
 

 
Chaotic Modeling and Simulation (CMSIM)  1: 59-79, 2019 

 

_________________ 

Received: 9 July 2018 / Accepted:  12 December 2018 

© 2019 CMSIM                                                                                ISSN 2241-0503 

Chaos in Complex and Quaternion Blaschke Maps 
 

David C. Ni 
 

Direxion Technology 

9F, No. 177-1, Ho-Ping East Road, Daan District, Taipei, 106, Taiwan, ROC 
 

Abstract. We have explored chaotic phenomena of extended Blaschke products, which 

are the generalized form of nonlinear Lorentz transformation, in conjunction with triplet 
momentum space (linear-angular-spin momentum) on the complex plane for simulation 

of N-body systems in the context of dynamical systems. The results demonstrate that our 

construction has built-in structures for modelling several challenging phenomena, such as 

Dark Matters, Dark Energy, formation of Stellar Systems, Quantum Uncertainty, Phase 
and Superconductor Transitions etc., particularly when the structures evolving from 

stable forms to chaos, where we have observed formation of hierarchical systems. 

In this work, we further extend the effort from complex mapping to quaternion mapping 

for simulating the related chaotic phenomena as well as for unifying standard model of 
elementary particles into this framework. Finally, we correlate complex mapping with 

quaternion mapping. 
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1  Introduction 

 

Contemporary models for N-body systems are mainly extended from 

temporal, two-body, and mass point representation of Newtonian mechanics. 

Other mainstream models include 2D/3D Ising models constructed from the 

lattice structures. These models have been adopted for simulations in different 

branches of physics, nevertheless, have also encountered challenges in the new 

observations such as dark matter and dark energy. We were therefore motivated 

to develop a new construction directly from complex-variable N-body systems 

based on the extended Blaschke functions (EBF)[1], which represent a non-

temporal and nonlinear extension of Lorentz transformation on the complex 

plane – the normalized linear-angular-spin space. A point on the complex plane 

represents a normalized state of linear, angular and spin momentum observed 

from a reference frame in the context of the theory of special relativity. This 

nonlinear representation couples linear, angular, and spin momentum in 

conjunction with nonlinearity of EBF.  

 

The convergent sets in domain and corresponding codomain demonstrated 

hierarchical structures and topological transitions depending on parameter 

space. Among the transitions, continuum-to-discreteness transitions, nonlinear-

to-linear transitions, and phase transitions manifest this construction embedded 

with structural richness for modelling broad categories of physical phenomena. 
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In addition, we have recently developed a set of new algorithms for solving EBF 

iteratively in the context of dynamical systems. The mapped sets generally 

follow the Fundamental Theorem of Algebra (FTA), however, exceptional cases 

are also identified.  The mapped sets show a form of σ + i [-t, t], where σ and t 

are the real numbers, and the [-t, t] shows canonical distributions.  The 

hierarchical structures in domain are proposed to model the family of 

elementary particles. Based on this connection, the hierarchical layers may be 1, 

3, and 5 depending on the normalized linear momentum. The 5-layer case is 

adopted for interpreting dark matter. 

 

As in the previous papers [2,3,4,5,6,7], we introduce a spin momentum to 

the EBF, and for the degree of EBF, n, is greater than 2, we observed that the 

fractal patterns showing lags as shown in Fig. 10(a). As angular momentum 

increases, the divergent sets (fractal patterns) are connected to the adjacent sets 

and diffuse as shown in Fig. 10(a). As iteration further increasing, subsequently 

all convergent sets will become null set. The main effort is to extend the 

mapping algorithm to the transition regions, where the sets in domains and 

codomains becoming chaotic state. Particularly, we characterize the convergent 

sets in codomain near the chaotic transition. As an example of efforts on the 

applications of modeling the physical phenomena, we apply the observations to 

the theories of formation of galaxy clusters and stellar systems.  The different 

stable sets are adopted for interpreting dark energy. 

