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Abstract. In this study we investigate the dynamics of a nonlinear Cournot – type 

duopoly game with differentiated goods, linear demand and different cost functions. The 

game is modelled with a system of two difference equations. Existence and stability of 
equilibrium of this system are studied. We show that the model gives more complex, 

chaotic and unpredictable trajectories as a consequence of change in the parameter of 

speed of adjustment of the bounded rational player and in the parameter of horizontal 

product differentiation. A higher (lower) degree of player’s adjustment or a variation of 
the parameter of product differentiation (weaker or fiercer competition) destabilize 

(stabilize) the economy. The chaotic features are justified numerically via computing 

Lyapunov numbers and sensitive dependence on initial conditions. Also, we show that in 

the case of asymmetric costs there are stable trajectories and a higher (lower) degree of 
product differentiation does not tend to destabilize the economy. 

Keywords: Cournot duopoly game, Product differentiation, Dynamical system, 

Heterogeneous expectations, Homogeneous expectations, Asymmetric costs, Stability, 
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1  Introduction 
 

An oligopoly is a market structure between monopoly and perfect competition, 

where there are only a few numbers of firms in the market producing 

homogeneous products. The dynamic of an oligopoly game is more complex 

because firms must consider not only the behaviors of the consumers, but also 

the reactions of the competitors i.e. they form expectations concerning how their 

rivals will act. Cournot, in 1838 has introduced the first formal theory of 

oligopoly. He treated the case with naive expectations, so that in every step each 

player (firm) assumes the last values that were taken by the competitors without 

estimation of their future reactions.  

Expectations play an important role in modeling economic phenomena. A 

producer can choose his expectations rules of many available techniques to 

adjust his production outputs. In this paper we study the dynamics of a duopoly 

model where each firm behaves with heterogeneous or homogeneous 

expectations strategies. We consider a duopoly model where each player forms 
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a strategy in order to compute his expected output. Each player adjusts his 

outputs towards the profit maximizing amount as target by using his 

expectations rule. Some authors considered duopolies with homogeneous 

expectations and found a variety of complex dynamics in their games, such as 

appearance of strange attractors (Agiza [2], Agiza et al. [6], Agliari et al. [7],[8], 

Bischi and Kopel [12], Kopel [26], Puu [34], Sarafopoulos [38]). Also models 

with heterogeneous agents were studied (Agiza and Elsadany [4],[5], Agiza et 

al., [6], Den Haan [20], Fanti and Gori [22], Tramontana [41], Zhang [44]).  

In the real market producers do not know the entire demand function, though it 

is possible that they have a perfect knowledge of technology, represented by the 

cost function. Hence, it is more likely that firms employ some local estimate of 

the demand. This issue has been previously analyzed by Baumol and Quandt 

[11], Puu [33], Naimzada and Ricchiuti [31], Askar [9], Askar [10]. Bounded 

rational players (firms) update their production strategies based on discrete time 

periods and by using a local estimate of the marginal profit. With such local 

adjustment mechanism, the players are not requested to have a complete 

knowledge of the demand and the cost functions (Agiza and Elsadany [4], 

Naimzada and Sbragia [32], Zhang et al [44], Askar, [10]). The paper is 

organized as follows: In sections 2 and 3 the dynamics of the duopoly game 

with heterogeneous and homogeneous expectations, linear demand and 

asymmetric cost functions are analyzed. The existence and local stability of the 

equilibrium points are also analyzed. Numerical simulations are used to show 

complex dynamics via bifurcations diagrams, computing Lyapunov numbers, 

and sensitive dependence on initial conditions. Also, we show that in the case of 

asymmetric costs there are stable trajectories and a higher (lower) degree of 

product differentiation does not tend to destabilize the economy. 

 

2  Heterogeneous expectations 

 

2.1  The game 
 

There are two firms who offer their products at discrete-time periods (t = 

0,1,2,…) on a common market. We consider a simple Cournot-type duopoly 

market where the two firms (players) produce differentiated goods and their 

production decisions are taken at discrete-time periods (t = 0,1,2,…). In this 

study we consider heterogeneous players and more specifically, we suppose that 

the Firm 1 decides in a rational way, following an adjustment mechanism 

(bounded rational player), while the Firm 2 chooses the production quantity by 

naïve way, selecting a quantity that maximizes its output (naïve player). At each 

period t, every firm must form an expectation of the rival’s output in the next 

time period in order to determine the corresponding profit-maximizing 

quantities for period t+1. We suppose that q1 , q2 are the production quantities of 

each firm, then the inverse demand function (as a function of quantities) is given 

by the following equation: 

i i jp a q dq   ,   with i j  
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where ip  is the product price of firm i. 

