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Abstract. A solution of the ancient Greek problem of trisection of an arbitrary angle 

employing only compass and straightedge that avoids the need for two marks on 

Archimedes marked ruler is presented.  It is argued that although Wantzel [1-5] 1837 

theory concerning non-existence of rational roots of Descartes-Wantzel cubic equation is 
correct it does not imply impossibility of trisection of 60o angle. This is because 

according to the construction method introduced herein square of cosine of the trisected 

angle cos2 is related to cosine of its double cos2 thus requiring extraction of square 
root that is constructible rather than cubic root requiring rational solution of Descartes-

Wantzel equation.  In addition, the earlier formulation of the problem by Descartes the 

father of algebraic geometry is discussed.  If one assumes that the ruler and compass 
employed in the geometric constructions are Platonic ideal instruments then the trisection 

solution proposed herein should be exact. 

 

Keywords: The trisection problem, angle trisection, Wantzel theory, regular polygons, 
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1  Introduction 
 

The classical trisection problem requires trisecting an arbitrary angle 

employing only a compass and a straightedge or unmarked ruler.   The general 

rules concerning the construction instruments and acceptable solution of the 

problem are most eloquently described by Dunham [4] 

 

Indeed, Greek geometers performed trisection by introducing auxiliary 

curves like the quadratrix of Hippias or the spiral of Archimedes, but these 

curves were not themselves constructible with compass and straightedge 

and thus violated the rules of the game.  It is rather like reaching the top of 

Everest by helicopter: It achieves the end by an unacceptable means.  For a 

legitimate trisection, only compass and straightedge need apply. 

     The second rule is that the construction must require only a finite 

number of steps.  There must be an end to it.  An “infinite construction,” 

even if it has trisection as a limiting outcome, is no good.  Construction that 
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goes on forever may be the norm for interstate highways, but it is 

impermissible in geometry. 

      Finally, we must devise a procedure to trisect any angle.  Trisection a 

particular angle, or even a thousand particular angles, is insufficient.  If 

our solution is not general, it is not a solution.” 

 

In this Note an unexpectedly simple solution of the ancient Greek trisection 

problem will be presented that results in Archimedes solution without the two 

marks on his ruler.  Historically, it was proven by Wantzel [1] that the trisection 

of 60o angle by only compass and straightedge is impossible if such a 

construction requires the existence of rational roots of the cubic equation     

 
3

x 3x 1 0                                (1) 

 

as described by Dunham [4]: 

 

(a) If we can trisect the general angle with compass and straightedge, 

 

(b) Then we can surely trisect a 60o angle, 

 

(c) So, we can find a constructible solution of 
3

x 3x 1 0   , 

 

(d) So, we can find a rational solution for 
3

x 3x 1 0   , 

 

(e) And this rational solution must be either c/d = 1 or c/d = 1. 

 

when x is a rational number denoted by the ratio x = c/d. Since by Wantzel’s [1] 

proof Eq. (1) is irreducible and (d) is not true then one must conclude that (a) 

cannot be true.  The algebraic equation (1) in Wantzel’s theory [1] originates 

from the trigonometric equation  

 
3

cos 4cos ( / 3) 3cos( / 3)                 (2)

    

that when applied to the angle 3 with x 2 cos( / 3)    results in Eq. (1).   

A cubic equation of the form   

 
3

x qx r 0                               (3) 

 

was also employed by Descartes [6] in connection to the trisection problem [7] 

  

“Descartes dealt with the problem of angle trisection by reducing the 

problem to a third-degree equation and constructing it via intersection of 

circle and parabola” 
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Descartes proposed a solution of trisection problem by employment of a 

parabola, a non-constructible hence transcendental curve, as shown in Fig. 1 

reproduced from his book of geometry [6]  

 

                                 
 

Fig. 1 Descartes solution of trisection of an arbitrary angle NOP employing 

a parabola GAF [6]. 

 
 

By geometric construction based on the trisected angle shown in Fig. 1 

Descartes arrived at the cubic equation [6] 

 
3

z 3z q 0                                                           (4) 

 

where z = NQ and q = NP.   It is now clear that for θ = 60 = / 3  and a circle 

of unity radius NO = 1 one has NP = q = NO = 1 and both Eq. (4) as well as the 

trigonometric relation 

 
3

sin( / 2) = 3sin( / 6) 4sin ( / 6)                                                         (5) 

 

with the definition z 2 sin( / 6)    lead to  

 
3

z 3z 1 0                                                              (6) 

 

that is identical to Eq. (1) with z x  .  One notes that the chord NQ in Fig. 1 

of Descartes becomes the unknown NQ 2 sin( / 6)z   . In view of the 

equivalence of equations (1) and (6) the failure of Wantzel [1] to reference the 

work of Descartes is unfortunate. The important contributions of Gauss, Ruffini, 

and Abel have been discussed [2, 3]. 

