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Abstract. The flow associated with an autonomous Hamiltonian system can be re-
formulated as a geodesic flow in a Riemannian manifold endowed with the Jacobi-
Maupertuis metric. In this note we discuss the possibility of existence of chaos in
Hamiltonian systems with two degrees of freedom in the context of a geometric Rie-
mannian framework given by Pettini, Valdettaro and Cerruti-Sola [6,4].
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1 Introduction

In the Riemannian geometric approach of classical mechanics the trajectories
can be characterized as geodesics on the configuration space M with respect
to the Jacobi-Maupertuis metric which is the conformal modification of the
kinematic metric by the factor h−V , where V and h are the potential function
and the total energy, respectively.

It is far from being complete the understanding of the mechanisms respon-
sible for the existence of regular or chaotic motions in a system. Chaos is also
related to the Riemannian curvature as Anosov shows [1] through his known
result which asserts that negative curvature in a connected compact manifold
leads to chaos. The implication for positive curvature it is not clear. In this
way, to look into the connection between dynamics and curvature is of utmost
importance. This note is inspired through the papers by Pettini, Valdettaro
and Cerruti-Sola [6,4], where the authors claimed that the origin of chaos in
the nonlinear Hamiltonian dynamics, viewed as a geodesic flow on a curved
mechanical manifold would come from the fluctuations of the curvature and
also from the hyperbolicity of the flow.

This paper is organized as follows: in the first part we introduce the concepts
needed to have a framework where to analyze the claim given in [6,4] by Pettini,
Valdettaro and Cerruti-Sola. In the last part we present two examples were we
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exhibit that fluctuations of the curvature and instability of geodesics is not the
only mechanism that give rise to non regular motions.

2 Preliminaries

A classical mechanical system is given by a triplet (M,T, V ), being M a smooth
manifold that corresponds to the configuration space where motion takes place,
T is the kinetic energy and V is the potential energy. Such systems can be
framed in a Riemannian geometry setting.

Assume that M is endowed with a Riemannian metric, denoted by g, and
expressed as

∑
gijdq

idqj , where qk, k = 1, . . . , n, are local coordinates for M .
These local qi induce fiber coordinates vi on TM by expanding any arbitrary
vector v ∈ TqM as v =

∑
vi(∂/∂qi), that is, in terms of the local coordinate

vector fields (∂/∂q1, . . . , ∂/∂qn) for TM , see [7].
It is well-known that Hamiltonian systems described by a hamiltonian func-

tion H = T + V are conservative and the value of the energy h is a conserved
quantity along the trajectories, and also its configuration space M has a differ-
entiable manifold structure. In this kind of systems, for a fixed value of energy
h, the accessible part of the configuration space is not the whole space M , but
only the subspace of admissible motions, also called the Hill region, which is
defined by

H = {q ∈M : h− V (q) ≥ 0},

and corresponds to the projection of the phase space into the configuration
space. The boundary ∂H of the Hill region is the set of points with zero–
velocity.

The kinetic energy is defined by

T =
1

2
g(v, v) =

1

2

n∑
i,j=1

gijv
ivj .

Thus the metric on M is given by g, whose components are gij .
Now, lets recall Jacobi’s reformulation of mechanics. It asserts that the solu-

tions to Newton’s equations with energy h are, after a time reparametrization,
exactly the geodesic curves on the manifold M relative to the metric

ĝ = 2(h− V )g.

This metric is referred to as the Jacobi-Maupertuis metric, and its arc-length
element is given by

ds2ĝ = gijdq
idqj = 2(h− V )

dqi

dt

dqj

dt
dt2 = 4(h− V )2dt2.

