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Abstract. We investigate the interrelation between the distribution of stochastic
fluctuations of independent random variables in probability theory and the distri-
bution of time averages in deterministic Anosov C-systems. On the one hand, in
probability theory, our interest dwells on three basic topics: the laws of large num-
bers, the central limit theorem and the law of the iterated logarithm for sequences of
real-valued random variables. On the other hand we have chaotic, uniformly hyper-
bolic Anosov C-systems defined on tori which have mixing of all orders and nonzero
Kolmogorov entropy. These extraordinary ergodic properties of Anosov C-systems en-
sure that the above classical limit theorems for sums of independent random variables
in probability theory are fulfilled by the time averages for the sequences generated by
the C-systems. The MIXMAX generator of pseudorandom numbers represents the
C-system for which the classical limit theorems are fulfilled.
Keywords: .

1 Introduction

Our intention in this article is to consider the behaviour of deterministic Anosov
C-systems in parallel with the classical limit theorems of probability theory,
demonstrating that they possess the properties which are inherent to the in-
dependent and identically distributed random variables defined in probability
theory.

We investigate the interrelation between the distribution of stochastic fluc-
tuations of independent random variables in probability theory and the distri-
bution of time averages in deterministic Anosov C-systems. On the one hand,
in probability theory, our interest dwells on three basic topics: the laws of large
numbers, the central limit theorem and the law of the iterated logarithm for
sequences of real-valued random variables [1–5,7–13] . On the other hand we
have chaotic, uniformly hyperbolic Anosov C-systems defined on tori which
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have mixing of all orders and nonzero Kolmogorov entropy [14–26]. These
extraordinary ergodic properties of Anosov C-systems ensure that the above
classical limit theorems for sums of independent random variables in probabil-
ity theory are fulfilled by the time averages for the sequences generated by the
C-systems [49–52]. The MIXMAX generator of pseudorandom numbers rep-
resents the homogeneous C-system for which the classical limit theorems are
fulfilled [25–27,41,42].

The present paper is organised as follows. In section two we shall overview
the classical limit theorems in probability theory. In section three the basic
properties of the Anosov C-systems will be defined, their spectral properties
and the entropy will be presented. In section four a parallel between the clas-
sical limit theorems of probability theory and behaviour of deterministic dy-
namical C-systems will be derived and the mapping dictionary between the
two systems will be established. We shall analyse the law of large numbers,
the central limit theorem and law of the iterated logarithm in the case of C-
system MIXMAX generator of pseudorandom numbers. The C-system nature
of the MIXMAX generator provides well define mathematical background and
guaranty the uniformity of generated sequences.

2 Classical Limit Theorems in Probability Theory

Consider an infinite sequence of independent and identically distributed random
variables ξ1(x), ξ2(x), ... on the interval 0 ≤ x ≤ 1 having finite mean values
Mξk = µ and finite variance σ2 = M(ξk − µ)2 ( 0 < σ2 < ∞) [1]. One
of the fundamental questions of interest in probability theory is the limiting
behaviour of the sum [1–5,7,13]

Sn = ξ1 + ξ2 + ....+ ξn =

n∑
k=1

ξk (1)

as n → ∞. By the classical central limit theorem the difference between the
average Sn/n and µ multiplied by the factor

√
n converges in probability to the

normal distribution Φ( zσ )

P

{ √
n(
Sn
n
− µ) < z

}
→ 1√

2πσ2

∫ z

−∞
e−

y2

2σ2 dy for every z. (2)

The estimates of the convergence rate in the above central limit theorem
were obtained by Lyapunov, Berry, Esseen and others [8–12]. For indepen-
dent and identically distributed random variables having finite absolute third
moments χ3 = Mξ3k <∞ it has the form:

sup
z
|P
{ √

n(
Sn
n
− µ) < z

}
− Φ(

z

σ
)| ≤ 1√

n

(χ
σ

)3
. (3)

By the Kolmogorov strong law of large numbers the average Sn/n converges
almost surely to the common mean value µ of the random variables ξk(x), that
is

P

{
lim
n→∞

Sn
n

= µ

}
= 1 . (4)
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Under the same conditions as in the above theorems Petrov [13] has derived
the estimates of the order of growth of the sums Sn (1). The following growth
estimates take place

P

{
lim
n→∞

Sn − µn
n

1
2+ε

= 0

}
= 1 , (5)

