρ0 > λk for each

k = 1, ..., k0 − 1 and rρ (t) increases as t ↑ ∞.

Now let us consider case b), i.e. r20 = r (0)
2

:= k ≥ k0
∑

(u0k)
2
.

Then

|uk (t)|2 = exp

{
−2

(
λkt− t0

∫
rρ (τ) dτ

)}
|u0k|2

for any k ≥ k0,
giving rise to uk (t) = 0 for k = 1, 2, ..., k0 − 1, since

(
λkt− t0

∫
r (τ)

ρ
dτ
)
> 0

as rρ0 < λk for each k ≥ k0 and rρ (t) decreases as t ↑ ∞. It follows from
continuity that ‖u‖2 (t) = r (t) < r0 for all t > 0 and k ≥ k0 for any solution
to the problem

1

2

d

dt
|uk (t)|2 + (λk − r (τ)

ρ
) |uk (t)|2 = 0, |uk (0)|2 = |u0k|2 .

The above results show that for the cases λk0 > rρ (0) > λk0−1 and c) we need
to consider the space decomposition H := Hk0 ⊕H−k0 = H1

0 (Ω) (Pk0 (H) :=
Hk0 , Qk0 (H) := H−k0), by means of which one analyze the intrinsic behavior
of the corresponding solutions. Let the space H := H1

0 (Ω) be representable,

if r20 :=
∥∥u−0k0∥∥2Hk0 +

∥∥u+0k0∥∥2H−k0
, in the vector form

H :=
{
u =

(
u+k0 , u

−
k0

)
: u+k0 ∈ Hk0 , u

−
k0
∈ H−k0

}
.

Then the following proposition follows directly from the above discussion.

Proposition 3. Under the above conditions if
∥∥u−0k0∥∥2H−k0

>
∥∥u+0k0∥∥2Hk0 and

if the rate of decrease of the norm
∥∥u−k0 (t)

∥∥2
H−k0

is greater than the rate of
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decrease of the norm
∥∥u+k0 (t)

∥∥2
Hk0

, then there exists t̃ > 0 such that |uk (t)|

decreases for t ≥ t̃. On the other hand, if
∥∥u−0k0∥∥2H−k0

<
∥∥u+0k0∥∥2Hk0 and the rate

of increase rate of the norm
∥∥u+k0 (t)

∥∥2
Hk0

is greater than the rate of decrease of∥∥u−k0 (t)
∥∥2
H−k0

, then there exists t > 0 such that |uk (t)| increases for t ≥ t.

Now we will proceed to investigation of the behavior of solutions that start
at a fixed function with the norm fixed by the number r0 : λk0−1 < rρ0 < λk0 .
As H = Hk0 ⊕ H−k0 and for each u ∈ H there holds the decomposition
u (t) = u+k0 (t) + u−k0 (t) for any t > 0, then it is enough to study the case

when
∥∥u−0k0∥∥H−k0

�
∥∥u+0k0∥∥Hk0 . Indeed if we set ‖u0‖ = r0 and r0 satisfies the

inequality λk0−1 < rρ0 < λk0 , then each of solutions to the problem (14) - (15)
satisfies one of the following statements:

1. If u0 lies in Hk0 or in a small neighborhood of the subspace Hk0 , then
|uk (t)| ↑ ∞ as t ↑ ∞ for k = 1, k0 − 1, moreover since in this case r (t) increases
gradually and so in time is greater than each λk for k ≥ k0, i.e. in this case
|uk (t)| gradually increases for all k;

2. If u0 lies in H−k0 or in a small neighborhood of the subspace H−k0 ,
then |uk (t)| ↓ 0 as t ↑ ∞ for k ≥ k0, moreover since in this case r (t) decreases
gradually so that in time it is less than each λk, i.e. in this case |uk (t)| gradually
decreases for all k;

3. If u0 ∈ H such that
∥∥u−0k0∥∥H−k0

≈
∥∥u+0k0∥∥Hk0 , then there is a relation

between of u−0k0 (t) and u+0k0 such that the behavior of the uk (t) is chaotic for
all k for which uk (0) 6= 0.

4. If u0 ∈ H such that
∥∥u−0k0∥∥H−k0

and
∥∥u+0k0∥∥Hk0 are different, then the

solutions are still connected by some relations.
As the Claims 1. and 2. were proved above, we need only study Claim 3.