The geodesic equations in terms of the local coordinate frame (q1, . . . , qn)
are

d2qk

ds2
+ Γ k

ij

dqi

ds

dqj

ds
= 0, (1)
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where Γ k
ij are the Christoffel symbols, which can be written as

Γ k
ij =

1

2

n∑
l=1

gkl
(
∂gjl
∂qi

+
∂gli
∂qj
− ∂gij

∂ql

)
=

n∑
l=1

gkl
1

2

(
∂gjl
∂qi

+
∂gli
∂qj
− ∂gij

∂ql

)
,

in shorthand,

Γ k
ij = gklΓijl,

where Einstein’s summation notation is assumed and

Γijl =
1

2

(
∂gjl
∂qi

+
∂gli
∂qj
− ∂gij

∂ql

)
.

It is well known that given X,Y, Z and W vector fields on M , the curvature
operator and the Riemann curvature tensor are defined, respectively, by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and

R(X,Y, Z,W ) = g(R(X,Y )Z,W ),

where ∇ is the Levi-Civita connection and [·, ·] is the Lie bracket. By taking
X = Xi = ∂/∂qi, Y = Xj = ∂/∂qj and Z = Xk = ∂/∂qk, since [Xi, Xj ] = 0,
we have thatR(Xi, Xj)Xk = ∇Xi∇XjXk−∇Xj∇XiXk. In shorthand, we define
Rk

ij = R(Xi, Xj)Xk. From this, as usual, the tensor metric is defined in terms
of the elements of the basis of the tangent space as Rijkl = g(R(Xi, Xj)Xk, Xl),
which can be written in the form

Rijkl =

n∑
s=1

gsl

(
∂Γ s

jk

∂qi
− ∂Γ s

ik

∂qj
+

n∑
r=1

(
Γ r
jkΓ

s
ir − Γ r

ikΓ
s
jr

))
, (2)

that is, in terms of the elements gij and the Christoffel symbols of the second
kind and their partial derivatives.

The curvature tensor satisfies the following properties:

Rijkl = −Rjikl first skew symmetry

Rijkl = −Rijlk second skew symmetry (3)

Rijkl = Rklij block symmetry

Rijkl +Riklj +Riljk = 0 Bianchi’s identity.

Let us consider the special case when our Riemannian manifold is a two-
dimensional surface, where is well known that the sectional curvature coincides
with the (intrinsic) Gaussian curvature K. Furthermore, in two dimensions,
the scalar curvature (or the Ricci scalar) R is twice the Gaussian curvature,
and completely characterizes the curvature of a surface. It follows from the
above symmetry relations that

R1111 = R2222 = R1122 = R1112 = R1121 = R1222 = R2122 = 0,
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while R1212 being the only independent component of the Riemann tensor
which possibly does not vanish.

There is a close and beautiful connection between the sectional curvature
and the Riemannian curvature tensor which is given by the following formula:

K =
R1212

g11g22 − g212
. (4)

Next, we obtain a calculable expression for R1212.

Proposition 1. For a two-dimensional Riemannian manifold endowed with
the Jacobi-Maupertuis metric, it holds that

R1212 =
∆V

2
+
|∇V |2

2W
,

where W = h− V (q), | · |, ∆ and ∇ refer to the norm, Laplacian and gradient
for the Euclidean metric ds2, respectively.

Proof. In a two-dimensional Riemannian manifold holding the Jacobi-Maupertuis
metric, we have that g11 = g22 = h − V (q), g12 = g21 = 0 and g11 = g22 =
(h− V (q))−1, g12 = g21 = 0, where gij = (g−1)ij . It is not hard to see that

Γ 1
22 =

1

2W

∂V

∂q1
and Γ 1

21 = − 1

2W

∂V

∂q2
.

So,

∂Γ 1
22

∂q1
=

1

2

(
1

W 2

(
∂V

∂q1

)2

+
1

W

∂2V

∂q12

)

and

∂Γ 1
21

∂q2
= −1

2

(
1

W 2

(
∂V

∂q2

)2

+
1

W

∂2V

∂q22

)
.

Direct computations give Γm
22Γ

1
m1 − Γm

21Γ
1
m2 = 0, for m = 1, 2. Thus,

R1
212 =

1

2

(
1

W 2

(
∂V

∂q1

)2

+
1

W

∂2V

∂q12

)
+

1

2

(
1

W 2

(
∂V

∂q2

)2

+
1

W

∂2V

∂q22

)

=
1

2

(
∆V

W
+
|∇V |2

W 2

)
.