 

On complex plane, however, spin momentum is limited to a single and 

discrete value for performing functional mapping, therefore, we extend to 

quaternion maps for further exploring the chaotic transitions as well as for 

potentially modelling Standard model of elementary particles with set structures 

forming group representations [8 and ref. therein], which are the framework of 

quantum formalism for theorizing family structure of elementary particles. We 

then consistently correlate quaternion mapping with complex mapping in 

domains and codomains. 

 

2. Construction 

2.1 Functions and Equations 

 

Given two inertial frames with different momentums, u and v, the 

observed momentum, u’, from v-frame is as follows: 

                                        

u’  =  ( u - v ) / ( 1 - vu/c2 )     (1) 

 

We set c2 = 1 and then multiply a phase connection, exp(iψ(u)), to the 

normalized complex form of the equation (1) to obtain the following: 

 

(u’/u) = exp(iψ(u))(1/u)[(u-v)/(1-uv)]   (2) 
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We hereby define a generalized complex function as follows: 

 

fB,(z,m)= z-1
 Π

mCi                                             (3)

          

       

And Ci has the following forms:  

 

Ci = exp(gi(z))[(ai-z)/( 1-āiz)]                    (4)

         

  

Where z is a complex variable representing the momentum u, ai is a parameter 

representing momentum v, āi is the complex conjugate of a complex number ai 

and m is an integer. The term gi(z) is a complex function assigned to Σp2pπiz 

with p as an integer. The degree of fB(z,m) = P(z)/Q(z) is defined as Max{deg P, 

deg Q}. The function fB is called an extended Blaschke function (EBF). The 

extended Blaschke equation (EBE) is defined as follows: 

 

fB(z,m) – z = 0      (5) 

 

2.2 Domain and Codomain 

 

A domain can be the entire complex plane, C∞, or a set of complex 

numbers, such as z = x+yi, with (x2 +y2)1/2 ≦ R, and R is a real number. For 

solving the EBF and EBE, a function f will be iterated as:  

 

f n(z) = f ◦ f n-1(z),      (6) 

 

Where n is a positive integer indicating the number of iteration. The 

function operates on a domain, called domain. The set of f n(z) is called mapped 

codomain or simply a codomain. In the figures, the regions in black color 

represent stable Fatou sets containing the convergent sets of the concerned 

equations and the white (i.e., blank) regions correspond to Julia sets containing 

the divergent sets, the complementary sets of Fatou sets on C∞ in the context of 

dynamical systems. 

 

2.3 Parameter Space 

 

In order to characterize domains and codomains, we define a set of 

parameters called parameter space. The parameter space includes six 

parameters: 1) z, 2) a, 3) exp(gi(z)), 4) m, 5) iteration, and 6) degree. In the 

context of this paper we use the set {z, a, exp(gi(z)), m, iteration, degree} to 

represent this parameter space. For example, {a}, is one of the subsets of the 

parameter space. 
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2.4 Domain-Codomain Mapping 

 

On the complex plane, the convergent sets in domains of the EBFs form 

fractal patterns of the limited-layered structures (i.e., Herman rings), which 

demonstrate skip-symmetry, symmetry broken, chaos, and degeneracy in 

conjunction with parameter space [7]. Fig. 1 shows a circle in the domain is 

mapped to a set of twisted figures in the codomain. We deduce that the mapping 

related to the tori structures in conjunction with EBFs. Fig. 2 shows two types of 

fractal patterns in the domains. These patterns are plots at different scales. In 

order to demonstrate these figures, we reverse the color tone of Fatou and Julia 

sets, namely, the black areas are the divergent sets. 

 

 

 
 

Fig. 1. Domain-Codomain mapping of a unit circle. 

 
 

Fig. 2. Fractal Patterns of the divergent sets in domains. 

