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Abstract. Two state systems have wide applicability in quantum modelling of var-
ious systems. Here I return to the original two state system, that is Pauli’s electron
with a spin. And show how this system can be interpreted as a vortical fluid. The
similarities and difference between spin flows and classical ideal flows are elucidated.
It will be shown how the internal energy of the spin fluid can partially be interpreted
in terms of Fisher Information.
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1 Introduction

The Copenhagen interpretation of quantum mechanics is probably the most
prevalent approach. This approach defies any ontology quantum theory and
declares it to be completely epistemological in accordance to the Kantian [1]
conception of reality. However, in addition to this approach we see the devel-
opment of another school that believed in the realism of the wave function.
This approach that was championed by Einstein and Bohm [2–4] led to other
interpretations of quantum mechanics among them the fluid interpretation due
to do Madelung [5,6] which interpreted the modulus square as the fluid density
and the phase as a potential of a velocity field. However, this model was limited
to spin less electrons and could not take into account a complete set of electron
attributes even for non relativistic electrons.

A spin dependent non relativistic quantum equation was first introduced
by Wolfgang Pauli in 1927 [7]. This equation contained a Hamiltonian which
is a two dimensional operator matrix. Such two dimensional operator Hamil-
tonians were later found useful for many systems that required quantum mod-
elling among them molecules and solids. Such two dimensional operator matrix
Hamiltonians are abundant in the literature ([8] - [21]). The question now arises
wether such a theory admits a fluid dynamical interpretation. This question
seems of paramount importance as the proponents of the non-realistic Copen-
hagen interpretation of quantum mechanics usually use the concept of spin as a
proof that some elements of nature are inherently quantum and have no classi-
cal analogue or interpretation. A Bohmian interpretation of the Pauli equation
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was given by Holland and others [3], however, the relation of this equation to
fluid dynamics and the concept of spin vorticity were not introduced. This
situation was amended in a recent paper describing spin fluid dynamics [22].

The formulation of Pauli’s theory in terms of a fluid theory leads us directly
to the nineteenth century work of Clebsch [23,24] and the variational formu-
lation of fluid dynamics. Variational principles for non-magnetic barotropic
fluid dynamics are well known. A four function variational formulation of Eu-
lerian barotropic fluid dynamics was derived by Clebsch [23,24] and later by
Davidov [25] who’s main motivation was to quantize fluid dynamics. Since the
work was written in Russian, it was unknown in the west. Lagrangian fluid
dynamics (as opposed to Eulerian fluid dynamics) was formulated through a
variational principle by Eckart [26]. Initial western attempts to formulate Eu-
lerian fluid dynamics in terms of a variational principle, were described by
Herivel [27], Serrin [28] and Lin [29]. However, the variational principles de-
veloped by the above authors were very cumbersome containing quite a few
”Lagrange multipliers” and ”potentials”. The range of the total number of
independent functions in the above formulations ranges from eleven to seven
which exceeds by many the four functions appearing in the Eulerian and conti-
nuity equations of a barotropic flow. And therefore did not have any practical
use or applications. Seliger & Whitham [30] have developed a variational for-
malism depending on only four variables for barotropic flow and thus repeated
the work of Davidov’s [25] which they were unaware of. Lynden-Bell & Katz
[31] have described a variational principle in terms of two functions the load λ
(to be described below) and density ρ. However, their formalism contains an
implicit definition for the velocity v such that one is required to solve a partial
differential equation in order to obtain both v in terms of ρ and λ as well as its
variations. Much the same criticism holds for their general variational for non-
barotropic flows [32]. Yahalom & Lynden-Bell [33] overcame this limitation
by paying the price of adding an additional single function. Their formalism
allowed arbitrary variations and the definition of v is explicit.

A fundamental problem in the fluid mechanical interpretation of quantum
mechanics still exist. This refers to the meaning of thermodynamic quantities
which are part of fluid mechanics. In thermodynamics Concepts like specific
enthalpy, pressure and temperature are derivatives of the specific internal en-
ergy which is given in terms of the equation of state as function of entropy and
density. The internal energy is a part of any Lagrangian density attempting to
describe fluid dynamics. The form of the internal energy can in principle be
explained on the basis of the microscopic composition of the fluid, that is the
atoms and molecules from which the fluid is composed and their interactions
using statistical mechanics. However, the quantum fluid has no microscopic
structure and yet analysis of the equations of both the spin less [5,6] and spin
[22] quantum fluid dynamics shows that terms analogue to internal energies
appear in both cases. The question then arises where do those internal en-
ergies come from, surely one would not suggest that the quantum fluid has a
microscopic sub structure as this will defy the conception of the electron as
a fundamental particle. The answer to this question seems to come from an
entirely different discipline of measurement theory [38,41]. Fisher information
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a basic notion of measurement theory is a measure of the quality of the mea-
surement of any quantity. It was shown [41] that this concept is proportional
to the internal energy of a spin less electron and can explain most parts of the
internal energy of an electron with spin. An attempt to unify most physical
theories using Fisher information is described in a book by Frieden [40]. It is
conjectured that there exist a velocity field such that the Fisher information
will given a complete explanation for the spin fluid internal energy.