If parallel to Eq. (5) instead of full angle in Eq. (2) one applies the 

trigonometric identity for half angle 
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3
cos( / 2) = 4cos ( / 6) 3cos( / 6)                                                         (7) 

 

and considers  with 2 cos( / 6)y    one arrives at 

 
3

y 3y 3 0                                                                                     (8) 

 

that also does not possess any rational roots.  It is interesting to note that cubic 

equation of the type  

  
3 2 2

x b x b c                       (9)       

 

that was first solved by Omar Khayyam using intersection of conics [8] also 

reduces to equations (1) and (6) when (b i 3, c 1 / 3)    and 

(b i 3, c 1 / 3)   respectively. 

According to Wantzel’s theory of 1837 [1] only rational numbers   

x c / d   that are roots of algebraic equations are acceptable solution to the 

trisection problem. This is because the criterion of geometric constructability 

based on Descartes’s analytic geometry only admits rational operations of 

addition, subtraction, multiplication, division, and extraction of square roots 

thus requiring existence of rational roots of polynomials of various degrees [1-

11]. Over three decades after Wantzel’s work Hermite (1873) and then 

Lindemann (1882) respectively proved the existence of transcendental numbers 

e and [4]. It is known that concerns about basing geometric constructability 

only on the application of geometrical (algebraic) curves and not mechanical 

(transcendental) curves were raised by ancient Greek mathematicians as well as 

Newton [7].   

Clearly, in view of constructability of 17-sided polygon proved by Gauss, 

impossibility of trisection of 60o angle is counterintuitive. The main question 

regarding Wantzel’s proof concerns rational numbers and their connection to 

geometric constructability. Since 2  that is not a rational number is 

nonetheless constructible, the proof rests on non-existence of constructible 

method for extraction of cubic root required by Eq. (1). However, when 

applying Descartes analytical geometry to translate geometric constructions into 

algebraic equations the question of uniqueness arises. In other words, the 

assumption that trisection of 60o angle only involves geometric constructions 

that lead to Eq. (1), hence steps (c)-(e) above, may not be valid. Therefore, 

Wantzel’s proof may not rule out trisection of 60o angle because a construction 

method that does not require extraction of cubic root may exist. Such a situation 

will be somewhat similar to von Neumann’s proof of impossibility of hidden 

variables in quantum mechanics [12] and the fact that later it was found to be 

inapplicable to quantum mechanics not because of an error in the theory but 

rather due to invalid assumptions made in its axiomatic foundation.     
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Finally, the impossibility of trisection of an arbitrary angle poses a 

fundamental paradox concerning reversibility of mathematical operations in 

analytic geometry. In other words, if ruler and compass are capable of tripling 

an arbitrary angle as shown in Fig. 2, why these same instruments could not 

trisect a given arbitrary angle? Since mathematical operations are considered to 

be non-dissipative and do not generate entropy, one expects that ruler and 

compass should be capable of undergoing a reversible process by trisecting an 

arbitrary angle. 

 

2  Archimedes Marked Ruler Solution 
 

Because the solution of trisection problem described in the following 

Section is closely related to Archimedes’ classical contribution known as 

Marked Ruler Solution [4, 5] schematically shown in Fig. 2, the latter solution 

will be discussed first.  Given the arbitrary angle 3 BOA     and circle 

with arbitrary radius R = OB , one places a ruler with two marks at points C 

and D separated by distance R = CD  at point B and moves the ruler to obtain 

Fig. 2 thus leading to the trisected angle CDO = / 3   . Archimedes 

recognized that this solution violated the construction rule since it involved a 

marked ruler and the process known as verging [4, 5].  

                      

                   
 

Fig. 2 Archimedes Marked Ruler solution (with ruler marks at points C and D) 

for trisecting an arbitrary angle θ = 3α = BOA   into = BDA = θ / 3   

constructed on Geogebra. 

 

However, the geometric construction shown in Fig. 2 could be viewed from 

an entirely different perspective namely how to solve the inverse problem of 

constructing the angle 3 BOA     given an arbitrary angle BDA  . 