 

 

 

2.5 Convergence and Divergence of Iterated Sequence 

 

The convergence and divergence of a given point on the complex plane 

are further examined by plotting the iterated sequence of absolute values of 

EBFs. Fig. 3(a) shows a case of divergence with iteration = 100. Fig. 3(b), 3(c), 

and 3(d) show convergent sequences.  More rigorous definitions of convergence 

and divergence in conjunction with programming algorithms are part of the 

forward efforts of this effort. 
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 (a) Divergent sequence (b) Convergent sequence 

     
(c) Convergent sequence (d) Convergent sequence 

 

Fig. 3. Divergence and Convergence of iterated sequence of EBF 

 

 

3. Transitions 

 
 

3.1 Nonlinear to Linear Transitions 

 

 

Fig. 4 shows the convergent sets of domains with different degrees and 

values of parameter {a}. Fig. 4 (a) through (d) show that the convergent sets are 

quite topologically different for different degrees, from fB(z,1), the linear 

equation to fB(z,4). When the value of {a} increases from 0.1 to 0.8. 
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(a) fB(z,1), a=0.1(b) fB(z,2), a=0.1   (c) fB(z,3), a=0.1     (d) fB(z,4), a = 0.1 

 
 

(e) fB(z,1), a=0.8  (f) fB(z,2, a=0.8    (g) fB(z,3), a=0.8    (h) fB(z,4), a = 0.8 

 

Fig. 4. Convergent sets of fB(z,1), fB(z,1), fB(z,1), and fB(z,1) with values of 

{a} at 0.1 and 0.8 respectively. The convergent sets show topologically similar 

with minor variations as shown from fB(z,1), the linear equation to fB(z,4) or 

even at higher degrees as in Fig. 4 (e) through (h). We call this phenomenon as 

nonlinear-to-linear transition. 

 

 

3.2 Continuum to Discrete Transitions 

 

When the value of {a} approaches to unity, the topological patterns of 

convergent sets in domains demonstrate an abrupt or quantum-type transition 

from the connected sets to the discrete sets. The discrete sets show Cantor-like 

pattern when mapping onto real axes on the complex plane, nevertheless, these 

sets are not Cantor sets by definition [6, 7, 9, 10]. 

The transition of EBF occurs between a = 1 – 10-16 and a = 1 – 10-17. Fig. 

5 shows this type of topological transition. Fig. 5(a) through 5(d) shows the 

nonlinear-to-linear degeneracy, and 4(e) shows the Cantor-like pattern at all 

degrees once the transition occurs. Here, we define Δ= 1- a. Fig. 6 shows 

another discreteness-to-continuum transition around a pole in original domains 

based on the parameter {degree}. Fig. 7 shows continuum-to-discreteness 

transitions in codomain based on the parameter {iteration}. These transitions 

demonstrate a fabric tori structure of EBFs.  
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(a) fB(z,1)        (b) fB(z,2)         (c) fB(z,3)       (d) fB(z,10) 

All with Δ~ 10-16 

 
(e) fB(z,m),Δ= 10-17 

 

Fig. 5. Connected sets transit to discrete Cantor-like sets for all fB(z,m) 

At Δ= 10-17 in domains. 

 
 

Fig. 6. Discreteness to continuum transitions around a pole of EBF as 

value {degree} increases in domains. 

 

 
Fig. 7. Continuum to discreteness transitions as value {iteration} 

increases in domains. 
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3.3 Topological Transitions 

 

Fig. 8 shows a mapping from the convergent sets of domain to 

codomain. This is a point-to-point mapping at same position between domain 

and codomain. We examine the plots of three different values: absolute, real, 

and imaginary on the complex plane. The plots of absolute and real values 

show a modular pattern with 90 degree rotation. These sets are symmetrical to 

the y-axis, comparing to the x-axis symmetry of the convergent sets of the 

domain. The plots of imaginary values demonstrate conjugate symmetry to the 

y-axis. Fig. 9 further shows this special feature with different values of {a}. 

Using the color bar (with z = 0 at center of the bar) on the right side of 

individual figures in Fig. 9, we observe the relationship of z(-x, y) = -z(x, y) , 

and define as conjugate symmetry.  

 
Fig. 8. Separation of Real and Imaginary values in Domains 

 

 
 

Fig. 9. Three patterns of conjugate symmetry at different values of {a}. 
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Fig. 10 Topological Transitions in Domain and CoDomain 

 

 

Fig. 10 shows topological transitions as value of {a} increases from 0.55 

to 0.65. The transition value (i.e., a = 0.60 in Fig. 10) depends on the degree (n) 

that as degree increases, the transition value increases. Among the transitions, 

we also observe that the imaginary values transfer from complementary 

symmetry to a single value as value of {a} approaches to 0. Fig. 11 shows these 

transitions as a =10-105 decreases to a = 10-108. 

