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Abstract. Variational principles for magnetohydrodynamics (MHD) were introdu-
ced by previous authors both in Lagrangian and Eulerian form. In this paper we
introduce simpler Eulerian variational principles from which all the relevant equa-
tions of non-barotropic stationary magnetohydrodynamics can be derived for certain
field topologies. The variational principle is given in terms of three independent func-
tions for stationary non-barotropic flows in which magnetic field lines lie on entropy
surfaces. This is a smaller number of variables than the eight variables which appear
in the standard equations of non-barotropic magnetohydrodynamics which are the
magnetic field B the velocity field v, the entropy s and the density ρ. The reduction
of variables constraints the possible chaotic motion available to such a system.
Keywords: Magnetohydrodynamics, Variational Principles, Reduction of Variables.

1 Introduction

Variational principles for magnetohydrodynamics were introduced by previous
authors both in Lagrangian and Eulerian form. Sturrock [1] has discussed
in his book a Lagrangian variational formalism for magnetohydrodynamics.
Vladimirov and Moffatt [2] in a series of papers have discussed an Eulerian vari-
ational principle for incompressible magnetohydrodynamics. However, their
variational principle contained three more functions in addition to the seven
variables which appear in the standard equations of incompressible magnetohy-
drodynamics which are the magnetic field B the velocity field v and the pres-
sure P . Kats [3] has generalized Moffatt’s work for compressible non barotropic
flows but without reducing the number of functions and the computational load.
Moreover, Kats has shown that the variables he suggested can be utilized to
describe the motion of arbitrary discontinuity surfaces [4,5]. Sakurai [6] has
introduced a two function Eulerian variational principle for force-free magne-
tohydrodynamics and used it as a basis of a numerical scheme, his method is
discussed in a book by Sturrock [1]. A method of solving the equations for those
two variables was introduced by Yang, Sturrock & Antiochos [8]. Yahalom &
Lynden-Bell [9] combined the Lagrangian of Sturrock [1] with the Lagrangian
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of Sakurai [6] to obtain an Eulerian Lagrangian principle for barotropic mag-
netohydrodynamics which will depend on only six functions. The variational
derivative of this Lagrangian produced all the equations needed to describe
barotropic magnetohydrodynamics without any additional constraints. The
equations obtained resembled the equations of Frenkel, Levich & Stilman [12]
(see also [13]). Yahalom [10] have shown that for the barotropic case four
functions will suffice. Moreover, it was shown that the cuts of some of those
functions [11] are topological local conserved quantities.

Previous work was concerned only with barotropic magnetohydrodynamics.
Variational principles of non barotropic magnetohydrodynamics can be found
in the work of Bekenstein & Oron [14] in terms of 15 functions and V.A. Kats
[3] in terms of 20 functions. The author of this paper suspect that this number
can be somewhat reduced. Moreover, A. V. Kats in a remarkable paper [15]
(section IV,E) has shown that there is a large symmetry group (gauge freedom)
associated with the choice of those functions, this implies that the number of
degrees of freedom can be reduced. Yahalom [16] have shown that only five
functions will suffice to describe non barotropic magnetohydrodynamics in the
case that we enforce a Sakurai [6] representation for the magnetic field. Mor-
rison [7] has suggested a Hamiltonian approach but this also depends on 8
canonical variables (see table 2 [7]). The work of Yahalom [16] was concerned
with general non-stationary flows. A separate work [17] was concerned with
stationary flows and introduced a 8 variable stationary variational principle,
here we shall attempt to improve on this and obtain a 3 variable stationary vari-
ational principle for non-barotropic MHD. This will be done for the restricted
case in which the magnetic field lines lie on entropy surfaces.

We anticipate applications of this study both to linear and non-linear sta-
bility analysis of known non barotropic magnetohydrodynamic configurations
[24,26] and for designing efficient numerical schemes for integrating the equa-
tions of fluid dynamics and magnetohydrodynamics [32,33,35]. Another possi-
ble application is connected to obtaining new analytic solutions in terms of the
variational variables [36].