Finally, we obtain

R1212 = g11R
1
212 + g12R

2
212 = g11R

1
212 =

∆V

2
+
|∇V |2

2W
.
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3 Stability of the geodesic flow and chaos

In [6,4], the authors use the Riemannian geometric framework to relate the sta-
bility of a geodesic flow to the curvature of manifold M for mechanical geodesic
flows geometry, and make use of this relation to determine the existence of
chaos.

In order to tackle the study the Hamiltonian chaos by means of tools of
Riemannian geometry, we should study the stability of the geodesic flow by
means of the Jacobi-Levi-Civita (JLC) equation, which describes the evolution
of a vector field J along a geodesic γ(s), known as Jacobi field, through which
the separation between nearby geodesics can be measured, see [2]. The JLC
equation reads

∇2J

ds2
+R(γ′(s),J)γ′(s) = 0, (5)

where s is the arc-length parameter, ∇/ds is the covariant derivative along
geodesic γ(s) and R is the curvature operator.

In the case of a two-dimensional manifold, the JLC equation can be decom-
posed into a system of two simpler equations.

Proposition 2. For a two-dimensional Riemannian manifold, the Jacobi-Levi-
Civita equation (5) is decomposed as

d2f1
ds2

+K(s)f1 = 0, (6)

d2f2
ds2

= 0. (7)

where f1 and f2 are, respectively, the perpendicular and parallel components of
the Jacobi vector field J, and K(s) is the Gaussian curvature.

Proof. We start by taking a basis on the tangent space, recall that we are
dealing with the two-dimensional case. So, we take {e1, e2} as such a basis,

where e1 = (e11, e
2
1) =

(
−dq2

ds ,
dq1

ds

)
is parallel to the Jacobi field, whereas

e2 = (e12, e
2
2) =

(
dq1

ds ,
dq2

ds

)
is orthogonal to this field. Hence the Jacobi field

takes the form J(s) = f1(s) e1(s) + f2(s) e2(s). In this reference frame we get

∇2J

ds2
=
d2f1
ds2

e1(s) +
d2f2
ds2

e2(s). (8)

It follows that JLC equation (5) can be decomposed into

d2f1
ds2

+Q11f1 +Q12f2 = 0, (9)

d2f2
ds2

+Q22f1 +Q21f2 = 0,
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where

Q11 = R1212v
1e21v

1e21 +R2112v
2e11v

1e21 +R2121v
2e11v

2e11 +R1221v
1e21v

2e11 ,

Q12 = R1212v
1e21v

1e22 +R2112v
2e11v

1e22 +R2121v
2e11v

2e12 +R1221v
1e21v

2e12 = 0,

Q21 = R1212v
1e22v

1e21 +R2112v
2e12v

1e21 +R2121v
2e12v

2e11 +R1221v
1e22v

2e11 = 0,

Q22 = R1212v
1e22v

1e22 +R2112v
2e12v

1e22 +R2121v
2e12v

2e12 +R1221v
1e22v

2e12 = 0,

and vi =
dqi

ds
.

Since Rijkl = gisR
s
jkl and by using the symmetry properties (3), a direct

calculation yields

Q11 = R1212
1

W 2
,

which corresponds to the Gaussian curvature K(s) for the Jacobi-Maupertuis
metric, see [3]. Consequently, the system (6)-(7) is obtained.

From equation (7) it follows that the parallel component of geodesic separa-
tion does not accelerate, thus only equation (6) conveys information about the
behavior of the nearby geodesics. Since K(s) is not always constant, the scalar
equation (6) is cast in the form of a generalized Hill equation [12], and such
equation gives the exact geometric description of the stability properties of the
geodesics. It seems that this was what inspired Pettini, Valdettaro and Cerruti-
Sola [6,4] to claim that if the solutions of the equation (6) are exponentially
growing, thus the geodesic flow is unstable, if K(s) is everywhere or almost
everywhere negative, or if K(s) is suitably varying so as to yield paramet-
ric instability. They were concluding that for two-degrees of freedom systems
with physically meaningful potentials this is actually the relevant mechanism
responsible for chaos.