We will begin this paper by introducing Fisher information and the concept
of probability amplitude. This will be followed by a discussion of Schrödinger
equation and its interpretation in terms of Madelung fluid dynamics. The vari-
ational principle of Madelung fluid dynamics will be described and its relations
to Fisher information. Then we introduce Pauli’s equation and interpret it
in terms Clebsch variables and discuss the similarities and differences between
Clebsch and spin fluid dynamics and their variational principles. The concept
of Fisher information will be introduced in the frame work of spin fluid dynam-
ics. Finally we discuss the modifications that are needed in the velocity field
to achieve comoving natural spin labels.

2 Fisher Information

Let there be a random variable X with probability density function (PDF)
fX(x). The Fisher Information for a PDF which is translationaly invariant is
given by the form:

FI =

∫
dx

(
dfX
dx

)2
1

fX
(1)

It was shown [38,40] that the standard deviation σX of any random variable is
bounded from below such that:

σX ≥ σXmin =
1

FI
(2)

Hence the higher the Fisher information we have about the variable the smaller
standard deviation we may achieve and thus our knowledge about the value of
this random variable is greater. This is known as the Cramer Rao inequality.
Fisher information is most elegantly introduced in terms of the probability
amplitude:

fX = a2 ⇒ FI = 4

∫
dx

(
da

dx

)2

(3)

In this work we will be interested in a three dimensional random variable des-
ignating the position of an electron, hence:

FI =

∫
d3x(∇fX)

2 1

fX
= 4

∫
d3x(∇a)

2 ≡
∫
d3xFI (4)

In the above FI ≡ 4(∇a)
2

is the Fisher information density.



20 Asher Yahalom

3 Schrödinger’s Theory Formulated in Terms of Fluid
Mechanics

3.1 Background

The modulus-phase formulation of a single particle quantum mechanics, leads
very directly to the equation of continuity and to the Bernoulli (Hamilton-
Jacobi) equation. These equations have formed the basic building blocks in
Bohm’s formulation of non-relativistic Quantum Mechanics [2].

The earliest appearance of the non-relativistic continuity equation is due to
Schrödinger himself [37], obtained from his time-dependent wave-equation:

i~ψ̇ = Ĥψ, Ĥ = − ~2

2m
∇2 + V (5)

in the above i =
√
−1 and ψ is the complex wave function. ψ̇ = ∂ψ

∂t is the partial

time derivative of the wave function. ~ = h
2π is Planck’s constant divided by 2π

and m is the particles mass, V is the potential of a force acting on the particle.
The Lagrangian density L for the non-relativistic electron is written as:

L = − ~2

2m
∇ψ∗ ·∇ψ − V ψ∗ψ +

1

2
i~(ψ∗ψ̇ − ψ̇∗ψ) (6)

If now the modulus a and phase φ are introduced through:

ψ = aeiφ (7)

the Lagrangian density takes the form:

L = − ~2

2m
[(∇a)2 + a2(∇φ)2]− a2V − ~a2

∂φ

∂t
(8)

The variational derivative of this with respect to φ yields the continuity equa-
tion :

δL
δφ

= 0→ ∂ρ̂

∂t
+ ∇ · (ρ̂v̂) = 0 (9)

in which the mass density is defined as: ρ̂ = ma2 and the velocity is v̂ = ~
m∇φ.

Variationally deriving with respect to a leads to the Hamilton-Jacobi equa-
tion :

δL
δa

= 0→ ∂S

∂t
+

1

2m
∇S2 + V =

~2∇2a

2ma
(10)

in which: S = ~φ. The right hand side of the above equation contains the
”quantum correction”. These results are elementary, but their derivation il-
lustrates the advantages of using the two variables, phase and modulus, to
obtain equations of motion that have a substantially different form than the
familiar Schrödinger equation (although having the same mathematical con-
tent) and have straightforward physical interpretations [2]. The interpretation
is, of course, connected to the modulus being a physical observable (by Born’s
interpretational postulate) and to the phase having a similar though somewhat
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more problematic status. (The ”observability” of the phase has been discussed
in the literature by various sources, e.g. in [39] and, in connection with a recent
development, in [10,12].)