The plan of this paper is as follows: First we introduce the standard no-
tations and equations of non-barotropic magnetohydrodynamics for the sta-
tionary and non-stationary cases. Then we introduce the concepts of load and
metage. The variational principle follows.

2 Standard formulation of non-barotropic
magnetohydrodynamics

The standard set of equations solved for non-barotropic magnetohydrodynam-
ics are given below:

∂B

∂t
= ∇× (v ×B), (1)

∇ ·B = 0, (2)

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)
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ρ
dv

dt
= ρ(

∂v

∂t
+ (v ·∇)v) = −∇p(ρ, s) +

(∇×B)×B
4π

. (4)

ds

dt
= 0. (5)

The following notations are utilized: ∂
∂t is the temporal derivative, d

dt is the
temporal material derivative and ∇ has its standard meaning in vector calculus.
B is the magnetic field vector, v is the velocity field vector, ρ is the fluid density
and s is the specific entropy. Finally p(ρ, s) is the pressure which depends on
the density and entropy (the non-barotropic case).

The justification for those equations and the conditions under which they
apply can be found in standard books on magnetohydrodynamics (see for ex-
ample [1]). The above applies to a collision-dominated plasma in local thermo-
dynamic equilibrium. Such conditions are seldom satisfied by physical plasmas,
certainly not in astrophysics or in fusion-relevant magnetic confinement exper-
iments. Never the less it is believed that the fastest macroscopic instabilities
in those systems obey the above equations [11], while instabilities associated
with viscous or finite conductivity terms are slower. It should be noted that
due to a theorem by Bateman [37] every physical system can be described by
a variational principle (including viscous plasma) the trick is to find an elegant
variational principle usually depending on a small amount of variational vari-
ables. The current work will discuss only ideal magnetohydrodynamics while
viscous magnetohydrodynamics will be left for future endeavors.

Equation (1) describes the fact that the magnetic field lines are moving with
the fluid elements (”frozen” magnetic field lines), equation (2) describes the fact
that the magnetic field is solenoidal, equation (3) describes the conservation of
mass and equation (4) is the Euler equation for a fluid in which both pressure
and Lorentz magnetic forces apply. The term:

J =
∇×B

4π
, (6)

is the electric current density which is not connected to any mass flow. Equation
(5) describes the fact that heat is not created (zero viscosity, zero resistivity) in
ideal non-barotropic magnetohydrodynamics and is not conducted, thus only
convection occurs. The number of independent variables for which one needs
to solve is eight (v,B, ρ, s) and the number of equations (1,3,4,5) is also eight.
Notice that equation (2) is a condition on the initial B field and is satisfied
automatically for any other time due to equation (1). For the stationary case
in which the physical fields do not depend on time we obtain the following set
of stationary equations:

∇× (v ×B) = 0, (7)

∇ ·B = 0, (8)

∇ · (ρv) = 0, (9)

ρ(v ·∇)v = −∇p(ρ, s) +
(∇×B)×B

4π
. (10)

v ·∇s = 0. (11)
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3 Load and Metage

The following section follows closely a similar section in [9]. Consider a thin
tube surrounding a magnetic field line as described in figure 1, the magnetic

Fig. 1. A thin tube surrounding a magnetic field line

flux contained within the tube is:

∆Φ =

∫
B · dS (12)

and the mass contained with the tube is:

∆M =

∫
ρdl · dS, (13)

in which dl is a length element along the tube. Since the magnetic field lines
move with the flow by virtue of equation (1) and equation (3) both the quan-
tities ∆Φ and ∆M are conserved and since the tube is thin we may define the
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conserved magnetic load:

λ =
∆M

∆Φ
=

∮
ρ

B
dl, (14)

in which the above integral is performed along the field line. Obviously the
parts of the line which go out of the flow to regions in which ρ = 0 have a null
contribution to the integral. Notice that λ is a single valued function that
can be measured in principle. Since λ is conserved it satisfies the equation:

dλ

dt
= 0. (15)