Let us remember that, in 1967, Anosov [1] proved that the geodesic flow is
chaotic in a connected compact manifold of constant negative curvature. This
leads to instability of the geodesic curves in the sense that nearby orbits diverge
exponentially. Since then, chaos could often be understood as a manifestation
of negative curvature.

Next, we use the Kepler problem and Hénon-Heiles system described by
Hamiltonian systems with two-degree of freedom, to illustrate that what is
claimed in [6,4] is not always verified.

From now on, in order to avoid confusion in notation we use x and y instead
of q1 and q2, respectively.

3.1 The Newtonian Kepler problem

Let us consider two bodies moving under the influence of their Newtonian
mutual attraction. We denote their position vectors with r1 and r2, and refer
to the origin at (0, 0). Thus, the relative position vector is given by r =
r2 − r1 = (x, y) and r = |r| being its magnitude. By choosing the reduced
mass and the gravitational constant to be equal to one, its potential energy
is V (x, y) = −(x2 + y2)−1/2. It is well known that the Kepler problem is an
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integrable system, that is, its equation of motion can be solved and solutions
correspond to conic sections – ellipses, parabolas and hyperbolas, see [2].

Substitution of the derivatives of respective potential in (4), the Gaussian
curvature yields

K = − h

2r3(h− V )3
.

This shows that the sign of curvature is determined by the sign of the energy.
Thus, the curvature is negative when h > 0 and the geodesics are hyperbolic
orbits, such that the distance between points on different hyperbolas is a convex
function of time, and so they are unstable orbits, see [11]. Since the configura-
tion space is unbounded, we are not able to apply the Lobatchevsky-Hadamard
theorem [10], which states that the geodesic flow on a connected and compact
Riemannian manifold of negative curvature all trajectories diverge exponen-
tially for all time. However, the authors in [6,4] suggest that negativity of
curvature by itself and its fluctuations could arise to chaos. But, negativity
of curvature alone does not imply chaos, since the curvature is negative for
positive energy in the Kepler problem and it is a completely integrable system.

3.2 The Hénon-Heiles system

M. Hénon and C. Heiles [5] provided with a planar model which describes
the motion of a star in the axisymmetric potential of the galaxy described by
a Hamiltonian function H = T + V given by two one-dimensional harmonic
oscillators coupled by a cubic term with potential function

V (x, y) =
1

2
(x2 + y2) + x2y − 1

3
y3, (10)

where x and y are the radius and the altitude of the star orbit, respectively.
We reduce our analysis to a fixed level of energy Eh = {H = h}, which is a
three–dimensional manifold.

The topology of the energy manifolds Eh is determined entirely by the level
sets of the potential energy V (x, y). For h = 0, E0 has a compact component
and Eh = S3 for h ∈ (0, 1/6]; while for h > 1/6, the surfaces Eh are not
compact. As a matter of fact, for 0 < h < 1/6, the Hill region has four
connected components, see [8].

In this system the curvature is given by

K =
2

(h− V )2

[
2 +

1

h− V

{(
∂V

∂x

)2

+

(
∂V

∂y

)2
}]

,

which is positive everywhere.
It has been reported by Toda in [9], that the local divergence of trajectories

for Hénon-Heiles system for h > 1/12 experiences exponential instability in
part of the phase space. So, the Hénon-Heiles system gives us an example
where the configuration manifold M has non negative scalar curvature, but
shows chaotic motions for energy values bigger than h = 1/12. Thus, chaos
in this system cannot come from the negative curvature in the manifold. It is
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seen that the chaotic phenomena is achieved for the fluctuating values of the
curvature along the geodesics. Therefore, even on strictly positively curved
manifolds chaos can appear.
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