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Abstract. The billiards microwave (microwave cavity resonators) in which the boundary 

has a surface fractures and contains both dispersing and focusing portions; there may be 

signs of chaos in its frequency spectrum. The common feature of such billiard’s border is 

its small smooth surface (at least in the absence of the second derivative). Since the 
billiard system breaks the side surface is non-integrable, its chaotic properties have been 

studied experimentally. We use the spectral approach, when signs of wave chaos are 

shown in the properties of the inter-frequency intervals distribution system spectrum. 

With this approach, in the absence of surface fractures the spectral lines of the resonator 
are independent, and the distribution of inter-frequency intervals is a Poisson 

distribution. In the case of existence of surface fractures, the spectral lines are correlated 

and inter-frequency intervals in spectrum allocation approaches the Wigner distribution. 
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1 Introduction and problem statement 

 
The work is devoted to the study of quantum (wave) chaos (QC) in 

linear Hamiltonian systems. This area has recently acquired a great 

development. This is evidenced by numerous publications - monographs and 

articles (see [1] and references therein), which contains the results of theoretical 

and experimental studies of the problem. It should be noted that QC is the 

sufficiently general phenomenon. It covers a wide range of tasks associated with 

the quantum mechanical description of the systems, chaotic in the classical 

limit. For a description of experiments with billiard systems also used the term 

"wave chaos." However, it is not widely used yet. 

Thus, QC research of general interest associated with the 

implementation of the principle of correspondence between classical and 

quantum systems. The QC system is non-integrable system, invariant with 

respect to the inversion operation time. It has a classical analog possessed 
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chaoticity. According to the hypothesis of Bohigas, Giannoni, and Schmit [2], 

the spectral properties of such a system can be described by random matrix 

theory [3]. The effluent from this theory, the main feature of the QC is as 

follows. The system has chaotic frequency spectrum with a strong correlation 

between the spectral lines, which leads to a peculiar effect of "repulsion" and 

Wigner character of probability distribution of inter-frequency intervals. 

In theoretical and experimental studies of quantum chaos scattering 

Sinai and Bunimovich billiards are commonly used. In Sinai billiards the 

chaotic state in the classical limit provided strong instability of the trajectories 

of material particles produced by reflection from its border with negative 

curvature. In Bunimovich billiards cause of instability is related to the scattering 

and defocusing of the trajectories of particles with reflections from the lateral 

limits. 

Such scattering billiards relate to systems with mixing [4] (K-systems), 

when the time correlation of the phase trajectories of the motion of the particle 

tend to zero. A common property of the system as a scattering billiard dynamic 

system is its non-integrability related to the fact that it lacks spatial symmetry 

and besides of the integral of the total energy, there are no other integrals of 

motion. the experimental study, they use QC modeling by means of microwave 

resonators, the shape of which is similar to scattering billiards. For this purpose, 

also they use regular microwave resonators belonging to integrated systems [5-

7]. 

Randomness in the resonator spectra are generated by filling the cavity 

volume by randomly distributed therein dielectric inhomogeneities [5]. In this 

cavity through a random arrangement of inhomogeneities the spectrum is 

random as well. Since, in the distribution of irregularities there is no symmetry 

the system is non-integrable. Owing to that [2] in the resonator spectrum occurs 

Wigner (or close to it) shape of the probability distribution of inter-frequency 

intervals. the inhomogeneity (roughness) of the boundary of the microwave 

resonator is also influenced on the QC signs. They create the conditions for the 

emergence of the state, having the QC features [6, 7]. 