So, we have for each firm the following equations: 

1 1 2p a q dq       and    2 2 1p a q dq                           (1) 

where α is a positive parameter which expresses the market size and  1,1d    

is the parameter that reveals the differentiation degree between two products. 

For example, if 0d   then both products are independent and each firm 

participates in a monopoly. But, if 1d   then one product is a substitute for the 

other, since the products are homogeneous. It is understood that for positive 

values of the parameter d the larger the value, the less diversification we have in 

both products. On the other hand negative values of the parameter d are 

described that the two products are complementary and when 1d    then we 

have the phenomenon of full competition between two companies. 

 

In this work we suppose that two players follow different cost functions.  

 1 1 1C q c q                                                  (2) 

and  

  2
2 2 2C q c q                                                 (3) 

and c > 0 is the marginal cost for player 1.  

With these assumptions the profits of the firms are given by: 

 

     1 1 2 1 1 1 1 1 2 1 1,q q p q C q q dq q cq                        (4) 

and 

      2
2 1 2 2 2 2 2 2 1 2 2,q q p q C q q dq q cq                      (5) 

Then the marginal profits at the point of the strategy space are given by: 

1
1 2

1

2a c q dq
q


   


     and      2

1 2
2

2 1a dq c q
q


   


         (6) 

We suppose that the first firm decides to increase its level of adaptation if it has 

a positive marginal profit, or decreases its level if the marginal profit is negative 

(bounded rational player). If k > 0 the dynamical equation of the first player is: 

   

 
1 1 1

1 1

1q t q t
k

q t q

  



                                    (7) 

where the parameter kϵ (0,1) expresses the speed of adjustment of player 1, it is 

a positive parameter which gives the extent of production variation of the firm 

following a given profit signal. Moreover, it captures the fact that relative effort 

variations are proportional to the marginal profit. 

 

The second firm decides by naïve way, selecting a production that maximizes its 

profits (naïve player): 

      
2

2 2 1 21 arg max ,
q

q t q t q t                                    (8) 

The dynamical system of the players is described by: 
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     

 
 

 

1
1 1 1

1

1
2

1

1
2 1

P
q t q t kq t

q

a dq t
q t

c


   

 


  
 

 

 

          

 
 

 

1 1 1 1 2

1
2

1 2

    
1

2 1

q t q t kq t a c q t dq t

a dq t
q t

c

     


 
  

            (9) 

We will focus on the dynamics of this system to the parameter k. 

 

2.2  Dynamical analysis 

2.2.1  The equilibriums of the game 

The equilibriums of the dynamical system (9) are obtained as the nonnegative 

solutions of the algebraic system: 

 

* * *
1 1 2

*
1*

2

2 0

2 1

k q a c q dq

a dq
q

c

       

 




                              (10) 

which obtained by setting     *
1 1 11q t q t q    and     *

2 2 21q t q t q    . 

 If *
1 0q   , then 

 
*
2

2 1

a
q

c



 and we have the boundary equilibrium: 

 0 0 ,  
2 1

a
E

c

 
   

                                          (11) 

 If 1 2

1 2

0
P P

q q

 
 

 
, then we form the following system: 

   

 

*
2*

1

*
1*

2

2

2 1

a c dq
q

a dq
q

c

  



 

 

                                           (12) 

and the equilibrium is: 

 
  

 

 

 
* *

* 1 2 2 2

2 1 2
, ,

4 1 4 1

c a c da a d dc
E q q

c d c d

     
   

    
                (13) 

Since  2a d dc   and   24 1 c d   are always positive quantities, it means 

that for our game there is the following restriction: 

  2 1 0c a c da                                            (14) 
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2.2.2 Stability of equilibriums 

The study of the local stability of the equilibrium is based on the localization on 

the complex plane of the eigenvalues of the Jacobian matrix of the dimensional 

map (Eq.(9)). In order to study the local stability of equilibrium points of the 

model (9), we consider the Jacobian matrix  1 2,J q q  along the variable 

strategy  1 2,q q : 

  1 2

1 2

1 2,
q q

q q

f f
J q q

g g

 
  