Consider the representation of the formal solutions (22) to the problem (21):

|uk (t)|2 = exp

{
−2

(
λkt− t0

∫
r (τ)

ρ
dτ

)}
|u0k|2 , k = 1, 2, ....

It is known that |uk (t)| increases for k : 1 ≤ k ≤ k0 − 1 and decreases for
k ≥ k0 by virtue of Proposition 3, depending on the difference λk− r (0)

ρ
. But

as r2 (t) :=
∥∥u−k0∥∥2Hk0 (t) +

∥∥u+k0∥∥2H−k0
(t) holds in a vicinity t = 0, r (t) can

change depending on the behavior of |uk (t)| as k ≥ k0 and k ≤ k0 − 1 vary;
consequently, the corresponding subspaces of H change, i.e. r (t)

ρ
can become

greater than λk0 or less than λk0−1. This variation of r (t) is very complicated,
as the variation depends on relations among the behaviors of uk (t) in the case
when k ≥ k0 and k ≤ k0 − 1, which may give rise to chaos.

We now investigate Claim 4 with an eye toward the question of whether or
not there is an attractor for the operator resolving the problem (14) - (15).
Toward this end, we will consider the following system of differential equations

Ek (u) :=
d

dt
〈u (t) , wk〉+ 〈∇u (t) ,∇wk〉 (t)− ‖u‖ρ2 (t) 〈u (t) , wk〉 = 〈h,wk〉 ,
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where {wk (x)}∞k=1 are eigenfunctions of the Laplacian −∆ in H1
0 (Ω) corre-

sponding to the eigenvalues {λk}∞k=1, respectively, by virtue of the imposed
conditions.

Whence, it follows that

Ek (u) :=
d

dt
uk (t) + λkuk (t)− ‖u‖ρ2 (t)uk (t) = hk (t) , k = 1, 2, ...

As our aim is the investigation of the behavior of solutions of the problem

under the condition u0 ∈ S
H1

0 (Ω)
r0 (0), λk0−1 < rρ0 < λk0 it is enough to study the

homogeneous equation case. So we assume h (t, x) = 0. Then for the problem
(14) - (15) we obtain the following problem Cauchy

Ek (u) =
d

dt
uk (t) + λkuk (t)− ‖u‖ρ2 (t)uk (t) = 0, (27)

〈u (t) , wk〉 | t=0 = uk (t) | t=0 = u0k, k = 1, 2, ..., k0 − 1 (28)

Whence, for some t0 > 0 for t ∈ [0, t0) we have ‖u‖ρ2 (t) ≤ rρ0 + ε < λk0 , for
some ε > 0. Indeed, we have from (18) - (19) that

d

dt
uk (t) + (λk − ‖u‖ρ2 (t))uk (t) = 0, uk (0) = u0k,

which leads to the formal solution of the Cauchy problem

uk (t) = exp

{
−0t

∫
(λk − rρ (τ))dτ

}
u0k = exp

{
−λkt+ 0t

∫
rρ (τ) dτ

}
u0k

(29)
Hence, if λk0−1 < rρ0 , then uk (t, x) increases in the vicinity of zero if u0k (x) >
0 for k = 1, 2, ..., k0 − 1 and the part ‖Pk0u0‖2 is sufficiently greater than
‖Qk0u0‖2.

Let u0 ∈ H1
0 (Ω) and ‖u0‖2 = r0, then the above expression implies that

the behavior of the solution uk (t) depends on the relationship between r0 and
λk and also between ‖Pk0u0‖2 and ‖Qk0u0‖2.

Consider the behavior of |uk (t)| for all k = 1, 2, ..., in the case when ∃λk0 :
λk0−1 < rρ0 < λk0 . We have the following system of equations

0 =
d

dt
uk (t) + λkuk (t)− r (t)

ρ
uk (t) =

=
d

dt
uk (t) + (λk − r (t)