Hence, given the angle BDA  , one places the compass at point D with 

arbitrary radius R = CD  to find point C and similarly from point C at 
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R = OC  one finds point O and with compass at O one finds the point B at 

R = OB . The External Angle Theorem applied to triangle BDO  gives 

3 BOA    . With unity radius, DC CO OB R 1    the DBG in 

Fig. 2 leads to   

 

2

2 cos cos 3 2 cos cos 3

2 cos 2 1 4 cos 1
cos

     
 

   
                                                  (10) 

 

The second equality in Eq. (10) leads to Descartes-Wantzel cubic Eq. (1) 

whereas the first equality results in 

 

cos 3

2 cos 2 1
cos




 
                                                        (11) 

 

that for  20o gives  

 

1
2cos 20

2cos 40 1
                                                                                   (12) 

 

with the unknown x = 2cos20 now inversely related to cos40.   

To show that Archimedes angle trisection avoids Descartes-Wantzel cubic 

equation (1) one notes that application of External Angle Theorem to DCO  of 

Fig. 2 results in    . Also, in CFO  of Fig. 2 equalities CO = CD = b    

and CD CO R    result in cos = b / R = b  . Similarly, defining  

DH HO=  = a  in DCH  leads to cos = a / R = a  .  Finally, since lines CB 

and CD are aligned, DFO  gives    

 

1 b 1 cos

2a 2cos
cos a

  


   

                                                                      (13) 

 

resulting in the trigonometric identity 

 
2

cos cos 2 2cos 1                                                                             (14) 

 

Hence, according to equation (14), the square of cosine of trisected angle cos2 

is related to cosine of its double cos2 thus requiring extraction of square root 

that is constructible rather than cubic root associated with rational solution of 

Descartes-Wantzel equation. Therefore, Archimedes solution shown in Fig. 2 

avoids the constraint imposed by existence of rational roots of Descartes-

Wantzel equation (1). As a result, even though Wantzel’s proof concerning non-

existence of rational roots of Eq. (1) is valid, it does not rule out trisection of 60o 
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angle because according to Eq. (14) admissible construction algorithm not 

involving extraction of cubic root exists. 

Archimedes solution shown in Fig. 2 is better illustrated in Fig. 3  

 

             
 

Fig. 3 Division of angle θ = BOA  into two parts θ = 2α +    

constructed on Geogebra. 

 

that helps to identify two distinguishable types of partition of an angle  as 

 

2                                                                                                  (15a) 

 
2 3                                                                                          (15b) 

 

Hence, for the problem of dividing angle  into two parts, one has the general 

case in Eq. (15a) and the special case corresponding to angle trisection in Eq. 

(15b). Depending on the relative size of the angles () one has three 

distinguishable cases associated with relative lengths L = (C1D1, C2D2, C3D3) 

versus radius R    

 

L R                                                                              (16a) 

 

L R                                                                                       (16b) 

 

L R                                                                                       (16c) 

 

In view of the continuity of case L > R   across L = R   to L < R  clearly shown 

in Fig. 3, it is reasonable to anticipate that constructible trisection of all angles 

and not just angles such as 45o, 90o, 180o, … should be possible.  In other 
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words, amongst the numbers associated with cosines of angles cos20 = 

0.9396926208, cos20.01 = 0.9396329127, and cos19.99 = 0.9397523002, there 

is nothing unique or especial about the number cos = 0.9396926208.  

Therefore, one expects that given a desired degree of accuracy, cosines of all 

angles should be constructible as ratios of various real numbers that themselves 

are either irrational or transcendental. Amongst infinite number of possible 

partitions 2     , the trisection solution corresponds to the unique case 

2 3        

        A hierarchy of solutions similar to that shown in Fig. 2 but corresponding 

to different values of (a , R )   for a given are shown in Fig. 4. As (a , R )    

changes, either the position H is fixed with the origin O moving to the right as in 

Fig. 4(a) or the location of origin O is fixed with position H moving to the left 

as in Fig. 4(b).  Hence, the solution in Fig. 2 corresponds to a pair (a , R )  values 

amongst the hierarchy of solutions shown in Fig. 4. 

 

     
   
            (a)                                                                               (b) 

                

Fig. 4 Hierarchy of solutions of trisection of θ = BOA  with (a) fixed-H and (b) 

fixed-O coordinates. 