By construction surfaces of constant magnetic load move with the flow and
contain magnetic field lines. Hence the gradient to such surfaces must be
orthogonal to the field line:

∇λ ·B = 0. (16)

Now consider an arbitrary comoving point on the magnetic field line and denote
it by i, and consider an additional comoving point on the magnetic field line
and denote it by r. The integral:

µ(r) =

∫ r

i

ρ

B
dl + µ(i), (17)

is also a conserved quantity which we may denote following Lynden-Bell &
Katz [18] as the magnetic metage. µ(i) is an arbitrary number which can be
chosen differently for each magnetic line. By construction:

dµ

dt
= 0. (18)

Also it is easy to see that by differentiating along the magnetic field line we
obtain:

∇µ ·B = ρ. (19)

Notice that µ will be generally a non single valued function.
At this point we have two comoving coordinates of flow, namely λ, µ obvi-

ously in a three dimensional flow we also have a third coordinate. However,
before defining the third coordinate we will find it useful to work not directly
with λ but with a function of λ. Now consider the magnetic flux within a
surface of constant load Φ(λ) as described in figure 2 (the figure was given
by Lynden-Bell & Katz [18]). The magnetic flux is a conserved quantity and
depends only on the load λ of the surrounding surface. Now we define the
quantity:

χ =
Φ(λ)

2π
. (20)

Obviously χ satisfies the equations:

dχ

dt
= 0, B ·∇χ = 0. (21)
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Fig. 2. Surfaces of constant load

Let us now define an additional comoving coordinate η∗ since ∇µ is not or-
thogonal to the B lines we can choose ∇η∗ to be orthogonal to the B lines and
not be in the direction of the ∇χ lines, that is we choose η∗ not to depend only
on χ. Since both ∇η∗ and ∇χ are orthogonal to B, B must take the form:

B = A∇χ×∇η∗. (22)

However, using equation (2) we have:

∇ ·B = ∇A · (∇χ×∇η∗) = 0. (23)

Which implies that A is a function of χ, η∗. Now we can define a new comoving
function η such that:

η =

∫ η∗

0

A(χ, η
′∗)dη

′∗,
dη

dt
= 0. (24)

In terms of this function we obtain the Sakurai (Euler potentials) presentation:

B = ∇χ×∇η. (25)

Hence we have shown how χ, η can be constructed for a known B, ρ. Notice
however, that η is defined in a non unique way since one can redefine η for
example by performing the following transformation: η → η + f(χ) in which
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f(χ) is an arbitrary function. The comoving coordinates χ, η serve as labels of
the magnetic field lines. Moreover the magnetic flux can be calculated as:

Φ =

∫
B · dS =

∫
dχdη. (26)

In the case that the surface integral is performed inside a load contour we
obtain:

Φ(λ) =

∫
λ

dχdη = χ

∫
λ

dη =

{
χ[η]

χ(ηmax − ηmin)
(27)

There are two cases involved; in one case the load surfaces are topological
cylinders, in this case η is not single valued and hence we obtain the upper
value for Φ(λ). In a second case the load surfaces are topological spheres, in
this case η is single valued and has minimal ηmin and maximal ηmax values.
Hence the lower value of Φ(λ) is obtained. For example in some cases η is
identical to twice the latitude angle θ. In those cases ηmin = 0 (value at the
”north pole”) and ηmax = 2π (value at the ”south pole”).

Comparing the above equation with equation (20) we derive that η can be
either single valued or not single valued and that its discontinuity across
its cut in the non single valued case is [η] = 2π.

So far the discussion did not differentiate the cases of stationary and non-
stationary flows. It should be noted that even for stationary flows one can
have a non-stationary η coordinates as the magnetic field depends only on
the gradient of η (see equation (25)), in particular if η is stationary than η +
g(t) which is clearly not stationary will produce according to equation (25) a
stationary magnetic field. In what follows we find it advantageous to use the
following form of η:

η = η̄ − t, (28)

in which η̄ is stationary.