 

                                      (15) 

Where 

   

 
 

1 2 1 1 1 2

1
1 2

, 2

,
2 1

f q q q kq a c q dq

a dq
g q q

c

    






                           (16) 

and we find the Jacobian matrix: 

 

 

 

1 2 1

1 2

1 4    

,

      0
2 1

k a c q dq dkq

J q q
d

c

     
 
 
 

  

                         (17) 

with  

  * *
1 21 4Tr J k a c q dq                                    (18) 

and 

 
 

2 *
1

2 1

kd q
Det J

c
 


                                          (19) 

For 0E : 

  
 

  

 0

2 1
1 1

2 1 2 1

c a c dada
Tr J E k a c k

c c

   
         

               (20) 

and 

  0 0Det J E                                           (21) 

The characteristic equation of  0J E  is: 

2 0l Tr l Det                                             (22) 

the solutions of which are the following eigenvalues: 

1 0l         and      
  

 2

2 1
1

2 1

c a c da
l k

c

  
  


                 (23) 

Since  
  

 

2 1
0

2 1

c a c da

c

  



 (because of Eq. (14)), it’s clearly that 2 1l  , 

and the point 0E  is unstable. 

For *E : 
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  
  

 
* 2

2 1
1 2

4 1

c a c da
Tr J E k

c d

  
  

 
                       (24) 

and 

  
  

   
2

* 2

2 1

2 1 4 1

c a c da
Det J E kd

c c d

  
  

      

                 (25) 

The equilibrium point is locally asymptotically stable if: 

  

)    1 0

)   1 0

)  1 0

i Det

ii Tr Det

iii Tr Det

 

  

  

                                            (26) 

For (i), we have: 

  

   
2

2

2 1
1 1 0

2 1 4 1

c a c da
Det kd

c c d

  
    

      

 ,               (27) 

an inequality which holds because of (14). 

For (ii): 

 

  

 

2 1
1 0

2 1

c a c da
Tr Det k

c

  
    


 ,                     (28) 

which also holds because of (14). 

The conditions (i) and (ii) of Eq.(26) are always satisfied and then the condition 

(iii) is the condition for the local stability of the Nash Equilibrium. 

We suppose the third condition (iii): 

   

     

2

2

4 1 4 1
1 0 

4 1 2 1

c c d
Tr Det k

c d c a c da

      
    

       

              (29) 

 

So, the third condition (iii) is the stability condition for the Nash equilibrium of 

system Eq.(9), focusing to the parameter k. 

 

Proposition: The Nash equilibrium of the dynamical system Eq.(9) is locally 

asymptotically stable if: 

 

   

     

2

2

4 1 4 1
0

4 1 2 1

c c d
k

c d c a c da

      
 

       

                    (30) 

 

2.3 Numerical simulations 

To provide some numerical evidence for the chaotic behavior of the system 

Eq.(9), as a consequence of change in the parameter k of the speed of players’ 

adjustment, we present various numerical results here to show the chaoticity, 

including its bifurcations diagrams, strange attractor, Lyapunov numbers and 
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sensitive dependence on initial conditions (Kulenovic, M. and Merino, O. [27]). 

In order to study the local stability properties of the equilibrium points, it is 

convenient to take some specific values for the parameters a, c and d, for 

example: 5 ,  0.5 ,  0.5a c d   . And in this case the stability condition 

becomes as follows: 

0 0.5018k                                                  (31) 

Numerical experiments are computed to show the bifurcation diagram with 

respect to k, strange attractors of the system Eq.(9) in the phase plane  1 2,q q   

and Lyapunov numbers. Figure 1 shows the bifurcation diagrams with respect to 

the parameter k. Also in this figure one observes complex dynamic behavior 

such as cycles of higher order and chaos. Figure 2 shows the Lyapunov 

numbers’ diagram of the orbit of (0.1,0.1) for 5 ,  0.5 ,  0.5a c d   , and  for 

0.66k  . Figure 3 shows the graphs of the same orbit (strange attractors) for 

5 ,  0.5 ,  0.5a c d   , 0.7k   (left) and 0.76k  (right). From these results 

when all parameters are fixed and only k is varied the structure of the game 

becomes complicated through period doubling bifurcations, more complex 

bounded attractors are created which are aperiodic cycles of higher order or 

chaotic attractors. 