 

In view of Figs. 2-4, in the following Section we do not consider DBG   that 

directly relates angles () leading to Eq. (10) and hence Descartes-Wantzel 

equation (1).  Instead, one considers DFO that relates angles () and leads 

to Eq. (14).  

 

3  Solution of Trisection Problem 
 

Following Archimedes, one looks for the solution of trisection problem by 

attempting to arrive at geometric construction shown in Fig. 2.  For clarity of 

presentation, the solution is first applied to the case 3 75
o

     and the 

historically more important case 
o

3 60    is considered next. The geometric 

construction made on Geogebra is shown in Fig. 5 
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Fig. 5 Trisection of angle 
o

1 1
θ = 3α = EO A = 75  into 

o

3 4 1
α = θ / 3 = B O A = 25  constructed on Geogebra 

                                                                                                                                   

The solution of trisection problem shown in Fig. 5 that resembles the Olympic 

sign, most appropriately for this ancient Greek problem, involves the following 

steps:  

 

(1) On line 
1 2

A A  make two circles at points 
1 2

(O O, ) with arbitrary radius 

2 1
O H = O H R  and draw the line of symmetry NH perpendicular to 

line 
1 2

O O  at midpoint H. Construct the given angle 
1 1

3 EO A     

to be trisected at point 
1

O  to get point E with 
1

O E R  . 

 

(2)  Draw line from point E to point 
2

O to cross line of symmetry NH at 

point
1

C .  

 

(3) Draw two circles at points 
1 2

(O O, )  with radius
2 11 1 1

C O = C O R . 

Extend line 
1

O E  to get point 
1

E  and line 
2

O E   to get point 
1

B on 

circle. Note that by Archimedes solution (Fig. 2) with 
21 1

B O A   

one has
11 1

B O A 3 . 

 

(4) Connect point 
1

E to 
2

O to get point 
2

C  on line of symmetry NH. 

Placing compass at point 
2

C  make arcs at radius 
2 3 2 4 1

C O  = C O = R   

to find new origins 
4 3

(O O ),   on line
1 2

A A .  Make two circles at 

origins 
4 3

(O O, )  with radius 
1

R and extend line 
4 2

O C  to get point 

3
B on circle.  
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(5) Connect point 
3

B  to point
3

O . Since 
4 2 3 2 3 3 1

O C  = O C = O B R=  by 

construction,
3 3 1 1

B O  = E O , and
3 3 1 1

B O O E , in accordance with 

Archimedes solution (Fig. 2) one gets 
o

2 4 2 3
C O H C O H 25      

and External Angle Theorem applied to triangles 
2 4 3

C O O  and 

2 3 3
C O B   give 

o

3 2 3 2 3 3
B C O C B O 2 50     and   

o

3 3 1
B O A 3 75     

 

Figure 6 shows the application of the solution method following steps (1)-(5) 

above to trisect angle
o

1 1
EO A 60=   .  

 

                               
 

Fig. 6 Trisection of angle 
o

1 1
θ = 3α = EO A = 60  into 

o

3 4 1
α = θ / 3 = B O A = 20  constructed on Geogebra. 

 

An equivalent but simpler solution of trisection problem applied to trisect 

angle 
o

1 1
EO A 60=   is shown in Fig. 7. After steps (1)-(2) above, in 

reference to Fig.7, one places compass at point C  making arcs at radius 

3 4 1
CO = CO O E R  to find points 

3 4
(O O ),  on line

1 2
A A .  From points 

3 4
(O O, )  make two lines parallel to 

1 2
(O E O E, ) that cross extensions of the 

lines 
4 3

(O C O C, ) at points (B B, ) , respectively. Draw a line perpendicular to 

line 
1 2

A A  at point 
3

O  to cross line 
4

O B  at point D and draw line 
3

CF O H  to 

get point F. One can show that 
4 3 3

CO H CO H FCO DCF     

and
3 3

CBO BCO 2  . Application of External Angle Theorem to 

4 3
O BO  results in 

4 3 34 1
BO H O BO 2 BO A 3

o
        . 

Hence, angle 
4

BO H
o

    is the trisected angle. 
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Fig. 7  Application of the equivalent but simpler solution for trisection of 
o

1 1
θ = 3α = EO A = 60  into 

o

4
α = θ / 3 = BO H = 20  constructed on Geogebra. 

 

Although trisection of 90o angle by ruler and compass is trivial, to prove 

applicability of the solution method to the special case  

1 1 1
3 B O A = 90

o
     construction on Geogebra is shown in Fig. 8.   