ρ
)uk (t) , uk (0) = u0k, k = 1, 2, ..., (30)

where u (t, x) := k = 1∞
∑
uk (t)wk (x). It is easy to see that this system of

equations is of interest only for the cases k ≥ k0, k ≤ k0 − 1 and k = k0
separately. If k ≥ k0 this part of the system has a solution that is unique as
t ≤ t2 (k, r0) for some t2 (k, r0) > 0 if ‖Qk0u0‖2 is sufficiently greater than
‖Pk0u0‖2. Formally we can determine the solution of each equation from (21)
in the following form:

uk (t) = exp

{
−
(
λkt− t0

∫
r (τ)

ρ
dτ

)}
u0k . (31)
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Thus, considering the expression (21) for k ≤ k0− 1, it follows from (22) that

|uk (t)| = exp

{
−
(
λkt− t0

∫
r (τ)

ρ
dτ

)}
|u0k| ≥ exp {(r (0)

ρ − λk) t} |u0k| ,

as r (t)
ρ
> λk for 1 ≤ k ≤ k0 − 1 and some t > 0. Consequently, the sequence

|uk (t)| increases for each k : 1 ≤ k ≤ k0− 1, if the part ‖Pk0u0‖2 is sufficiently
greater than ‖Qk0u0‖2, that renders the increase of r (t).

Consider the representation of the formal solutions (22) to the problem
(21):

uk (t) = exp

{
−
(
λkt− t0

∫
r (τ)

ρ
dτ

)}
u0k, k = 1, 2, .... (32)

It is known that |uk (t)| increases for k : 1 ≤ k ≤ k0 − 1 and decreases for
k ≥ k0 by virtue of Proposition 3, depending on the difference λk − r (0)

ρ
and

the relation between ‖Pk0u0‖2 and ‖Qk0u0‖2. Thus, concerning the system
(22) for k we need to study the expression λk − r (0)

ρ
which is negative owing

to the conditions imposed. But the behavior of functions |uk(t)| cannot exactly
explain the behavior of functions uk(t), and also the behavior of the solution
u(t, x). Consequently, we need to study the behavior of functions uk(t) in
greater detail.

So, from the expression (32) under the corresponding relation between
‖Pk0u0‖2 and ‖Qk0u0‖2 is clear that if u0k ≥ 0 (u0k ≤ 0) then uk (t) ≥ 0
(uk (t) ≤ 0) and in addition if λk − r (0)

ρ
> 0 then in the case u0k ≥ 0 we see

that uk (t) decreases, in the case u0k < 0 we see that uk (t) increases, but |uk(t)|
will decreases at least in some vicinity of zero. And next let λk−r (0)

ρ
< 0, then

when u0k ≥ 0 we see that uk (t) increases in the case u0k < 0 we see that uk (t)
decreases, but |uk(t)| increases at least in a vicinity of zero. If λk − r (0)

ρ
= 0

then uk (t) does not vary at least in some vicinity of zero.
Thus, we obviously need to investigate the behavior of r (t) for various initial

function u0 (x) in the case when ‖u0‖ = r0. So as λk − rρ0 > 0, the functions
|uk (t)| decreases and converge to zero when t ↗ ∞ for k ≥ k0, where k0 ≥ 1
is such that λk0 − r

ρ
0 > 0 and λk0−1 − r

ρ
0 ≤ 0. Therefore, the behavior of r (t)

essentially depends on the selections of uk (0) for 1 ≤ k ≤ k0 − 1.
It is clear from the above analysis that need to consider the expression

u (t, x) = k ≥ 1
∑
uk (t)wk (x) for the solution and the expression u0 (x) =

k ≥ 1
∑
u0kwk (x) for initial data. Let r0 > 0, then there exists k0 ≥ 2 such

that λk0 > rρ0 ≡ r (0)
ρ
> λk0−1 and ‖u0‖ = r0.

Using the orthogonal splitting u (t) = Pk0u (t) + Qk0u (t) , we obtain the
following expressions:

u0 (x) = k ≥ 1
∑

u0kwk (x) = k0 − 1 ≥ k ≥ 1
∑

u0kwk (x)+k ≥ k0
∑

u0kwk (x)

and
u (t, x) = k ≥ 1

∑
uk (t)wk (x) =

= k0 − 1 ≥ k ≥ 1
∑

uk (t)wk (x) + k ≥ k0
∑

uk (t)wk (x) . (33)

