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Control of irregular cardiac rhythm
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Abstract. The aim of this work is to investigate the chaos control of the one di-
mensional map which modelizes the duration of the current cardiac action potential
(APD) as a function of the previous one. Using OGY control method, we obtain very
satisfactory numerical results to stabilize the irregular heart rhythm into the normal
rhythm.
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1 Introduction

The interest in the chaotic control systems has been largely initiated by E.Ott,
C. Grebogi and J.York in 1990 [1]. The key idea is that a considerable change in
the behavior of a chaotic system can be obtained through a very small change
in one or more of its parameters. This known process, namely OGY control
method, was the first method introduced to control chaotic systems. When the
control is activated, the unstable periodic orbit converges to an approximation
of the desired orbit. Since the work of Garfinkel [2], a number of theoretical
and experimental studies were performed to control irregular rhythms through
various methods of nonlinear dynamics control [3–6]. Control algorithms based
on the OGY method were applied to the first to the ventricle of a rabbit [2],
but the desired rhythm did not occur. The OGY control method uses exter-
nal electrical stimulation to irregular heart rhythms in order to recover normal
rhythm [4]. The application of this method requires firstly, the analysis of the
steady-state system to determine the fixed points and, secondly, the identifica-
tion of the appearance of chaotic behavior through the bifurcation diagram [1].
The one dimensional map model of APD gives useful information in order to
understand the evolution of regular cardiac rhythm into irregular one, mainly
the fibrillation ventricular arrhythmia which leads to sudden cardiac arrest [7].
The one-dimensional map model of APD may be helpful and suitable model to
control irregular rhythm. The present paper is organized as follows. After this
introduction, section 2 reviews the dynamical properties of the one-dimensional
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map (APD) of an electric cardiac model describing the propagation of the car-
diac action potential. In order to control chaotic behavior, we apply in Section
3 the OGY control method. We show that, the OGY chaotic control method
is sufficient to stabilize the iterative model (APD) to the desired fixed point or
normal rhythm. Numerical simulation results are very satisfactory, indicating
the effectiveness of the proposed method to control irregular cardiac rhythms.
The section 4 is devoted to the conclusion.

2 The mathematical model

2.1 The one dimensional map of the APD

The effects of a periodic stimulation on a strand of ventricular muscle have been
investigated experimentally by Lewis and Guevara [8]. Electrical stimulations
applied at a regular time intervals ts generated an action potential. At arbitrary
ts, the current duration of any given action potential is given by the previous
one:

APDi+1 = A−B1 exp

(
APDi − nts

τ1

)
−B2 exp

(
APDi − nts

τ2

)
(1)

Where APDi+1 is the APD of (i+1)st action potential and let n a parameter
block in the production of an action potential on condition that (APDi −
nts < −DImin). The constants A, B1, B2, τ1, τ2 are related to the heart
electrophysiological constraints defined in1: A = 270 ms, B1 = 2441 ms,
B2 = 90.02 ms, τ1 = 19.60 ms, τ2 = 200.5 ms, and DImin = 53.5 ms.

2.2 Model Dynamics

The N : M rhythm (N ≥ 1;M ≥ 0) is periodic with Nts periods [8], which
contain the repeating N : M cycles, each exhibiting N stimulus pulses and M
action potentials or M beats. The dynamics of the eq (1) is graphically studied
in [8]. The following sequence rhytms is obtained depending on the stimulation
frequency value: [1 : 1 → 2 : 2(alternans)→ 2 : 1 → 4 : 2 →chaos→ 3 : 1 →
6 : 2 →chaos→ 4 : 1 → 8 : 2 →chaos→ 5 : 1 → 10 : 2 →chaos→ 6 : 1 → 12 :
2→total chaos].

The following bifurcation diagram (see Fig. 1) shows the different dynamics
of the system. We propose to control the chaotic state at ts = 146ms, to
stabilize the system to the fixed point corresponding to a regular heart rhythm
1 : 1 and 2 : 1. At ts = 146ms, the heartbeat is irregular, indicating the
presence of a cardiac arrhythmia. The evolution of the system is represented
by the figures (2,3):

2.3 Determination of unstable fixed points

To apply the OGY control method, it is necessary to know the unstable fixed
point value of the dynamical system in chaotic state (unstable fixed point as-
sociated with the unstable regular rhythm 1 : 1 and 2 : 1). The determination
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Fig. 1. Bifurcation diagram [8]

Fig. 2. Aperiodic rhythm at ts = 146ms. Top item is APDi+1 function of 50 iteration
number i, bottom item APDi+1 = f(APDi), left for 20000 iteration number i, right
for 50 iterations.

of the unstable fixed point x∗ is based on a numerical method. The fixed point
of the map (1) satisfies the equation:

F (x∗) = f(x∗)− x∗ = 0 (2)

We search the root α using Dichotomie method which represents a fixed point
for the iteration interval [0, 270]. The goal is to try to isolate the root α on
the iteration interval [0, 270](a0 = 0, b0 = 270). α ∈ [ak, bk] ⊂ [a0, b0], α ∼= xk,
the middle of the interval [ak, bk] such as |α− xk| ≤

∣∣ bk−ak

2k+1

∣∣ < 10−5 For ts =
146 ms, we found two unstable fixed points values corresponding to 1 : 1 and
2 : 1 rhythms. The 1 : 1 rhythm unstable (or period-1 orbit) value is α ' x12
= 86.42 ms. The 2 : 1 rhythm unstable (or period-1 orbit) value is α ' x12
= 196.00125 ms
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Fig. 3. Enlargement of bifurcation diagram.