 

 
Fig. 11 Superconductor Transitions 
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3.4 Chaotic Transitions 

 

The convergent sets are colored in blue for those on the upper half of the 

complex plane, while those sets in red color are on the lower half intendedly as 

in Fig. 10. By doing so, we are able to examine the mappings in more details.  

 

When an additional spin momentum applied to EBF as equation 7 below:  

 

a = 0.1(cosθ + sinθ)      with degree = 4   (7) 

 

In Fig. 12(a), each layer or level of fractals, namely, the divergent sets in 

domain will be lagged more as the value θ increases, and subsequently 

connected to the adjacent divergent sets, and eventually the divergent areas will 

enlarging diffuse and become null sets for value of {degree} is greater than 2 as 

shown in Fig. 12(a). For value of {degree} is 1 or 2, as shown in Fig. 12(b), this 

type of diffusion will not occur as shown in Fig. 12(b) [3, 4]. 

 
(a) degree = 4 

 
(b) degree = 1 or 2 

 

Fig. 12. Transitions of convergent sets in domain as spin increases 

 

4. Mapped Sets of Linear-Angular Momentum 

4.1 Mapped sets in Domain and Codomain 

 

As shown in Fig. 13, a set of algorithms are developed for mapping EBFs, 

and the discrete sets in codomain demonstrate fixed-point-like mapped sets.  

The upper half and lower half plane are colored in blue and red individually for 

the purpose examining domain-codomain mapping. This type of mapping is 

value mapping that the mapped complex values are directly plotted on the 

codomain. 
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(a) Domain   (b) Codomain 

 

Fig. 13. Value mapping from convergent sets of domain to codomain 

Fig. 13. shows the iterated sets of  EBF for a = 0.1 and degree = 3 at scale 

of 104 as convergent set on the domain (13(a)) mapped to the convergent set (a), 

(b), (c), (d) and (e) on the codomain (13(b)) violating Fundamental Theorem of 

Algebra (FTA), which asserts that the number of mapped sets is equal to the 

degree of EBF. 

 

For the individual convergent sets shown in Fig. 13 (b) in codomain, we 

can examine closely which sets or subset in domain are mapped from as shown 

in Fig. 14. These figures demonstrate a deterministic perspective against the 

uncertainty of mapping and may fundamentally change the definition of 

probability in the context of statistics. 

 

 

   

      All sets      set (a)          set 

(b) 

 

 

 

 

 

 

        set (c)           set (d)          set 

(e) 

 

Fig. 14. The individual sets in domain (13(a)) corresponding to the 

convergent set (a), (b), (c), (d) and (e) in codomain (13(b)). 

Fig. 15 shows mapped sets for EBFs with degree=7 and degree=12 

individually, which are asserted by FTA. The mapped sets show that the 

individual sets with specific real values are with spread-out imaginary sets 

demonstrating various distributions. 
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(a) fB(z,7)             (b) fB(z,12)) 

 

Fig. 15. Two mapped sets with two different values of {degree}. 

 

For degree=1, the mapped sets shows transition from 1 mapped set to 2 

mapped sets as value of {a}increases from 0.68 to 0.69. This observation is 

proposed to model the phenomenon of symmetry broken. 

 

 
Fig. 16. Mapped sets of degree = 1 show transition and violation of FTA 
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Fig. 17. Mapped sets of degree = 2 show uncertainty in domain 

 

For degree=2, the mapped sets show random sets of mapping sets in 

domain to 2 sets in codomain as shown in Fig. 17. The distributions of the 

mapped sets are shown at right-bottom of Fig. 17 and are proposed to model 

uncertainty in quantum formalism. 

 

4.2 Distributions 

 

For the individual convergent sets shown in Fig. 13 (b), we further plot the 

distributions of real and imaginary sets with a designated partition as shown in 

Fig. 18.  The real distributions show the distribution of linear momentum, while 

the imaginary distribution shows overall distribution of the angular momentum 

[10, 11]. 