There exist t1 > 0 and t2 > 0 such that Pk0u (t) of (33) can increases
in (0, t1) and Qk0u (t) of (33) decreases in (0, t2) if any of their terms are
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nonnegative functions. Let min {t1, t2} = t1, then when t > t1 these summands
can behave quite differently. Here are the possibilities: 1) the velocity ‖u‖ (t)
becomes greater than r0 for t ≥ t1, moreover r (t)

ρ
> λk0 for t > t1, so the

orthogonal splitting u = Pk0u + Qk0u changes and becomes, at least, u =
Pk0+1u+Qk0−1u; 2) Qk0u decreases of to a point where ‖u‖ (t) is smaller than
r0 for t ≥ t1, moreover r (t)

ρ
< λk0−1 for t > t1, so the orthogonal splitting

u = Pk0u+Qk0u changes and becomes, at least, u = Pk0−1u+Qk0+1u; 3) there
exist a t0 ≥ t1 and an R0 ≥ ‖Pk0u‖ ≥ R1 > 0 such that beginning at t0 the
changes of Pk0u and Qk0u become such that

r2 (t) = ‖u (t)‖2 = k0 − 1 ≥ k ≥ 1
∑
|uk (t)|2 + k ≥ k0

∑
|uk (t)|2

satisfies R1 ≤ r (t) ≤ R0 for t ≥ t0.

Consider the case 1). In this case we have the following possibilities: a)
Pk0u increases with such velocity that ‖u‖ (t) ↗ ∞, which can takes place
when u0 (x) is chosen in the vicinity of the subspace Hk0 (this scenario is
studied in Proposition 3); b) rate of growth of Pk0u diminishes beginning at
time t and the function u (t, x) behaves as in case 3, which we will explain in
what follows. The case 2) has have 2 variants: a’) Qk0u decreases with such
velocity that ‖u‖ (t) ↘ 0 leading to the inequality r (t)

ρ
< λ1, which can take

place when u0 (x) is chosen in the vicinity of the subspace H−k0 (this variant is
also studied in Proposition 3); b’) rate of decrease of Qk0u diminishes beginning
at some time t and leading to case 1)b).

Consequently, it remains only to investigate case 3). It is clear that this case
can occur when Pk0u0 assumes both positive and negative values. Therefore,
we consider special initial datum and try to explain case 3 for such functions.
So, let Pk0u0 = u0k0−1wk0−1, i.e. u0 (x) = u0k0−1wk0−1 (x) + Qk0u0 (x) and
‖u0‖ = r0. Then we obtain the following: uk0−1 (t) changes with such way that
|uk0−1 (t)| increases with t and |uk0−1 (t)|ρ −→ λk0−1 when t ↗ ∞; moreover,
‖Qk0u (t)‖ decreases with increasing t and therefore ‖Qk0u (t)‖ −→ 0 when
t ↗ ∞. Hence, ‖u‖ρ (t) ↘ λk0−1 as t ↗ ∞. In other words, the increase of
‖Pk0u‖ and decrease of ‖Qk0u (t)‖ compensate for each other in such a way
that this process leads to the case described above.

Thus, it not is difficult to see that in order to obtain the above result, we
need to select u0k0−1 in the vicinity of the subspace H−k0 , which depends on
the given r0 : rρ0 ∈ (λk0−1, λk0). Accordingly it follows in the case when Pk0u0
increases, the corresponding u0k, 1 ≤ k ≤ k0 − 1, must be chosen as done
previously. Moreover, in this case there is a λj0 such that ‖Pk0u (t)‖ ↗ λj0 =
inf {λk | 1 ≤ k ≤ k0 − 1, u0k 6= 0} when t↗∞ .

Therefore, there exists a “double cone” with the “vertex at zero” that con-
tains the subspace H−k0 and all elements are contained in some neighborhood
of H−k0 . In addition, the maximal distance between of the elements of this
subset and the subspace H−k0 depends on the given r0. Now, we denote

this subset by H̃ ⊂ H1
0 . It follows from this definition that any subset of

H̃ ∩
{
B
H1

0
r1 (0)−BH

1
0

r2 (0) , r1 > r2 > 0
}

converges to a set, which we can de-

fine as Hk0 ∩ B
H1

0

λj0
(0), where r1, r2 are some numbers with λk1−1 ≤ rρ2 < λk1
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and there is a λj1 = inf {λk | 1 ≤ k ≤ k1 − 1, u0k 6= 0} and k1 = k1 (r1). This
shows that the obtained set is subset of a finite-dimension space and it is local
attractor in some sense.