The effect of inhomogeneities on the spectrum of the resonator has 

recently attracted considerable interest due to the applied aspects relating to 

quantum electronics. They are directly connected with the creation of a micro-

laser with disk semiconductor resonator with super high Q-factor [8]. In this 

resonator due to the extremely low dielectric losses at optical frequencies and 

high uniformity of the semiconductor crystal, which it is made of, ultra-high Q-

factor (about 10
6
 and above) for “whispering gallery” fluctuations has been 

achieved. Thus, the laser resonator has a very high monochromaticity and low 

angular divergence of radiation. It is also important that the ultra-high Q -factor 

of the resonator substantially (of the order of magnitude or more) are reduced 

laser threshold currents. 
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Upon reaching ultra-high Q-factor of the laser resonator the great 

importance has the nature and the value of inhomogeneities in the dielectric disk 

resonator, as well as the deviation of its shape from a strictly cylindrical. These 

inhomogeneities cause additional radiation losses, significantly lowering the Q- 

factor of the resonator. Thus, they adversely affect the basic characteristics of 

the laser. Therefore, the study of influence of inhomogeneities on the spectral 

properties of the laser resonator and the manifestation of QC properties is an 

interesting physical problem, having great practical importance. 

Instability of the billiard system (a microwave resonator) and the 

related with it the frequency chaoticity can be caused not only by the reflection 

of waves with negative curvature border in Sinai billiards or defocusing 

trajectory as in billiards Bunimovich. The chaoticity and growing of correlation 

between resonant lines can arise in billiards in which the boundary has breaks 

the surface and contains a dispersing and focusing portions. The common 

feature of this billiard border is a small smooth (at least in the absence of the 

second derivative). According to [9] a billiard of low smoothness border refers 

to an unstable scattering billiards (K-systems). It lacks the spatial symmetry. As 

a result, it is non-integrable system. This billiard through instability and 

dissipation at inhomogeneities, which serve areas with low surface smoothness, 

becomes a chaotic system. This suggests that in its spectrum can detect signs of 

QC. 

It should be noted, however, that the statement in [9] to the low 

smoothness boundary billiard supplies a K-system. It is actually based on the 

instability of the trajectories of particles traveling in this billiard. This instability 

leads to chaotic motion of particles in the system. On the other hand, on the 

basis of the hypothesis in [2] we can assume that the spectra of chaotic systems 

that are invariant with respect to time reversal (their classical counterparts are 

K-systems) have statistical properties that are predicted by the random matrix 

theory to systems belonging to a Gaussian orthogonal ensemble (GOA). 

Because of this, they must be QC signs. Therefore, the establishment in the 

system under study a chaotic spectrum with non-zero correlation between the 

spectral lines and the Wigner probability distribution of inter-frequency 

intervals give a reason to believe that the signs of QC occur here. Since the 

billiard system with side surface breaks is non-integrable, its chaotic properties 

have been studied experimentally.  

The aim of this work is an experimental study of billiard systems with 

small smooth borders and the possibility of finding manifestation QC signs in 

them. For this was we used a common method of QC-effects modeling with a 

quasi-two-dimension microwave resonator. Such a resonator is described by the 

scalar Helmholtz equation for a given type of oscillations, which coincides with 

the stationary Schrodinger equation. This makes it possible to consider the 

resonator as a quantum system and to simulate the conditions of existence in it 
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QC signs. This is the subject of our experiments. In them, we use the spectral 

approach, when signs of quantum chaos are shown in the properties of the 

probability of inter-frequency intervals distribution of the resonator spectrum. 

With this approach, in the QC absence of spectral lines of the cavity resonator 

are independent and probability of inter-frequency intervals distribution is a 

Poisson distribution: (-s) exp = (s) P , where s is the length of an normalized 

average  inter-frequency interval. A different situation arises when QC sign 

exists.  In this case, the spectral lines are correlated, and probability of inter-

frequency intervals distribution of the resonator spectrum approaches the 

Wigner distribution: }/4)sexp{(- s /2= (s) P 2 . 

Thus, the establishment of a Wigner distribution of probability of inter-

frequency intervals distribution in a resonator frequency spectrum, which side 

walls have a low smoothness, is a good argument in favor of the resonator 

system with low side smoothness has QC signs. 

 

2 Experimental setup and discussion 

 

A quasi-two-dimensional cavity microwave cylindrical resonator was 

used for modeling QC systems. It has the height of 14 mm and diameter of 130 

mm. To concentrate the electromagnetic field in the cavity resonator it was 

closed with two metal upper and lower disks. To create the various conditions of 

low surface smoothness border in the resonator, when the second derivative 

disappears in certain surface shape points, we introduced aluminum inserts in 

the form of segments, the shape and dimensions of which allow the simulation 

of a particular type of scattering billiards. 