4 A Simpler variational principle of stationary
non-barotropic magnetohydrodynamics

In a previous paper [17] we have shown that stationary non-barotropic mag-
netohydrodynamics can be described in terms of eight first order differential
equations and by an action principle from which those equations can be de-
rived. Below we will show that one can do better for the case in which the
magnetic field lines lie on an entropy surface, in this case three functions will
suffice to describe stationary non-barotropic magnetohydrodynamics.

Consider equation (21), for a stationary flow it takes the form:

v ·∇χ = 0. (29)

Hence v can take the form:

v =
∇χ×K

ρ
. (30)
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However, the velocity field must satisfy the stationary mass conservation equa-
tion (3):

∇ · (ρv) = 0. (31)

We see that a sufficient condition (although not necessary) for v to solve equa-
tion (31) is that K takes the form K = ∇N , where N is an arbitrary function.
Thus, v may take the form:

v =
∇χ×∇N

ρ
. (32)

Let us now calculate v × B in which B is given by Sakurai’s presentation
equation (25):

v ×B = (
∇χ×∇N

ρ
)× (∇χ×∇η)

=
1

ρ
∇χ(∇χ×∇N) ·∇η. (33)

Since the flow is stationary N can be at most a function of the three comoving
coordinates χ, µ, η̄ defined in section 3, hence:

∇N =
∂N

∂χ
∇χ+

∂N

∂µ
∇µ+

∂N

∂η̄
∇η̄. (34)

Inserting equation (34) into equation (33) will yield:

v ×B =
1

ρ
∇χ

∂N

∂µ
(∇χ×∇µ) ·∇η̄. (35)

Rearranging terms and using Sakurai’s presentation equation (25) we can sim-
plify the above equation and obtain:

v ×B = −1

ρ
∇χ

∂N

∂µ
(∇µ ·B). (36)

However, using equation (19) this will simplify to the form:

v ×B = −∇χ
∂N

∂µ
. (37)

Inserting equation (37) into equation (7) will lead to the equation:

∇(
∂N

∂µ
)×∇χ = 0. (38)

However, since N is at most a function of χ, µ, η̄ it follows that ∂N
∂µ is some

function of χ:
∂N

∂µ
= −F (χ). (39)

This can be easily integrated to yield:

N = −µF (χ) +G(χ, η̄). (40)
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Inserting this back into equation (32) will yield:

v =
∇χ× (−F (χ)∇µ+ ∂G

∂η̄∇η̄)

ρ
. (41)

Let us now replace the set of variables χ, η̄ with a new set χ′, η̄′ such that:

χ′ =

∫
F (χ)dχ, η̄′ =

η̄

F (χ)
. (42)

This will not have any effect on the Sakurai representation given in equation
(25) since:

B = ∇χ×∇η = ∇χ×∇η̄ = ∇χ′ ×∇η̄′. (43)

However, the velocity will have a simpler representation and will take the form:

v =
∇χ′ ×∇(−µ+G′(χ′, η̄′))

ρ
, (44)

in which G′ = G
F . At this point one should remember that µ was defined in

equation (17) up to an arbitrary constant which can vary between magnetic
field lines. Since the lines are labelled by their χ′, η̄′ values it follows that we
can add an arbitrary function of χ′, η̄′ to µ without effecting its properties.
Hence we can define a new µ′ such that:

µ′ = µ−G′(χ′, η̄′). (45)

Notice that µ′ can be multi-valued. Inserting equation (45) into equation (44)
will lead to a simplified equation for v:

v =
∇µ′ ×∇χ′

ρ
. (46)