Thus, we have proved the following result.

Theorem 1. Let all the imposed above conditions hold and u0 ∈ H1
0 (Ω) whose

norm ‖u0‖ = r0 satisfies the inequality λk0−1 < rρ0 < λk0 . Then each solution
to the problem (14) - (15) satisfies one of the following properties:

1. If u0 lies in Hk0 or in a sufficiently small neighborhood of the subspace
Hk0 , then |uk (t)| ↑ ∞ as t ↑ ∞ for k = 1, k0 − 1, moreover since in this case
r (t) increases and gradually it will be greater than each λk for k ≥ k0, i.e. in
this case |uk (t)| will gradually increase for all k;

2. If u0 lies H−k0 or in a small neighborhood of the subspace H−k0 , then
|uk (t)| ↓ 0 as t ↑ ∞ for k ≥ k0, moreover since in this case r (t) decreases
and gradually it will be less than each λk, i.e. in this case |uk (t)| gradually
decreases for all k;

3. If u0 ∈ H, ‖Pk0u0‖ � ‖Qk0u0‖ and if there are small numbers δ (λk0) >
ε (λk0) > 0 such that for the Hausdorff distance

ε ≤ d
(
H−k0 ;

{
u+0k

∣∣ k = 1, k0 − 1
})
≤ δ (34)

holds, then the behavior of the u (t, x) is chaotic for sufficient large t. And also,
if
∥∥u−0k0∥∥H−k0

≈
∥∥u+0k0∥∥Hk0 , then there is a relationship between u−0k0 (t) and

u+0k0 for which the behavior of the uk (t) is chaotic for all k satisfying uk (0) 6= 0

Remark 1. If 3. of the above theorem obtains, then the following claim is
reasonable: for any λk0 there is a subset Bλk0 ⊂ H1

0 (Ω) for which (34) holds
and for any u0 ∈ Bλk0 the corresponding solution u (t) satisfies the condition

λj0 ≤ ‖u‖
ρ
2 (t) < λk0 foranyt > 0,

and
lim t↑∞ ‖u (t)‖ρ2 = λj0 = inf {λk | 1 ≤ k ≤ k0 − 1, u0k 6= 0}

then there is an absorbing chaotic set in L2 (Ω).

4 Problem (1) - (2): the case (β)

Let the mapping g have the local nonlinearity as in the case (β), i.e. now we
consider the following problem:

∂u

∂t
−∆u− µ |u|ρ u = h (x) , (t, x) ∈ (0, T )×Ω, (35)

u (0, x) = u0 (x) ∈ H1
0 (Ω) , u

∣∣
[0,T )×∂Ω = 0. (36)

Here µ, ρ > 0 are some numbers, Ω ⊆ Rn is a domain with sufficiently smooth
boundary ∂Ω or Ω := Rn, h ∈ L2 (Ω) .
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Rewriting (35) in the form

∂u

∂t
= ∆u+ µ |u|ρ u+ h (x) := (∆+ µ |u|ρ)u+ h (x) ,

we can easily express the formal solution to this problem in the form

u (t) = exp

{
t∆+ µt0

∫
|u (τ)|ρ dτ

}
(u0 + h) . (37)

Whence, we obtain the estimate

‖u‖2 (t) ≤ exp

{
t0

∫ (
−λ1 + µ ‖u‖ρ2ρ (τ)

)
dτ

}
(‖u0‖2 + ‖h‖2)

for u (t) ∈ H1
0 for a.e. t ≥ 0, where λ1 is first eigenvalue of the operator −∆ :

H1
0 −→ H−1. Moreover, it is not difficult to see that from (35) - (36) one can

obtain the following problem
1
2
d
dt ‖u‖

2
2 (t) = −‖∇u‖22 (t) + µ ‖u‖ρ+2

ρ+2 (t) + 〈h, u〉 (t) ,
‖u‖22 (0) = ‖u0‖22 .