 

 
 

Fig. 18. Distribution plots of convergent sets in the codomain as in Fig. 13(b). 
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  All sets                 set (a)               set (b) 

   
 set (c)     set (d)              set (e) 

 

Fig. 19. Distribution plots of individual convergent sets in the 

codomain. 

 

Further, we plot the distributions of the all and individual sets in Fig. 13 

and Fig. 14 as shown in Fig. 19. These distributions demonstrate 1-peak, 2-peak, 

and 3-peak distributions with different peak values. The patterns of these 

distributions demonstrate scaling invariant to the parameter {iteration}. 

 

4.3 Hierarchical Structures 

 

Depending on value of linear momentum, {a}, we observe 5 layers of 

hierarchical concentric rings as shown in Fig. 20. The regions in black are the 

convergent regions, which show fractal patterns particularly as Fig. 20(c), the 

unit disc with fractal divergent regions.  

 
Fig. 20. Distribution plots of individual convergent sets in the 

codomain. 
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Fig. 21. Hierarchical structures with nonlinear degree = 1, 2, 3, and 9 and the 

dependencies on linear momentum as well as functional degree.  

 

Fig. 21 shows the dependency of convergent sets on linear momentum and 

degree. For degree = 1, we observe only one ring for all normalized linear 

momentum is less than 1. For degree = 2, we observe two-layer hierarchy when 

the normalized linear momentum is less than about 0.333, where the nonlinear 

to linear transition occurs. For degree is equal or greater than three, we observe 

5-layer hierarchy transits to 3-layer hierarchy, then to 2-layer hierarchy, and 

finally to one-layer hierarchy accordingly. In the transition zones, the related 

layers are connected and merged. In addition, the patterns (referred to Fig. 10) 

will be randomized in the transition zones. We propose that the 5-layer 

structures with dependency for modelling so-called dark matters, namely, 

currently existing 3 hierarchical elementary families will be extended to 5 

hierarchical families. The hidden families with momentum dependency are the 

dark matters. 

5. Mapped Sets of Linear-Angular-Spin Momentum 

 

Applying the methods described in the section 4 to the convergent sets in 

chaotic transitions described in section 3.4, we can examine closely the 

convergent sets in both domains and codomains. 

 

5.1. Mapped sets in Domain and Codomain 

 

As described in equation (7) in section 3.4., we have the following 

parameters as in equation (8): 

a = 0.2 (cos(75*π/180) + sin (75*π/180) )    with degree = 3   (8) 

As the value θ increases and the convergent sets approaching to the chaotic 

transitions, two divergent sets are both diffusing to the sub-fractal sets and 

demonstrate a balanced diffusion. Subsequently, the sets converge slowly and 
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present a hierarchical structure of several layers, which are viable for the 

modelling of observed phenomena such as dark energy. Fig. 22 shows the plots 

the distributions of the convergent sets in the codomain of equation (8).  

 

 

 

 

 

 

 

 

Fig. 22. The distributions of convergent sets for a = 0.2, 

θ=(75*π/180) and degree = 3 in the codomain. 

 

Further examining the distributions of the convergent sets, both 

distributions of the real and imaginary values are not symmetrical.  Comparing 

the plots in Fig. 23 against those in Fig. 19 (spin momentum set to null), we 

observe symmetry broken when spin momentum is introduced into domain-

codomain mapping. 

The important ideas from these plots for the theoretical constructions are 

that in the chaotic transitions, the values of momentum and angular momentum 

are in limited discrete groups. This observation manifests that we can model the 

turbulence, chaos, and related phenomena more straightforward in linear-

angular-spin momentum space than those in temporal space. In the following 

section, we will further extend this construction based on hierarchical structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 The distributions of real values of the convergent sets for 

a = 0.2, θ=(75*π/180) and degree = 3 in the codomain. 

 

 

 



Chaotic Modeling and Simulation (CMSIM)  1:  59-79, 2019 75 

 

5.2 Hierarchical Structures 

 

The convergent sets in Fig. 22 have more internal structures as we 

examine in details. In the following, we study another set of parameters in 

equation (9) as below:  

a = 0.1 (cos(120*π/180) + sin (120*π/180) )  with degree = 3   (9) 

The convergent sets in codomain as shown in Fig. 24(a) are further 

expanded in Fig. 24(b).  