Another possibility to represent the quantum mechanical Lagrangian den-
sity is using the logarithm of the amplitude λ = ln a, a = eλ. In that
particular representation the Lagrangian density takes the following symmet-
rical form:

L = −e2λ{ ~
2

2m
[(∇λ)2 + (∇φ)2] + ~

∂φ

∂t
+ V } (11)

3.2 Similarities Between Potential Fluid Dynamics and Quantum
Mechanics

In writing the Lagrangian density of quantum mechanics in the modulus-phase
representation, equation (8) , one notices a striking similarity between this La-
grangian density and that of potential fluid dynamics (fluid dynamics without
vorticity) as represented in the work of Clebsch [30]. The connection between
fluid dynamics and quantum mechanics of an electron was already discussed by
Madelung [5] and in Holland’s book [3]. However, the discussion by Madelung
refers to the equations only and does not address the variational formalism
which we discuss here.

If a flow satisfies the condition of zero vorticity, i.e. the velocity field v is
such that ∇ × v = 0, then there exists a function ν such that v = ∇ν. The
above statement is equivalent to taking a Clebsch representation of the velocity
field but with α = β = 0. In that case one can describe the fluid mechanical
system with the following Lagrangian density:

L̂ = −[
∂ν

∂t
+

1

2
(∇ν)2 + ε(ρ) + V]ρ (12)

by inserting α = β = 0 in L̂ [41]. Taking the variational derivative with respect
to ν and ρ, one obtains the following equations:

∂ρ

∂t
+ ∇ · (ρ∇ν) = 0 (13)

∂ν

∂t
= −1

2
(∇ν)2 − w − V. (14)

The first of those equations is the continuity equation, while the second is
Bernoulli’s equation.

Going back to the quantum mechanical system described by equation (8)
, we introduce the following variable: ν̂ = ~φ

m = S
m . In terms of these new

variables the Lagrangian density in equation (8) will take the form:

L = −[
∂ν̂

∂t
+

1

2
(∇ν̂)2 +

~2

2m2

(∇
√
ρ̂)2

ρ̂
+

1

m
V ]ρ̂ (15)

When compared with equation (12) the following correspondence is noted:

ν̂ ⇔ ν, ρ̂⇔ ρ,
~2

2m2

(∇
√
ρ̂)2

ρ̂
⇔ ε,

1

m
V ⇔ V. (16)
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The quantum ”internal energy” ~2

2m2

(∇
√
ρ̂)2

ρ̂ depends also on the derivative of
the density and in this sense it is non local. This is unlike the fluid case, in
which internal energy is a function of the mass density only. However, in both
cases the internal energy is a positive quantity. We also notice that using the
logarithmic variable λ = ln a we can write ρ̂ = me2λ and thus the quantum
internal energy takes the simple form:

εq =
~2

2m2

(∇
√
ρ̂)2

ρ̂
=

~2

2m2
(∇λ)2. (17)

In this case the Lagrangian density given in equation (15) takes the form:

L = −me2λ[
∂ν̂

∂t
+

1

2
(∇ν̂)2 +

~2

2m2
(∇λ)2 +

1

m
V ] (18)

Unlike classical systems in which the Lagrangian is quadratic in the time deriva-
tives of the degrees of freedom, the Lagrangians of both quantum and fluid
dynamics are linear in the time derivatives of the degrees of freedom.

Finally we note that the concept of quantum internal energy is closely re-
lated to its variational derivative the concept of quantum potential [3] (see the
right side of equation (10)):

Q = − ~2

2m

∇2
√
ρ̂√

ρ̂
. (19)

And also that in the limit ~→ 0 Schrödinger’s quantum mechanics is essentially
a potential fluid flow without pressure or internal energy.