4.1 Existence of a Solution

First, we consider the case h (x) = 0. Then from (4) we obtain the estimate

‖u‖22 (t) ≤ exp

{
t0

∫ (
−λ1 + µc0 ‖u‖ρρ+2 (τ)

)
dτ

}
‖u0‖22 ,

where c0 > 0 is the constant of the embedding inequality for Lρ+2 (Ω) ⊂ L2 (Ω).
This inequality shows that we can study problem (35) - (36) using the previous

approach from Section 2 in the case of the ball BXr0 (0) for r0 <
∣∣∣ λ1

µc0c1

∣∣∣ 1ρ , where

c1 is the constant of the embedding inequality for H1
0 ⊂ Lρ+2 (Ω) . In the

other words, we can study the solvability only locally for u0 ∈ B
H1

0
r0 (0) and

0 ≤ ρ ≤ 4
n−2 .

Now, we deal with problem (4) in the other way. Let ρ < 4
n−2 , then the

following interpolation inequality (G-N-S inequality) holds

‖u‖ρ+2 ≤ c ‖u‖
1−θ
2 ‖∇u‖θ2 , θ =

ρn

2 (ρ+ 2)
, ρ <

4

n− 2
,

for u (t) ∈ H1
0 and n ≥ 3. Thus, we get

‖u‖ρ+2
ρ+2 (t) = ‖u‖ρρ+2 (t) ‖u‖2ρ+2 (t) ≤ c ‖u‖ρρ+2 (t) ‖u‖2(1−θ)2 ‖∇u‖2θ2 ,

where

2θ =
ρn

(ρ+ 2)
< 2 and 2 (1− θ) =

4− ρ (n− 2)

(ρ+ 2)
< 2
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and consequently

‖u‖ρ+2
ρ+2 (t) ≤ C (ε, c) ‖u‖

ρ
2(ρ+2)

4−ρ(n−2)

ρ+2 (t) ‖u‖22 (t) + ε ‖∇u‖22 (t) . (38)

Thus if ρ satisfies the inequality 0 < ρ ≤ 4
n , then ρ 2(ρ+2)

4−ρ(n−2) ≤ ρ + 2, where

ε > 0 is the small parameter.
Taking into account the inequality (38) and equation (4), we find that

1

2

d

dt
‖u‖22 (t) = −‖∇u‖22 (t) + µ ‖u‖ρ+2

ρ+2 (t) ≤ −‖∇u‖22 (t) +

µC (ε, c) ‖u‖
ρ

2(ρ+2)
4−ρ(n−2)

ρ+2 (t) ‖u‖22 (t) + ε ‖∇u‖22 (t) =

− (1− ε) ‖∇u‖22 (t) + µC (ε, c) ‖u‖
ρ

2(ρ+2)
4−ρ(n−2)

ρ+2 (t) ‖u‖22 (t) .

Thus, if we choose ε = ε0 > 0 a fixed small number, then we find, owing to the
previous approach, that

d

dt
‖u‖22 (t) ≤

[
− (1− ε0)λ1 + µC (ε0, c) ‖u‖

ρ
2(ρ+2)

4−ρ(n−2)

ρ+2 (t)

]
‖u‖22 (t) ,

or

‖u‖22 (t) ≤ exp

{
−t0

∫ [
(1− ε0)λ1 + µC (ε0, c) ‖u (τ)‖

ρ
2(ρ+2)

4−ρ(n−2)

ρ+2

]
dτ

}
‖u‖22 (0) .

(39)
Consequently, in this case we need to study the problem under the variants
(i) - the case when ‖u0‖ρ+2

ρ+2 <
1−ε0

µC(ε0,c)
λ1; and (ii) - the case when ‖u0‖ρ+2

ρ+2 ≥
1−ε0

µC(ε0,c)
λ1, separately. It follows from the above estimate that in the case (i)

we can prove of the existence theorem on the ball BXr0 (0) using the approach in
Section 2 (or using of the method of compactness [22,23], since it is not difficult
to see the operator generated by the problem (35) - (36) is weakly compact).

Hence, (39) implies that‖u‖2 (t) decreases if u0 ∈ B
H1

0
r0 (0) in the case

when r0 <
[

1−ε0
µC0C(ε0,c)

λ1

] 1
2(ρ+2)

(here C0 > 0 is the constant of the embedding

theorem). Therefore, ‖u‖H (t) ≤ ‖u0‖H for t ≥ 0, i.e. the following statement
is verified.