The aluminum inserts made of pure aluminum, a close fit with its outer 

cylindrical surface of the side wall of the cavity resonator. The size of the inserts 

along the axis of the resonator was exactly equal to its height. This allowed, on 

the one hand, to minimize the electromagnetic field losses in the cavity, and on 

the other hand, to provide a given excitation oscillation mode therein. Spectral 

studies were performed in eight millimeter cavity at frequencies range 27-38 

GHz. To excite microwave oscillations in the resonator a diffraction waveguide 

antenna has been used. It was a hole of 2 mm in diameter in a thin (0.1 mm 

thick) diaphragm closing an end of a standard rectangular waveguide soldered to 

the resonator body. The wide waveguide side is oriented along the axis of the 

resonator. In these conditions, the vibrations are excited in it predominantly of 

H-type with magnetic field along the same axis. 

Due to this electric the microwave-excited oscillation currents do not 

cross the boundary between the body and the upper (lower) of the resonator 

cover. The result was achieved in the resonator relatively high Q-factor, the 

value of which was 10
3 

in the high frequency spectrum part. It should be noted 

that the shape of the cavity model has been selected with only excited oscillation 

of H-type. This is necessary to provide the appropriate correlation between 

resonant frequencies. The frequency spectrum of the cavity was defined by a 

wideband microwave signal using strength meter R2-65, which allows 
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measurement of the spectrum in a wide microwave range. Spectral 

measurements were carried out in the "on pass" regime by measuring the 

intensity of the signal transmitted through the resonator. We recorded numerous 

(the number of the order of hundreds) spectral lines. 

In order to ensure the stability of the signal characteristics and, 

accordingly, the spectral lines, the measurements were made in a short time. For 

this purpose, the measurement process was fully automated. The whole range, 

or some of its sections were recorded for 40 seconds and recorded by a 

computer. Spectrum processing is carried out using a specially designed 

program which allows you to determine the quality factor and the natural 

frequency of each spectral line with high accuracy. The relative errors in the 

measurement of the resonant frequency and the quality factor of the spectral line 

using a special calibrator are of the order of 10
-5

 and 10
-3

, respectively. Fig.1 

shows a portion of the spectrum of a smooth cylindrical resonator containing no 

inserts. This range includes about 50 high quality factor spectral lines. 

 

 

Fig. 1. The portion of a quasi-cylindrical cavity with a smooth boundary 

frequency spectrum. Vertically (in arbitrary units) is plotted signal intensity on 

resonant frequency of the spectral lines in GHz. 

 

 

3 Statistical treatment of frequency resonator spectrum 

 

Let us first consider the results of the spectral measurements of an 

empty (without inserts) of the cylindrical cavity resonator. Such a resonator 

having symmetry elements is an integrable system and its electromagnetic field 

can be represented as a set of independent spectral modes (in this case, the H-

mode). Owing to this the resonator spectrum is regular, and spectral lines are 

independent, and the probability distribution of inter-frequency intervals close 

to Poisson distribution, Fig. 2. 

 



120      Ganapolskii and Eremenko 

 

 
Fig. 2. Histogram of probability distribution of inter-frequency intervals s for 

the empty cylindrical cavity resonator spectrum. The smooth curve is Poisson 

distribution. 