In the following the primes on χ, µ, η̄ will be ignored. The above equation
is analogues to Vladimirov and Moffatt’s [2] equation 7.11 for incompressible
flows, in which our µ and χ play the part of their A and Ψ . It is obvious that
v satisfies the following set of equations:

v ·∇µ = 0, v ·∇χ = 0, v ·∇η̄ = 1, (47)

to derive the right hand equation we have used both equation (18) and equation
(25). Hence µ, χ are both comoving and stationary. As for η̄ it satisfies the
same equation as η̄ defined in equation (28). It can be easily seen that if:

basis = (∇χ,∇η̄,∇µ), (48)

is a local vector basis at any point in space than their exists a dual basis:

dual basis =
1

ρ
(∇η̄ ×∇µ,∇µ×∇χ,∇χ×∇η̄) = (

∇η̄ ×∇µ

ρ
,v,

B

ρ
). (49)
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Such that:
basisi · dual basisj = δij , i, j ∈ [1, 2, 3], (50)

in which δij is Kronecker’s delta. Hence while the surfaces χ, µ, η̄ generate a
local vector basis for space, the physical fields of interest v,B are part of the
dual basis. By vector multiplying v and B and using equations (46,25) we
obtain:

v ×B = ∇χ, (51)

this means that both v and B lie on χ surfaces and provide a vector basis
for this two dimensional surface. The above equation can be compared with
Vladimirov and Moffatt [2] equation 5.6 for incompressible flows in which their
J is analogue to our χ.

5 The action principle

In the previous subsection we have shown that if the velocity field v is given by
equation (46) and the magnetic field B is given by the Sakurai representation
equation (25) than equations (7,8,9) are satisfied automatically for stationary
flows. To complete the set of equations we will show how the Euler equations
(4) can be derived from the action:

A ≡
∫
Ld3xdt,

L ≡ ρ(
1

2
v2 − ε(ρ, s))− B

2

8π
, (52)

in which both v andB are given by equation (46) and equation (25) respectively
and the density ρ is given by equation (18):

ρ = ∇µ ·B = ∇µ · (∇χ×∇η) =
∂(χ, η, µ)

∂(x, y, z)
. (53)

In the above ε is the specific internal energy (internal energy per unit of mass).
The reader is reminded of the following thermodynamic relations which will
become useful later:

dε = Tds− Pd1

ρ
= Tds+

P

ρ2
dρ

∂ε

∂s
= T,

∂ε

∂ρ
=
P

ρ2

w = ε+
P

ρ
= ε+

∂ε

∂ρ
ρ =

∂(ρε)

∂ρ

dw = dε+ d(
P

ρ
) = Tds+

1

ρ
dP (54)

in the above T is the temperature and w is the specific enthalpy. The La-
grangian density of equation (52) takes the more explicit form:

L[χ, η, µ] = ρ

(
1

2
(
∇µ×∇χ

ρ
)2 − ε(ρ, s(χ, η))

)
− (∇χ×∇η)2

8π
(55)



Chaotic Modeling and Simulation (CMSIM) 1: 19–33, 2018 29

and can be seen explicitly to depend on only three functions. We underline that
due to the assumption that the magnetic field lines lie on entropy surfaces. s
must be a function of χ, η. Let us make arbitrary small variations δαi =
(δχ, δη, δµ) of the functions αi = (χ, η, µ). Let us define a ∆ variation that
does not modify the αi’s, such that:

∆αi = δαi + (ξ ·∇)αi = 0, (56)

in which ξ is the Lagrangian displacement, thus:

δαi = −∇αi · ξ. (57)

Which will lead to the equation:

ξ ≡ − ∂r

∂αi
δαi. (58)

Making a variation of ρ given in equation (53) with respect to αi will yield:

δρ = −∇ · (ρξ). (59)

Making a variation of s will result in:

δs =
∂s

∂αi
δαi = − ∂s

∂αi
∇αi · ξ = −∇s · ξ. (60)

Furthermore, taking the variation of B given by Sakurai’s representation
(25) with respect to αi will yield:

δB = ∇× (ξ ×B). (61)

It remains to calculate δv by varying equation (46) this will yield:

δv = −δρ
ρ
v +

1

ρ
∇× (ρξ × v). (62)

Varying the action will result in:

δA =

∫
δLd3xdt,

δL = δρ(
1

2
v2 − w(ρ, s))− ρTδs+ ρv · δv − B · δB

4π
, (63)

Inserting equations (59,61,62) into equation (63) will yield:

δL = v ·∇× (ρξ × v)− B ·∇× (ξ ×B)

4π
− δρ(

1

2
v2 + w) + ρT∇s · ξ

= v ·∇× (ρξ × v)− B ·∇× (ξ ×B)

4π
+ ∇ · (ρξ)(

1

2
v2 + w)

+ ρT∇s · ξ. (64)
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Using the well known vector identity:

A ·∇× (C ×A) = ∇ · ((C ×A)×A) + (C ×A) ·∇×A (65)

and the theorem of Gauss we can write now equation (63) in the form:

δA =

∫
dt{
∮
dS · [ρ(ξ × v)× v − (ξ ×B)×B

4π
+ (

1

2
v2 + w)ρξ]

+

∫
d3xξ · [ρv × ω + J ×B − ρ∇(

1

2
v2 + w) + ρT∇s]}. (66)

The time integration is of course redundant in the above expression. Also notice
that we have used the current definition equation (6) and the vorticity definition
ω = ∇× v. Suppose now that δA = 0 for a ξ such that the boundary term in
the above equation is null but that ξ is otherwise arbitrary, then it entails the
equation:

ρv × ω + J ×B − ρ∇(
1

2
v2 + w) + ρT∇s = 0. (67)

Using the well known vector identity:

1

2
∇(v2) = (v ·∇)v + v × (∇× v) (68)

and rearranging terms we recover the stationary Euler equation:

ρ(v ·∇)v = −∇p+ J ×B. (69)

6 Conclusion

It is shown that stationary non-barotropic magnetohydrodynamics can be de-
rived from a variational principle of three functions provided that the magnetic
field lines lie on entropy surfaces. We emphasize that such a reduction in the
degrees of freedom restricts the possibility of chaotic motion.

Possible applications include stability analysis of stationary magnetohydro-
dynamic configurations and its possible utilization for developing efficient nu-
merical schemes for integrating the magnetohydrodynamic equations. It may
be more efficient to incorporate the developed formalism in the frame work
of an existing code instead of developing a new code from scratch. Possible
existing codes are described in [19–23]. I anticipate applications of this study
both to linear and non-linear stability analysis of known barotropic magneto-
hydrodynamic configurations [24–26]. I suspect that for achieving this we will
need to add additional constants of motion constraints to the action as was
done by [27,28] see also [29–31]. As for designing efficient numerical schemes
for integrating the equations of fluid dynamics and magnetohydrodynamics one
may follow the approach described in [32–35].

Another possible application of the variational method is in deducing new
analytic solutions for the magnetohydrodynamic equations. Although the equa-
tions are notoriously difficult to solve being both partial differential equations
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and nonlinear, possible solutions can be found in terms of variational variables.
An example for this approach is the self gravitating torus described in [36].

One can use continuous symmetries which appear in the variational La-
grangian to derive through Noether theorem new conservation laws. An exam-
ple for such derivation which still lacks physical interpretation can be found
in [38]. It may be that the Lagrangian derived in [10] has a larger symmetry
group. And of course one anticipates a different symmetry structure for the
non-barotropic case.

Topological invariants have always been informative, and there are such in-
variants in MHD flows. For example the two helicities have long been useful
in research into the problem of hydrogen fusion, and in various astrophysi-
cal scenarios. In previous works [9,11,40] connections between helicities with
symmetries of the barotropic fluid equations were made. The variables of the
current variational principles are helpful for identifying and characterizing new
topological invariants in MHD [41,42].
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