Theorem 2. Let h (x) = 0 and the following conditions be satisfied: (1) 0 <

ρ ≤ 4
n , ‖u0‖ρ+2

ρ+2 ≤ C0 ‖u0‖ρ+2
H1

0
< 1−ε0

µC(ε0,c)
λ1, r0 <

[
1−ε0

µC0C(ε0,c)
λ1

] 1
2(ρ+2)

(here

C0 > 0 is as above); or (2) 0 < ρ ≤ 4
n−2 and u0 ∈ B

H1
0

r̂0
(0) for r̂0 <

∣∣∣ λ1

µc0c1

∣∣∣ 1ρ
(here c0 > 0 and c1 > 0 are such as in the starting part of this section).

Then problem (35) - (36) is solvable in BXr0 (0) (or BX
r̂0

(0)) for all u0 ∈

B
H1

0
r0 (0) (or u0 ∈ B

H1
0

r̂0
(0)), moreover, the solutions u (t) are contained in the

closed ball B
H1

0
r0 (0) (or B

H1
0

r̂0
(0)) for t ≥ 0.
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Remark 2. It should noted that if we consider the problem (35) - (36) for
h (x) 6= 0, for example, as in the case (1) then using the same approach we get〈
∂u

∂t
−∆u− µ |u|ρ u, u

〉
=

1

2

d

dt
‖u‖22 (t)+‖∇u‖22 (t)−µ ‖u‖ρ+2

ρ+2 (t) ≤ ‖h‖Y ‖u‖H1
0

and it is not difficult to see that here, as in the case (1), we need to determine
the balls BXr1 (0) in X and BYR1

(0) in Y (here Y = H−1 or L2 (Ω)), where r1
and R1 depend on (λ1, ρ, µ, C0) as well as each other. However, we shall not
go into this case here.

Consequently, we consider here only the case h (x) = 0, so that we need

to study the posed problem in the variants (i) - the case when ‖u0‖ρ+2
ρ+2 <

1−ε0
µC(ε0,c)

λ1; and (ii) - the case when ‖u0‖ρ+2
ρ+2 ≥

1−ε0
µC(ε0,c)

λ1, separately.

4.2 Blow-up Solutions

Consider the case (ii). Denote the functional

F (t) :=
1

2
‖∇u‖22 (t)− µ

ρ+ 2
‖u‖ρ+2

ρ+2 (t)

for which

d

dt
F (t) = 〈∇u,∇ut〉 − µ 〈|u|ρ u, ut〉 = −Ω

∫
∆uut−

µΩ

∫
|u|ρ uut = −Ω

∫
|ut|2 = −‖ut‖2H , F (t) | t=0 = F (0) ,

then we get

F (t) = F (0)− t0
∫
‖ut‖2H =

1

2
‖∇u0‖2H −

µ

ρ+ 2
‖u0‖ρ+2

ρ+2 − t0
∫
‖ut‖2H .

Now consider the derivative of the functional G (t) = ‖u‖22 (t)

1

2

d

dt
G (t) = 〈ut, u〉 = 〈∆u+ µ |u|ρ u, u〉 = −‖∇u‖22 (t)+µ ‖u‖ρ+2

ρ+2 (t) = −2F (t) +

ρµ

ρ+ 2
‖u‖ρ+2

ρ+2 (t) = −‖∇u0‖22 +
2µ

ρ+ 2
‖u0‖ρ+2

ρ+2 + 2t0

∫
‖ut‖22 +

ρµ

ρ+ 2
‖u‖ρ+2

ρ+2 (t)

i.e.

1

2

d

dt
G (t) =

1

2

d

dt
‖u‖22 (t) = −2F (0) + 2t0

∫
‖ut‖22 +

µρ

ρ+ 2
‖u‖ρ+2

ρ+2 (t) ≥

−2F (0) +
c1µρ

ρ+ 2
‖u‖ρ+2

2 (t) , G (0) =
1

2
‖u0‖2H .
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So we obtain the problem

d

dt
G (t) ≥ −4F (0) +

2c1µρ

ρ+ 2
G (t)

ρ+2
2 , G (0) = ‖u0‖22

which shows the finite-time blow-up of solutions of the posed problem. Indeed,
there are two variants or F (0) ≤ 0 or F (0) > 0. If F (0) ≤ 0 then for G (t) we
obtain

d

dt
G (t) ≥ 2c1µρ

ρ+ 2
G (t)

ρ+2
2 , G (0) = ‖u0‖22 . (40)

Clearly, if ρ > 0, the solutions of the problem (40) have finite-time blow-up.
Accordingly, we have proved the following result.