3.3 Madelung flows in terms of Fisher information

As explained in the introduction the quantum Madelung flow does not have
a microstructure that will explain its internal energy. To understand the ori-
gins of this term let us look at the internal energy of equation (17), the term
appearing in the Lagrangian density has the form:

ρ̂εq =
~2

2m2
(∇
√
ρ̂)2 =

~2

2m
(∇a)2. (20)

Comparing this to equation (4) we arrive at the result:

ρ̂εq =
~2

8m
FIq. FIq ≡ 4(∇a)2 (21)

Thus the Lagrangian density of the Madelung flow can be written as:

L = −[
∂ν̂

∂t
+

1

2
(∇ν̂)2 +

1

m
V ]ρ̂− ~2

8m
FIq (22)

The pre-factor ~2

8m seems to appear in every case in which Fisher information
appears in a quantum Lagrangian and may be significant. This is the case also
in spin fluid dynamics as will be shown in the next section.
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4 Spin

Schrödinger’s quantum mechanics is limited to the description of spin less parti-
cles and its fluid dynamics representation is limited to zero vorticity (potential)
flows. This suggests that a quantum theory of particles with spin may have a
fluid dynamics representation which is not limited to zero vorticity and thus
requires the full Clebsch apparatus. The Pauli equation for a non-relativistic
particle with spin is given by:

i~ψ̇ = Ĥψ, Ĥ = − ~2

2m
[∇− ie

~c
A]2 + µB · σ + eA0 + V (23)

ψ here is a two dimensional complex column vector (also denoted as spinor),
Ĥ is a two dimensional hermitian operator matrix, e and µ are the charge
and magnetic moment of the particle, c is the velocity of light in vacuum.
The electromagnetic interaction is described by the vector A and scalar A0

potentials and the magnetic field B = ∇×A. σ is a vector of two dimensional
Pauli matrices which can be represented as follows:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(24)

A spinor ψ satisfying equation (23) must also satisfy a continuity equation of
the form:

∂ρ

∂t
+ ∇ · j = 0. (25)

In the above:

ρ = ψ†ψ, j =
~

2mi
[ψ†∇ψ − (∇ψ†)ψ]− e

mc
Aρ. (26)

The symbol ψ† represents a row spinor (the transpose) whose components are
equal to the complex conjugate of the column spinor ψ. Comparing the stan-
dard continuity equation to equation (25) suggests the definition of a velocity
field as follows [3]:

v =
j

ρ
=

~
2miρ

[ψ†∇ψ − (∇ψ†)ψ]− e

mc
A. (27)

A variational description of the Pauli system can be given using the following
Lagrangian density:

L =
1

2
i~(ψ†ψ̇ − ψ̇†ψ)− ψ†Ĥψ (28)

Holland [3] has suggested the following representation of the spinor:

ψ = Rei
χ
2

(
cos
(
θ
2

)
ei

φ
2

i sin
(
θ
2

)
e−i

φ
2

)
≡
(
ψ↑
ψ↓

)
. (29)
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In terms of this representation the density is given as:

ρ = ψ†ψ = R2 ⇒ R =
√
ρ. (30)

The mass density is given as:

ρ̂ = mρ = mψ†ψ = mR2. (31)

The probability amplitudes for spin up and spin down electrons are given by:

a↑ = |ψ↑| = R

∣∣∣∣cos
θ

2

∣∣∣∣ , a↓ = |ψ↓| = R

∣∣∣∣sin θ2
∣∣∣∣ (32)

Let us now look at the expectation value of the spin:

<
~
2
σ >=

~
2

∫
ψ†σψd3x =

~
2

∫ (
ψ†σψ

ρ

)
ρd3x (33)

The spin density can be calculated using the representation given in equation
(29) as:

ŝ ≡ ψ†σψ

ρ
= (sin θ sinφ, sin θ cosφ, cos θ) (34)

This gives an easy physical interpretation to the variables θ, φ as angles which
describe the projection of the spin density on the axes. θ is the elevation angle
of the spin density vector and φ is the azimuthal angle of the same. The velocity
field can now be calculated by inserting ψ given in equation (29) into equation
(27):

v =
~

2m
(∇χ+ cos θ∇φ)− e

mc
A. (35)

From now on we shall nullify the electromagnetic interaction for simplicity,
hence:

v =
~

2m
(∇χ+ cos θ∇φ). (36)

Comparing equation (36) with the Clebsch form [41] suggest the following iden-
tification:

α = cos θ, β =
~

2m
φ, ν =

~
2m

χ. (37)

Notice that α is single valued, but β and ν are not. Obviously this velocity
field will have a generically non vanishing vorticity:

ω = ∇× v = ∇α×∇β =
~

2m
∇ cos θ ×∇φ =

~
2m

sin θ∇φ×∇θ (38)