 

To demonstrate the sensitivity to initial conditions of the system Eq.(9) we 

compute two orbits with initial points (0.1,0.1) and (0.101,0.1), respectively. 

Figure 4 shows sensitive dependence on initial conditions for x-coordinate of 

the two orbits, for the system Eq.(9), plotted against the time with the parameter 

values 5 ,  0.5 ,  0.5 ,  0.7a c d k    . As in first case also, here at the 

beginning the time series are indistinguishable; but after a number of iterations, 

the difference between them builds up rapidly. 

 

3   Homogeneous expectations 
 

Now we suppose that both firms decide to increase their level of adaptation if 

they have positive marginal profits, or decrease their level if the marginal profits 

are negative (bounded rational players). If k > 0 the dynamical equation of two 

players is: 

   

 

1
 ,          1,2

i i i

i i

q t q t
k i

q t q

  
  


                 (32) 

k by the same way with the first case, expresses the same speed of adjustment of 

two players. 

 

The dynamical system of the players is described by: 

          

            

1 1 1 1 2

2 2 2 1 2

1 2

1 2 1

q t q t kq t a c q t dq t

q t q t kq t a dq t c q t

     


     
      (33) 

We will focus on the dynamics of this system to the parameter k. 
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3.1 Dynamical analysis 

3.1.1 The equilibriums of the game 

The equilibriums of the dynamical system (33) are obtained as nonnegative 

solutions of the algebraic system: 

1*
1

1

2*
2

2

0

0

P
q

q

P
q

q


 

 


  
 

                                             (34) 

which obtained by setting     *
1 1 11q t q t q    and     *

2 2 21q t q t q   . 

 If * *
1 2 0q q  , then we have the boundary equilibrium: 

 0 0,0E                                                       (35) 

 If *
1 0q   and  2

2

0
P

q





, the equilibrium point is: 

 1 0 ,  
2 1

a
E

c

 
    

                                          (36) 

 If *
2 0q   and 1

1

0
P

q





 , the equilibrium point becomes as: 

2 ,0
2

a c
E

    
 

                                                (37) 

 If 1 2

1 2

0
P P

q q

 
 

 
, then we form the following system: 

 

*
2*

1

*
1*

2

2

2 1

a c dq
q

a dq
q

c

  



 

 

                                           (38) 

and the Nash equilibrium is the same as at the previous case (heterogeneous 

expectations): 

 
  

 

 

 
* *

* * 1 2 2 2

2 1 2
, ,

4 1 4 1

c a c da a d dc
E E q q

c d c d

     
     

    
                (39) 

3.1.2 Stability of equilibriums 

To study the local stability of the equilibrium positions we also need the 

Jacobian matrix of the dimensional map (Eq.(33)). Working by the same way as 

in the first case we find the following Jacobian matrix: 
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 

2 2
1 1* 1*

1 12
1 1 21

1 2

2 2
2 2 2* *

2 2 2
2 1 2 2

1    

,

      1

P P P
k q k q

q q qq

J q q

P P P
k q k q

q q q q

     
          

 
 

    
            

                (40) 

For 0E  : 

 

 

0

1    0

0       1

k a c

J E

ka

  
  
 
  

                                 (41) 

with   

          0 2 2Tr J E k a c                                     (42) 

and 

       0 0Det J E                                           (43) 

The characteristic equation of  0J E   is: 

2 0l Tr l Det                                         (44) 

the solutions of which are the following eigenvalues: 

1 0l         and       2 2 2 1l Tr k a c                   (45) 

it’s clearly that  2 1l  , and the point 0E   is unstable.  

For 1E  : 

 1 *
2

0

B
J E

dkq

 
   

 
                                         (46) 

where 

  

 

2 1
1

2 1

c a c da
k

c

  
   


      and     1 ka                    (47) 

with 

  1Tr J E                                            (48) 

and 

  1Det J E                                            (49) 

The characteristic equation of  1J E  is: 

   2 0 0l Tr l Det l l                              (50) 

the solutions of which are the following eigenvalues: 

1l          and      2l                                         (51) 

Since   2 1 0c a c da    from Eq.(14), it’s clearly that  1 1l  , and 

the point 1E   is unstable.  