 

 
(a) Convergent sets in codomain    (b) Expanded the circled area in (a) 

 

Fig. 24. The distributions of the convergent sets for a = 0.1, θ=(120*π/180) and 

degree = 3 in the codomain. 

 

We further expand the plot the three convergent groups of Fig. 24(b) to 

three individual plots as shown in Fig. 25. Then we select one of four sub-

groups in Group 1 as shown Fig. 25(a), and expand one more level (2nd level) 

down to show the convergent sets as in Fig. 26. 

 

 
(a) Group 1  (b) Group 2  (c) Group 3 

  

Fig. 25. The 1st -level expanded distributions of the 

convergent sets for a = 0.1, θ=(120*π/180) and degree = 

3 in the codomain. 
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Fig. 26. The 2nd -level expanded distributions of the 

convergent sets for a = 0.1, θ=(120*π/180) and degree = 

3 in the codomain. 

 

Fig. 25 and 26 show that there are different stable sets on the complex 

plane.  These results are adopted hereby to interpret the observed phenomena 

related to dark energy. Using Fig. 26 as an example, we can read that the 

individual set is with higher angular momentums and lower linear momentums 

and vice versa. While other stable individual set is with higher angular 

momentums and higher linear momentums.  

Quaternion Mapping 

 

On complex plane, however, spin momentum is limited to a single and 

discrete value for performing functional mapping, therefore, we extend to 

quaternion maps for further exploring the chaotic transitions as well as for 

potentially modelling Standard model of elementary particles with set structures 

forming group representations [8], which are the framework of quantum 

formalism for theorizing family structure of elementary particles. 

 
Fig. 27. 3D (Left) and 2D (Right) views of Quaternion Cubic 

Fig. 27 shows 3D (linear-angular-spin) and 2D (linear-spin) views of 

quaternion mapping. Quaternion multiplication: i2 = j2 = k2 = ijk = −1 is 

performed directly with EBF mapping. Fig. 28 shows the 2D views of 
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quaternion mapping for degree=1 through degree = 5 with value of linear 

momentum {a} equal to 0.1. 

 

 
 

Fig. 28. 2D (Right) views of Quaternion Cubic 

 

To propose the set structure for group representation of standard model, in 

this case, we select degree = 3 since other set structures are not sufficient to 

support standard model. Further studies are undertaken to explore this effort. 

For comparing quaternion mapping with complex mapping, we can compare 

transitions, chaos, as well as formation of hierarchical structures. Fig. 29 shows 

linearization of quaternion mapping as value of linear momentum, {a}, 

approaching to unity [12]. 

 

 
 

Fig. 29. Linearization of quaternion mapping as value {a} = 0.99 

 

Remarks 

 

In this paper, we perform complex and quaternion mapping in domain and 

codomain of extended Blaschke product (EBP) in conjunction with linear-

angular-spin momentum triplet. This framework is proposed to model 

challenging physical phenomena, such as  dark matters, dark energy, formation 
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of stellar systems, quantum uncertainty, phase and superconductor transitions 

etc., particularly when the structures evolving from stable forms to chaos, where 

we have observed formation of hierarchical systems. 

 

Further extension from complex mapping to quaternion mapping, we 

observe set structures, which potentially construct group presentations for 

standard model of elementary particles. This effort is undertaken with dark 

matter modelling. 

We can summarize our studies as follows: 

 

 Complex mapping of EBF with linear-angular-spin momentum triplet 

demonstrates structure richness for modelling physical phenomena. 

 The pre-chaos hierarchical convergent sets in domain and codomain 

potentially provide models for formation and structure of galaxy clusters 

and stellar systems, and further for modelling dark matters and dark 

energies. 

 Quaternion mapping of EBF with momentum triplet demonstrates set 

structures in codomain for constructing group representations for Beyond-

Standard-Model efforts 

 This constructed framework is potentially for grand unification theories 

(GUT). 
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