P

{
lim
n→∞

Sn − µn
n

1
2 (lnn)

1
2+ε

= 0

}
= 1 ,

P

{
lim
n→∞

Sn − µn
n

1
2 lnn

1
2 (ln lnn)

1
2+ε

= 0

}
= 1 ,

.........................

for arbitrary ε > 0. This result means that the random variables Sn−µn can-
not grow faster than n

1
2+ε or n

1
2 (lnn)

1
2+ε or lnn

1
2 (ln lnn)

1
2+ε and so on. The

theorem on the law of the iterated logarithm for a sequence of random variables
{ξk} involve conditions under which the sequence limn→∞ sup Sn−µn√

2n ln lnn
= σ

converges almost surely. This relation strengthens the estimates provided by
the strong law of large numbers (4) and (5). For the independent and iden-
tically distributed random variables (1) the following Kolmogorov theorem of
the iterated logarithm take place [2–4]

P

{
lim
n→∞

sup
Sn − µn√
2n ln lnn

= σ

}
= 1, P

{
lim
n→∞

inf
Sn − µn√
2n ln lnn

= −σ
}

= 1 ,

(6)
that is a maximal possible growth of the sum is σ

√
2n ln lnn. In order to gain

an intuitive understanding of this result it is worth to calculate the probability
of large fluctuations of the sum Sn using the central limiting theorem (2 ). It
follows from (2) that for the arbitrary positive number b, z = σ b

√
2 ln lnn

and large n take place the following relation

P

{ √
n(
Sn
n
− µ) ≥ σ b

√
2 ln lnn

}
→ 1− 1√

2πσ2

∫ σ b
√
2 ln lnn

−∞
e−

y2

2σ2 dy ,

(7)

where the right hand side has the asymptotic 1/2b(π ln lnn)1/2(lnn)b
2

and
therefore

1

(lnn)(1+δ)b2
≤ P

{
Sn(x)− µn√

2n ln lnn
≥ b σ

}
≤ 1

(lnn)b2
. (8)

Considering the subsequence n = qm, where q is a fixed integer, one can derive
from (8) the celebrated law of the iterated logarithm (6) [2–5,13,7]. The law
of the iterated logarithm is a refinement of the law of large numbers (4) and
specifies the global behaviour of the asymptotic sequence of the sum Sn since
the quantity in the limit in (6) depends not only on single n but the totality of
the remainder of the sum. Using the central limiting theorem (2) now for the
fluctuations in the interval (−ε

√
2 ln lnn,+ε

√
2 ln lnn) one can get that

P

{
|Sn(x)− µn√

2n ln lnn
| < ε

}
→ 1√

2πσ2

∫ σ ε
√
2 ln lnn

−σ ε
√
2 ln lnn

e−
y2

2σ2 dy → 1, (9)
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meaning that the sum (1) scaled by the factor
√

2n ln lnn is less than any ε > 0
with probability approaching one, but will be occasionally visiting points in the
interval (−σ, σ) in accordance with the theorem (6).

Our goal is to compare the asymptotic behaviour of the sum Sn which
have been establish in the above limit theorems in probability theory with the
asymptotic behaviour of the corresponding quantities defined for determinis-
tic dynamical C-systems and specifically for the C-system which have been
implemented into the MIXMAX generator [41,42,25–27].

3 Classical Limit Theorems and Deterministic C-systems

-3 -2 -1 0 1 2 3
Φi0

1000

2000

3000

4000

5000

6000

Frequency Distribution

(a)

-3 -2 -1 0 1 2 3
Φi0.0

0.2

0.4

0.6

0.8

1.0

CDF

(b)

Fig. 1. a)The frequency distribution histogram for the underlying variable φi(f, n)
in (23). The dimension of the C-system generator is N = 17, the iteration time is
n = 104, the bins are of equal size ε = 0.01 and the total number of phase space
points xi is I = 106. The function f(x) = cos 2π(x1 + ... + x17). The mean value is
〈φ〉 = 0.000470253 and the standard deviation 〈φ2〉 = σ2

f = 0.499867. b) The p-value
of the cumulative distribution function (CDF) for the Kolmogorov-Smirnov test is
p = 0.909337.