For 2E  : 
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 
*
1

2
0

C dkq
J E

D

 
   

 
                                          (52) 

where 

1
2

a c
C k


         and     

 2
1

2

a d dc
D k

 
                      (53) 

with 

  2Tr J E C D                                      (54) 

and 

  2Det J E C D                                      (55) 

 

Also, the characteristic equation of  2J E   is: 

    0l C l D                                        (56) 

the solutions of which are the following eigenvalues: 

1l C        and      2l D                                   (57) 

Since  2 0a d dc   , it’s clearly that  2 1l  , and the point 2E   is 

unstable.  

For *E  : 

 
 

* *
1 1

* * *
2 2

1 2

1 2 1

kq dkq
J E

dkq c kq

  
   

   
                        (58) 

with 

    * *
* 1 22 2 2 1Tr J E kq c q                               (59) 

and 

      2 * * 2 * *
* 1 2 2 11 4 1 2 1 2Det J E k q q c d c kq kq                (60) 

 

The equilibrium point is locally asymptotically stable if : 

 

)    1 0

)   1 0

)  1 0

i Det

ii Tr Det

iii Tr Det

 

  

  

                                          (61) 

For (ii): 

 2 * * 2
1 21 4 1 0Tr Det k q q c d         ,                      (62) 

an inequality which always holds. 

Condition (i) becomes as: 

 

 

* *

2 1

* * 2

1 2

2 1 2
1 0

4 1

c q q
Det k

q q c d

 
   

   

 ,                    (63) 

and for the inequality (iii): 
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   * * 2 2 * *

1 2 1 21 0 4 1 4 1 4 0Tr Det q q c d k q c q k                      (64) 

Since, the condition (ii) of Eq.(62) is always satisfied, the conditions (i) and (iii) 

are the conditions for the local stability of the Nash Equilibrium focusing to the 

parameters k or d. 

 

Proposition : The Nash equilibrium of the dynamical system Eq.(33) is locally 

asymptotically stable if: 

 

 

 

* *
2 1

* * 2
1 2

2 1 2
0

4 1

c q q
k

q q c d

 
 

   

  and     * * 2 2 * *

1 2 1 24 1 4 1 4 0q q c d k q c q k              
 (65) 

 

where:  1,1d    , 

  

 
*
1 2

2 1

4 1

c a c da
q

c d

  


 
      and     

 

 
*
2 2

2

4 1

a d dc
q

c d

 


 
 

 

3.2  Numerical simulations 

3.2.1  Stability space (k, d) 
 

In our game there are two important parameters, the parameter k, the speed of 

adjustment of players to their mechanisms and the parameter d, which is the 

differentiation degree between two products. At first, it is needed to export the 

stability space allowing both parameters k and d. Setting the specific values of 

the parameters α=5, c=0.5 in two stability conditions, from Figure 5 it seems 

that there is a closed stability space and that for small values of the parameter k 

there are stable trajectories for all the values of the parameter d. 

 

3.2.2 Focusing to the parameter k 
 

Numerical experiments are computed again to show the bifurcation diagram 

with respect to k, strange attractors of the system Eq.(33) in the phase plane 

 1 2,q q   and Lyapunov numbers. Figure 6 shows the bifurcation diagrams by 

the same way with the previous case with respect to the parameter k. Also in 

this figure one observes complex dynamic behavior such as cycles of higher 

order and chaos. Figure 7 shows the graphs of the same orbit (strange attractors) 

and Lyapunov numbers’ diagram of the orbit of (0.1,0.1) for 

5 ,  0.5 ,  0.5a c d   , and 0.57k  . From these results when all parameters 

are fixed and only k is varied the structure of the game becomes complicated 

through period doubling bifurcations, more complex bounded attractors are 

created which are aperiodic cycles of higher order or chaotic attractors. 

To demonstrate the sensitivity on initial conditions of the system Eq.(33) we 

compute two orbits with initial points (0.1,0.1) and (0.101,0.1), respectively. 
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Figure 8 shows sensitive dependence on initial conditions for x-coordinate of 

the two orbits, for the system Eq.(33), plotted against the time with the 

parameter values 5 ,  0.5 ,  0.5 ,  0.57a c d k    . As in first case also, here 

at the beginning the time series are indistinguishable; but after a number of 

iterations, the difference between them builds up rapidly. 

 

3.2.3 Focusing to the parameter d 
 

Now some numerical experiments are computed, with respect to differentiation 

parameter d. Bifurcation diagrams, strange attractors of the system Eq.(33) in 

the phase plane  1 2,q q   and Lyapunov numbers are presented. Figure 9 shows 

the bifurcation diagrams with respect to the parameter d. Also in this figure one 

observes complex dynamic behavior such as cycles of higher order and chaos. 