 

 

The deviation from the Poisson distribution is observed only at small 

intervals inter-frequency intervals. It is connected with a finite spectral line 

width. Fig. 3 shows the histogram for various inserts sector configurations in the 

resonator cavity. The configuration of the cavity with two sectorial inserts 

located at an angle of about 20° corresponds to an asymmetric Bunimovich 

geometry billiard. On the lateral surface of the resonator cavity, wherein the flat 

inserts are jointed a cylindrical surface, there are fractures. Thus, this resonator 

has instability and chaotic frequency spectrum, which there is the effect of the 

repulsion of the spectral lines, significantly affects the distribution of inter-

frequency intervals. The number of inter-frequency intervals is significantly 

reduced, and the probability of large inter-frequency intervals increases, 

respectively. As a result, the probability of inter-frequency intervals distribution 

in the resonator spectrum is close to the Wigner distribution. It is seen that the 

frequency spectrum has still regular component along with dominating the 

random component. This feature in the probability distribution of inter-

frequency intervals occurs when the resonator configuration with one segment 

insert, which corresponds unbalanced billiards completely, Fig.3a, when the 

second derivative is not in the area of fracture surfaces. Here, just as in the case 

of asymmetric Bunimovich billiards with two inserts, Fig.3b, the probability of 

the inter-frequency intervals distribution close to the Wigner distribution. At the 

same time, the presence of sufficiently large of the probability values  at small s 

means that in this case the regular component of the spectrum increases 

compared to probability values of inter-frequency intervals of the resonator like 

Bunimovich asymmetrical billiard (two segment inserts). Fig. 3c shows the 

probability values of inter-frequency intervals distribution for the resonator 

cavity in which the insert as asymmetrical sharp ledge. 
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Fig. 3. The histograms of inter-frequency intervals probability distribution 

resonator spectra with aluminum inserts segments, by which the surface of the 

By comparing the resulting spectrum with the spectra of the side wall of the 

resonator becomes small smoothness; (a) is for the resonator with one segment 



122      Ganapolskii and Eremenko 

 
insert; (b) is for the resonator with two-segment insert, and (c) is for the 

resonator with an angular ledge. The location of segments in the resonator is 

shown schematically in the plot inset. The probability distribution of inter-

frequency intervals is close to the Wigner distribution (red solid line).  

The resonators discussed above with one or two single-ended segment 

inserts, we can notice that the sharp angle contributes significantly in probability 

distribution of inter-frequency intervals compared with the resonator without 

inserts. This distribution is also close to the Wigner one. In this case, probability 

distribution at small inter-frequency intervals P(s) is close to zero. 

Consequently, the regular component is not detected in the spectrum with a 

sharp ledge cavity side surface. 

Sign of wave chaos presents in in the spectral rigidity dependence )(3 L , 

where L is the length of the spectrum, normalized by the average inter-

frequency interval (Fig. 4). This function characterizes the ordering of the 

spectral levels in the system at long frequency distance. For a regular system 

(resonator without inserts) with uncorrelated spectral lines )(3 L increases 

proportionally to L such as .15/)(3 LL 
 
 

 

 

 
 

Fig. 4. The spectral rigidity for the spectra of cylindrical resonators: 1 is for the 

empty resonator, in the spectrum of which there is no correlation between the 

spectral lines, 2 is for a chaotic system, belonging to the Gaussian orthogonal 

ensemble with correlated spectral lines. Icons are experimental data for 

resonators with inserts-segments, providing a small smooth lateral surface: 

circles are for two inserts segments, triangles are for the corner bench. 
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The spectra of billiards with small smooth side boundaries the spectral rigidity 

dependence )(3 L  first increases and then reaches a plateau according the 

following relation  8/4/5)2(/1)( 22
3   LLnL , where   is Euler's 

constant. According to [6] this behavior of spectral rigidity )(3 L
 
is a typical 

sign of correlation of spectral lines. In addition, for the character of the 

dependence of )(3 L
 
for the studied resonators to the plateau is different, 

which is apparently due to the presence in the system along with the chaotic the 

regular component.  
 

 

Conclusions 
 

So, in this paper, using the microwave resonators as a billiard model 

for the first time detected experimentally that in the billiard system with small 

smooth side of the border (existence of breaks the surface, where there is no 

second derivative) is a source of instability and makes a regular, stable billiard 

system into the scattering K-system. Owing to that in such a system (in the 

appropriate model microwave cavity resonator) there are signs of quantum 

chaos: the random nature of the frequency spectrum and the Wigner distribution 

of the probability of the inter-frequency interval distribution. 
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