With that aim let us now consider the statistical properties of determinis-
tic dynamical C-systems. The hyperbolic Anosov C-systems defined on a torus
have mixing of all orders and nonzero Kolmogorov entropy [14–25,27]. The sta-
tistical properties of a C-system defined by the map {∀ x ∈M : x→ xn = Tnx}
are characterised by the behaviour of the correlation functions of observables
{f(x)} on the phase space M

Dn(f, g) = 〈f(x)g(Tnx)〉 − 〈f(x)〉〈g(x)〉, (10)

where T denotes the Anosov C-system and 〈....〉 the phase space averages
[24,27,45,46,27,45,41,26,42]. These correlation functions decay exponentially,
meaning that the observables on the phase space become independent and
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uncorrelated exponentially fast [28–40]. For the C-systems defined on the N -
dimensional torus (19) the upper bound on the exponential decay of the corre-
lation functions is universal and is defined by the value of the system entropy
h(T ) [25] :

|Dn(f, g)| ≤ C e−nh(T )ν , (11)

where C = C(f, g) and ν = ν(f, g) depend only on the observables and are
positive numbers. This result allows to define the decorrelation time τ0 for the
observable f(x) as [25]

τ0 =
1

h(T )νf
, (12)

where νf = ν(f, f). The index νf is increasing linearly νf = 2pN with the
dimension N of the C-system, where p is the order of smoothness of the function
f(x) [25]. The entropy h(T ) is also increases linearly h(T ) = 2

πN (22) [42],
therefore [25]

τ0 =
π

4pN2
. (13)

This result justifies the statistical/probabilistic description of the C-systems
[24] and have important consequences in the form of the law of large numbers
and central limit theorem for Anosov C-systems [49–52]. The time average of
the observable f(x) on M

f̄n(x) =
1

n

n−1∑
k=0

f(T kx) (14)

behaves as a superposition of quantities which are statistically independent,
therefore [14,49]

lim
n→∞

f̄n(x) = 〈f〉 (15)

and the fluctuations of the time averages (14) from the phase space average 〈f〉
multiplied by

√
n have at large n→∞ the Gaussian distribution [48–52]:

lim
n→∞

m

{
x :
√
n

(
f̄n(x)− 〈f〉

)
< z

}
=

1√
2πσ2

f

∫ z

−∞
e
− y2

2σ2
f dy , (16)

where m is the invariant measure on the phase space M and the value of the
standard deviation σf is a sum

σ2
f = 〈f2(x)〉 − 〈f(x)〉2 + 2

+∞∑
n=1

[〈f(Tnx)f(x)〉 − 〈f(x)〉2]. (17)

These results allow to trace a parallel between the classical limit theorems of
probability theory and behaviour of deterministic dynamical C-systems. The
theorems (15) and (16) which taking place for the deterministic C-systems
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are in fine analogy with the theorems (4) and (2) in probability theory. This
analogy can be made explicit if one use the dictionary:

ξk(x)⇐⇒ f(T kx)

Sn(x)⇐⇒
n−1∑
k=0

f(T kx)

Sn(x)

n
⇐⇒ 1

n

n−1∑
k=0

f(T kx). (18)

In the next section we shall consider the fine examples of the C-systems
defined on the tori. These systems represent a large class of C-systems which
can be easily realised on a computer platform in the form of computer algo-
rithms. These algorithms are used to generate pseudorandom numbers of high
quality and represent the called MIXMAX pseudorandom number generators
[27,41,26,54–56] and in particular the generator passes all statistical U01 tests
[53].

4 MIXMAX C-systems Generator

Fig. 2. The frequency distribution histogram for the variable χi(t) defined in (25).
The ”time” interval is taken as [0.2, 2]. The other parameters are the same as in Fig.
1.

The linear automorphisms of the unit hypercube MN in Euclidean space
EN with coordinates (x1, ..., xN )[14,27,41,26] is defined as follows:

x
(k+1)
i =

N∑
j=1

Tij x
(k)
j mod 1, k = 0, 1, 2, ... (19)

where the components of the vector x(k) are x(k) = (x
(k)
1 , ..., x

(k)
N ). The phase

space MN of the systems (19 ) can also be considered as the N -dimensional
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torus [14,27,41,26]. The operator T acts on the initial vector x(0) and produces
a phase space trajectory x(n) = Tnx(0) on a torus. The C-system is defined by
the integer matrix T which has a determinant equal to one DetT = 1 and has
no eigenvalues on the unit circle [14]:

1) DetT = λ1 λ2...λN = 1, 2) |λi| 6= 1, ∀ i. (20)