Theorem 3. Let the initial function u0 ∈ H1
0 ∩Lρ+2 (Ω) satisfy the condition

1

2
‖∇u0‖22 −

µ

ρ+ 2
‖u0‖ρ+2

ρ+2 ≤ 0.

Then if the local solution of problem (14) - (15) is sufficiently smooth, this
solution has a finite-time blow-up in H.

4.3 Solution Behavior

Now consider (35) - (36) in the general case. For a detailed investigation of the
behavior of the solutions, we will use the same approach as in Section 3.

Let the eigenfunctions of the operator −∆ : H1
0 −→ H−1 be as in Section 3,

then any function v ∈ H1
0 has the representation v (t, x) := k = 1∞

∑
vk (t)wk (x).

Thus, we have ∂u
∂t −∆u− µ |u|

ρ
u = 0; u (0, x) = u0,

=⇒

∞∑
j=1

(
duj (t)

dt
+ λjuj (t)

)
wj (x)−µ

∣∣∣∑∞

j=1
uj (t)wj (x)

∣∣∣ρ∑∞

j=1
uj (t)wj (x) = 0.

(41)
Now, if ρ ≤ 2

n−2 , then |u|ρ u := vu (t, x, ρ) ∈ L2 (Ω) for all u ∈ H1. Con-

sequently, we have vu (t, x, ρ) = k = 1∞
∑
vku (t, ρ)uk (t)wk (x) ∈ H. It is clear

that the variation of vku (t, ρ) depends on t in R+, as at any point t the function
vku (t, ρ) =⇒ ζk (t). Moreover, as we saw in the previous section the variation
of u (t, x) depends on the relationship between u0 and λk.

Consequently, we can rewrite the problem (41) in the form

j = 1∞
∑(

duj (t)

dt
+ λjuj (t)− µvju (t, ρ)uj (t)

)
wj (x) ≡ 0

uj (0) = u0j , j = 1, 2, ...

Then, if we take into account that the system {wj (x)}∞j=1 is an orthogonal

basis in L2 (Ω), the problem (41) is equivalent to the system of the problems

duj (t)

dt
+ λjuj (t)− µvju (t, ρ)uj (t) = 0, (42)
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uj (0) = u0j , j = 1, 2, ...

So to study the behavior of solutions of the problem (35)- (36,) it is enough
to study the system of problems (42) with solutions

uj (t) = exp

{
−t0

∫ (
λj − µvju (t, ρ)

)
dτ

}
u0j , j = 1, 2, ...

Thus, we obtain the flow which determines the solution via these formal
expressions. Now, if S(t) is the flow determined by problem (42), we can
rewrite S(t) as S(t) := S(t+ cu(t, ρ)), as far as S(t) depends on x via u.

uj (t) = e
−
(
t0
∫

(λj−µvju(t,ρ))dτ
)
u0. (43)

Here we get that the behavior of the solutions depends not only on the time,
yet depends strongly on the location of points x in Ω belonging to the solution
support as far as the quantity of vju (t, ρ) depends of the locally variations of
quantity of u in Ω. Consequently, (43) demonstrates us that this case of the
spatiotemporal states essentially differs from the case (5) - (6). In other
words, for fixed j ∈ Z+ there are possible two choices: either λj < µvju (t, ρ)
or λj ≥ µvju (t, ρ) , depending on the state of (t, x) ∈ R+ ×Ω.

Consequently, to explain the possible variants in this case we can argue as
in Section 3 to obtain the following result.

Proposition 4. Suppose ρ ≤ 2
n−2 , u0 ∈ B

H1
0

r0 (0) and there are subsets with
nonzero measure in Ω on which λi0+1 > u0 (x) ≥ λi0 , for some i0 ≥ 1. Then,
the behavior of the solution depends sensitively on the variation of viu (t, ρ), i.e.
it has spatio-temporal chaotic dynamics.

Thus, we can conclude, that as in the previous problem, chaotic dynamics
occur, but unlike the previous case, the chaos is spatio-temporal.
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