Figure 10 shows the graphs of the same orbit (strange attractors) and Lyapunov 

numbers’ diagram of the orbit of (0.1,0.1) for 5 ,  0.5 ,  0.3a c k   , and 

0.79d   . From these results when all parameters are fixed and only d is 

varied the structure of the game becomes complicated through period doubling 

bifurcations, more complex bounded attractors are created which are aperiodic 

cycles of higher order or chaotic attractors. 

To demonstrate the sensitivity on initial conditions of the system Eq.(33) we 

compute two orbits with initial points (0.1,0.1) and (0.101,0.1), respectively. 

Figure 11 shows sensitive dependence on initial conditions for x-coordinate of 

the two orbits, for the system Eq.(33), plotted against the time with the 

parameter values 5 ,  0.5 ,  0.3 ,  0.79a c k d     . As in first case also, 

here at the beginning the time series are indistinguishable; but after a number of 

iterations, the difference between them builds up rapidly. 

     
Fig. 1: Bifurcation diagrams with respect to the parameter d against variable 1q (left) and 

2q (right), with 400 iterations of the map Eq. (9) for 5 ,  0.5 ,  0.5a c d   . 
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Fig. 2: Lyapunov numbers of the orbit of the point A(0.1,0.1) versus the number of 

iterations for 5, 0.5, 0.5a c d    and for 0.66k  .  

 

    
 

Fig. 3:  Phase portrait (strange attractors). The orbit of (0.1,0.1) with 2000 iterations of 

the map Eq.(9)  for 5, 0.5, 0.5a c d    and for 0.7k  (left) and 0.76k  (right). 

 

    
 

Fig. 4: Sensitive dependence on initial conditions for x-coordinate plotted against the 

time: the two orbits: the orbit of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right), for the 

system Eq.(9), with the parameters values 5, 0.5, 0.5a c d    and 0.7k  . 
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Fig. 5: Stability space for 5a   and 0.5c  , (horizontal axis for k and vertical axis for d). 

 

    
Fig. 6:  Bifurcation diagrams with respect to the parameter k against variable 1q (left) and 

2q (right), with 400 iterations of the map Eq. (33) for 5, 0.5, 0.5a c d   .  

     
 

Fig. 7: Phase portrait (strange attractor) and Lyapunov numbers of the orbit of the point 

A(0.1,0.1) versus the number of iterations for 5, 0.5, 0.5, 0.57a c d k    . 
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Fig. 8: Sensitive dependence on initial conditions for x-coordinate plotted against the 

time: the two orbits: the orbit of (0.1,0.1)(left) and the orbit of (0.101,0.1)(right), for the 

system Eq.(33), for 5, 0.5, 0.5a c d   and 0.57k  . 

 

     
 

Fig. 9:  Bifurcation diagrams with respect to the parameter d against variable 1q (left) and 

2q (right), with 400 iterations of the map Eq. (33) for 5, 0.5, 0.3a c k   . 

 

     
 

Fig. 10: Phase portrait (strange attractor) and Lyapunov numbers of the orbit of the point 

A(0.1,0.1) versus the number of iterations for 5 ,  0.5 ,  0.3 ,  0.79a c k d     . 
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Fig. 11: Sensitive dependence on initial conditions for x-coordinate plotted against the 

time: the two orbits: the orbit of (0.1,0.1) (left) and the orbit of (0.101,0.1) (right), for the 

system Eq.(33), with the parameter values 5 ,  0.5 ,  0.3a c k    and 0.79d   . 

 

Conclusions 
 

In this paper we analyzed the dynamics of two nonlinear Cournot – type 

dynamic game with heterogeneous or homogeneous expectations, differentiated 

goods, linear demand and different cost functions for each player. Existence and 

stability of equilibriums are studied. We proved that the parameter of horizontal 

product differentiation and the parameter of the speed of adjustment may change 

the stability of the Nash equilibrium and cause a structure to behave chaotically 

through period – doubling bifurcation. The chaotic features are justified 

numerically via bifurcation diagrams, computing Lyapunov numbers and 

sensitive dependence on initial conditions. Also, we proved that at the case of 

asymmetric costs there are stable trajectories and a higher (lower) degree of 

product differentiation does not tend to destabilize the economy. 
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