The measure dm = dx1...dxN is invariant under the action of T . The conditions
(20) guarantee that T represents Anosov C-system [14] and therefore as such
it is a Kolmogorov K-system [15–19] with mixing of all orders and of nonzero
entropy. The C-system (19) has a nonzero Kolmogorov entropy h(T ) [14,17,19–
21,26]:

h(A) =
∑
|λa|>1

ln |λa|. (21)

We shall consider a family of matrix operators T of dimension N introduced
in [41]. The operators T fulfil the C-condition (20) and represents a C-system
[27,41,42] with entropy:

h(A) =
∑
a

ln |λa| ≈
2

π
N (22)

which is increases linearly with the dimension N of the matrix. Our aim is to
study the asymptotic behaviour of the sum Sn as n→∞ for the pseudorandom
number generator MIXMAX [41,42] which is defined by the equations (19).

In order to study the asymptotic behaviour in equation (16) as n→∞ we
shall consider first the following variable

φi(f, n) =
√
n
( 1

n

n−1∑
k=0

f(T kxi)− 〈f〉
)

(23)

which depends on initial phase space vector xi of the N -dimensional unit hy-
percube MN , the function f(x) and the number of iterations n. In order
to calculate the number of vectors xi, i = 1, ..., I which fulfil the inequality
φi(f, n) < z we shall construct the frequency distribution of the underlying
variable φi(f, n). The bins will be taken of equal size ε. The Fig. 1 represents
the distribution function calculated for the MIXMAX generator of size N = 17
and the comparison with the Gaussian distribution

ρ(φ) =
Iε√
2πσ2

f

e
− φ2

2σ2
f , (24)

shown on the Fig.2 as a solid blue line. We have used the Kolmogorov-Smirnov
test to calculate the p-value. The p-value of the cumulative distribution func-
tion (CDF) for the Kolmogorov-Smirnov test here was p = 0.909337. The null
hypothesis that the data is distributed according to the normal distribution is
not rejected at the 0.1% level based on the Kolmogorov-Smirnov test.
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Fig. 3. Two histograms of the variable Γn = Sn/
√

2n ln lnn in (27). The dimension
of the C-system generator is N = 240 and the iteration time n = 109. The total
number of the initial phase space points xi is I = 200. Here in Sn data we have
subtracted the term µn. The sum Sn grows approximately as σ

√
n. The standard

deviation for the observable f(x) = x is equal to σ = 1/
√

12. The distribution
function of the supremum of the Γn was calculated for the values n in the interval
n ∈ [m, 109] for m = 15 and m = 105. As one can see the distribution of Γn of
the supremum values (28) is tightens towards σ = 1/

√
12 from below in accordance

with the Kolmogorov law of the iterated logarithm (6). On the first histogram, at
m = 15, there are 115 events smaller and 90 events larger that σ ≈ 0.27. On the
second histogram, at m = 105, there are 18 events smaller and 8 events larger that
σ ≈ 0.27.

Introducing a new parameter t = p/n, where p is an integer number p ∈ Z
and the alternative variable

χi(t) = t
√
n
( 1

tn

tn−1∑
k=0

f(T kxi)− 〈f〉
)

(25)

we can find the distribution function for the variable χ. It was proven that the
variable χ is described in accordance with the Wiener-Feynman process [30]

ρ(χ, t) =
Iε√

2πσ2
f t

e
− χ2

2σ2
f
t . (26)

On Fig. 2 one can see that with the increasing ”time” t the distribution evolve
as in (26). The useful analogy will be if one consider Iε as the number of
”particle” at the initial time of the diffusion and D = σ2

f as the diffusion
coefficient. Considering the central limit theorem we were performing itera-
tions for the relatively small values of n ≈ 104. In order to study the large
fluctuations of the sum Sn described by the law of the iterated logarithm we
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generated sequences of increasing length n = 107 − 109 and then constructed
the distribution function of the maximum values of the variable

Γn(x) =

∑n−1
k=0 f(T kx)− 〈f〉 n√

2n ln lnn
(27)

at the tail of the sequences

lim Γ := lim
m→∞

( sup
n≥m

Γn ). (28)

We illustrated the distribution function for the values n in the interval n ∈
[m, 109] for m = 15 and m = 105 on Fig. 3. As one can see the distribution of
the supremum values is tightens towards σ = 1/

√
12.
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