 

            
 

Fig. 8 Trisection of angle 
o

1 1 1
θ = 3α = B O A = 90  into 

o

3 4 1
α = θ / 3 = B O A = 30  constructed on Geogebra. 

 

The solution also applies to angles larger than  > 90
o

  and > 180
o

  since they 

are expressible as 90
o
 and 180

o
  prior to trisection.  The construction 
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procedure (1)-(5) above gives Archimedes solution that is known to be exact but 

removes the need for the two marks on his ruler. 

A simple argument for non-existence of rational root cos cos 20 c / d    

of Eq. (1) could be that this equation is based on a trisection method involving 

ratios of lengths (hence arithmetic numbers) that are associated with circles of 

different radii hence measures.  For example, as shown in Fig. 2, line BE 

defines the smallest angle BEA / 2 1.5   associated with the arc (AB) 

with max 1EA R 2R  . For smaller angles such as BDA / 3      

line BD will have point D lie outside of the circle of radius R1 as shown in Figs. 

2 and 3.  Accordingly, equation (1) of Wantzel that simultaneously relates 

angles BDA
o

    and BOA 3 o
    (Fig. 2) involves 2 1R R  

thus a larger circle with radius 2 1 1R DB 2R R cos / cos     . Inside circle 

of radius R1 dimensionless lengths will involve numbers in the range 

1r (0 r / R 1)= = 
  with subscript  referring to scale. According to a 

scale-invariant definition of hierarchies of embedded coordinates shown in Fig. 

9 [16]     

 

                     

 +  1 1 +  1 0 +  1 1 +1

0 1    1 

  +1

 + 1  = 
2  

 = 
2  - 1

 
 

 
Fig. 9 Hierarchy of normalized coordinates for cascades of embedded 

statistical fields [16]. 

 

the normalized coordinate 

 

21r
y

0

1

1

2
r e dy erf (r )








 
 


                                                   (17) 

 

relates the number-range of adjacent scales as ,1) , )0 0
 

   . Therefore, 

Archimedes solution gives 
1

cos (c / d)
R

  because it relates 
1

(cos
R

 to 

1

(cos 2
R

  inside the circle of radius R1 involving rational numbers defined in 

terms of a common measure. However, this same angle BDA  based on 
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the outer radius R2 cannot be expressed as 
1

(cos )
R

  because it lies outside of 

the number field of R1 circle and requires number field of R2 with a different 

measure for its normalization. The incommensurability of the number fields of 

R1 versus R2 circles, due to their different measures and transcendental nature of 

the number  leads to 
1

(cos 3
R

 and 
2

(cos
R

 in equation (10) thereby 

accounting for non-existence of rational root of Descartes-Wantzel equation (1).  

If one assumes that the ruler and compass employed in geometric 

construction of Archimedes solution shown in Figs. 2 and 5 are Platonic ideal 

instruments, the trisection solution presented herein is exact. Clearly, the precise 

meaning of “exactness” just mentioned is intimately connected to the continuum 

problem [13] thus requiring elaborate mathematics of re-normalization [14], 

Internal Set Theory [15], and scale-invariant definition of hierarchies of 

infinitesimals [16].  An ideal Platonic ruler is defined as an instrument that is 

capable of resolving spatial coordinates at all infinite scales [16]. A Platonic 

compass is an ideal compass that is capable of following all points of a Platonic 

ruler. Therefore, a Platonic ruler can resolve all real numbers on line, including 

irrational and transcendental ones, to any desired accuracy by choosing ever-

smaller measures ad infinitum since each point on the real line contains an 

infinite number of Aristotle’s potential infinite [16]. 

The procedures outlined in steps (1)-(5) can be applied to construct regular 

polygons of various sizes such as nonagon (9-sides) having 40o angles per sector 

shown in Fig. 10. 

 

                                                                         
                                                                       

Fig. 10 Inner and outer circles of regular nonagon with 40o sectors 

 constructed on Geogebra. 

 

The result shown in Fig. 10 also leads to regular 18-sided polygon with 20o per 

sector or its conjugate a regular 20-sided polygon with 18o per sector.  Finally, 

the trisection solution described above could be employed to construct a 

heptagon following the algorithm discovered by Gleason [17].  
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4  Concluding Remarks 
The unexpectedly simple solution shown in Fig. 5 fully justifies the 

intuition of all Trisectors [18, 19] amongst both professional and amateur 

mathematicians since Wantzel’s 1837 paper who believed that solution of the 

trisection problem might indeed be possible. 
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