3 The OGY control method

Chaos may be desirable since it can be controlled by using small perturbation
to some accessible parameter [1,9] or to some dynamical variable of the system
[9,10]. The OGY control method is based on the feedback state control which
uses the chaos in a dynamical system to stabilize an unstable periodic orbit:
the determination of some unstable periodic orbits, reviewing and choosing
a representative system performant [1]. Thus, one adjusts the perturbation
parameters in a relatively short time, in order to stabilize the unstable periodic
orbit.
When the control is activated, the unstable periodic orbit converges to an
approximation of the desired orbit. The application of this method requires
firstly, analysis of the steady-state system or the periodic orbit and secondly,
the identification of the appearance of chaotic behavior through the bifurcation
diagram.

3.1 The mathematical approach

We consider the following one-dimensional map, where p is the control param-
eter:

xi+1 = f(xi, p) (3)

Let x∗ a fixed point (or period-1 orbit) of the map:

x∗ = f(x∗, p∗), (4)

with p∗ is the nominal parameter value.
Therefore, the control strategy will be to find a control law stabilizing with the
feedback state near the chosen orbit. The studied system is in a chaotic state,
the passage near the fixed point is guaranteed and once the system is near of
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Fig. 4. Stabilization of the chaotic rhythm to an equilibruim point (or period-1 orbit)
representing the 1 : 1 normal rhythm with the OGY control method.

Fig. 5. Stabilization of the chaotic rhythm to an equilibruim point (or period-1 orbit)
representing the 2 : 1 normal rhythm with the OGY control method.

the x∗, the control procedure is activated to bring the system into the desired
orbit. In this case we have:

δxi+1 = xi+1 − x∗ (5)

And
δpi+1 = pi+1 − p∗ (6)

The linearized dynamics in the neighborhood of x∗ is given by:

δxi+1 =

[
df

dxi

]
x∗
δxi +

[
df

dp

]
p∗
δpi (7)

The strategy of the OGY method is to adjust the control parameter p in order
to stabilize the system at the fixed point x∗. This requires that δxi+1 = 0.
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Fig. 6. Bifurcation diagram (APDi vs ε), APD1 = 240ms.

Fig. 7. Bifurcation diagram (APDi vs ε), APD1 = 200ms.

Then :

δpi = −

[
df
dxi

]
x∗[

df
dp

]
p∗

δxi (8)

We set:

K = −

[
df
dxi

]
x∗[

df
dp

]
p∗

(9)

Then:
δpi = Kδxi (10)

The purpose of the control is to satisfy the following condition:

|pi − p∗| < ε (11)
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Fig. 8. To prevent chaotic dynamics with the OGY method.

Fig. 9. Bifurcation diagram (APDi vs ts), after applying OGY control method with
APD1 = 240ms, ε = 0.9, K = 0.5.

Let ε a predefined setting parameter that determines the neighborhood of x∗.
We can write:

|Kδxi| < ε (12)

Therefore, the increment of the control is given by:

δpi = K(xi − x∗) if |K(xi − x∗)| < ε (13)

δpi = 0 elsewhere (14)

3.2 Numerical results

The control by the OGY method of the map (1) consists in the following
operations: The algorithm is applied to control the chaotic state for ts =
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146ms. Setting that xi = APDi, our objective is to stabilize the system to
the stable fixed points (or period-1orbit) representing the 1 : 1 and 2 : 1
rhythms. To stabilize these fixed points, we have carried out a suitable values
of K and ε, then we have iterated the system 20000 times, starting from any
initial condition x1 = 240ms. Obviously, if we change the initial condition
value then we must change the ε value. The bifurcation diagram (APDi vs ε)
under OGY method was presented in figures 6 and 7. At each ε eq. (1) was
iterated 20000 times. Increment in ε was 0.1ms. The iteration started from
initial condition APD1 = 240ms (see Fig. 6) and APD1 = 200ms (see Fig.7).
To achieve the stability of the 1 : 1 rhythm at the value x1 = 86.42ms; the
value of the parameter K is 1 and we choose ε = 0.2. After 11540 iterations,
the system stabilizes at the approximate value x(11540) = 86.33ms (see Fig.4).
To achieve the stability of the 2 : 1 rhythm at the value x2 = 196.00125ms, the
value of the parameter K is 0.5 and we choose ε = 0.8. We see that in Fig.5 the
triggering of OGY control occurs several times, because xi is not in the vicinity
of the fixed point x∗. After 5783 iterations, the system stabilizes at the value
x(5783) = 196ms. To prevent the chaotic behavior (or irregular rhythm, see
Fig.8), it must choosing the fixed point value as an initial condition x1 = x∗.
Hence, the OGY contol triggers in the next iteration. We can stabilize the
chaotic states represented in figure 3 with suitable value of K and ε (See Fig.
9).

4 Conclusion

Our objective is to investigate the control of the chaotic dynamics of the one-
dimensional map (APD). In this paper, by applying the OGY method, the
chaotic dynamics stabilize at fixed points (or period-1 orbits). This method
needs only small perturbations of an accessible control parameter to stabilize
a desired fixed point. On the other hand, it is possible to prevent chaos using
OGY method. If the controlled map will start iteration from the unstable fixed
point value as an initial condition, the dynamic evolves directly into a desired
fixed point from the first iterated. We obtain very satisfactory numerical results
to stabilize unstable equilibrium points of the map (APD). The application of
this method in the 2D case is the current object of work.
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