If we choose a local coordinate system R, θ, φ it is obvious that the spin vorticity
will be always perpendicular to both the ∇φ and ∇θ directions (excluding the
θ = nπ case in which n is an integer). This means that ω lies in both the φ and θ
surfaces, i.e. the intersection of those surfaces. Hence it must have a component
in the ∇R direction. If R, θ, φ would be standard spherical coordinates this
would mean that the spin vorticity lies in the same direction as the spin density
given in equation (34) but this will not be true in the general case.
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Inserting the representation of ψ given in equation (29) into the Lagrangian
density equation (28) will yield after tedious but straight forward calculations
the Lagrangian density:

LP ≡ −ρ̂[
∂ν

∂t
+ α

∂β

∂t
+ εqt +

V

m
+

1

2
(∇ν + α∇β)2]

εqt[ρ̂, α, β] ≡ εq[ρ̂] + εqs[α, β]

εq[ρ̂] ≡ ~2

2m2

(∇
√
ρ̂)2

ρ̂
=

~2

2m2

(∇R)2

R2

εqs[α, β] ≡ ~2

8m2

(
(∇θ)2 + sin2 θ(∇φ)2

)
=

1

2

((
~

2m

)2
(∇α)2

1− α2
+ (1− α2)(∇β)2

)
(39)

The Lagrangian LP has the same form as the Clebsch Lagrangian L̂ given in
[41]. However, there are some important differences. The internal energy in
the Pauli Lagrangian is positive as for the barotropic fluid but now the internal
energy depends on the derivatives of the degrees of freedom and not just on the
density at given point in this sense this internal energy is non local. Moreover, it
is made of two part the Schrödinger quantum internal energy εq which depends
on the mass density and the spin quantum internal energy εqs that depend on
the spin (vorticity) degrees of freedom. Finally the classical limit ~ → 0 will
eliminate εq but will not eliminate the spin internal energy:

lim
~→0

εqs =
1

2
(1− α2)(∇β)2 (40)

In this sense the Pauli theory has no standard classical limit, although this limit
is a perfectly legitimate classical field theory. Taking the variational derivative
we arrive at the equations of motion:

∂ρ̂

∂t
+ ∇ · (ρ̂v) = 0

dα

dt
=

1

ρ̂
∇ ·

(
ρ̂(α2 − 1)∇β

)
dβ

dt
=

(
~

2m

)2
1

ρ̂
√

1− α2
∇ ·

(
ρ̂

∇α√
1− α2

)
+ α(∇β)2

dν

dt
=

1

2
v2 − V − α2(∇β)2 − Q

m
− εqs

−
(

~
2m

)2
α

ρ̂
√

1− α2
∇ ·

(
ρ̂

∇α√
1− α2

)
. (41)

We notice that in spin fluid dynamics α and β are not comoving scalar fields
(labels) as in the case of ideal barotropic fluid dynamics. We also notice that
external forces are only manifested through the ν equation through V = V

m
as is the case in ideal barotropic fluid dynamics, although spin fluid dynamics
contain additional quantum corrections. We are now in a position to calculate
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the material derivative of the velocity and obtain the spin fluid dynamics Euler
equation:

dv

dt
= −∇(V +

Q

m
)−

(
~

2m

)2
1

ρ̂
∂k(ρ̂∇ŝj∂kŝj) (42)

Taking the curl of this equation we arrive at:

∂ω

∂t
= ∇× (v × ω)−

(
~

2m

)2

∇×
[

1

ρ̂
∂k(ρ̂∇ŝj∂kŝj)

]
(43)

Hence in spin fluid dynamics the vortex line do not move with the fluid as is
the case of ideal barotropic flows. In this respect spin fluid dynamics is more
reminiscent of non-barotropic flows in which the entropy gradient prevents the
vortex line from co-moving. This result is in accordance with the equations
of α and β, those fields are not comoving in spin fluid dynamics and neither
is the intersection of their surfaces which correspond to the vorticity. Hence
although the common Clebsch representation of spin and barotropic flows the
dynamics is quite different and the differences do not vanish in the classical
limit. According to equation (41) the discontinuities of both ν and β are
comoving:

d[ν]

dt
=
d[β]

dt
= 0 (44)

However as the vorticity lines are not comoving only the helicity per vortex
flux is conserved but not the total helicity (see [41]).

4.1 Spin flows in terms of Fisher information

As explained in the introduction the quantum Spin flow does not have a mi-
crostructure that will explain its internal energy. To understand the origins of
this term let us look at the internal energy of equation (39), the term appearing
in the Lagrangian density has the form:

ρ̂εqt = ρ̂εq + ρ̂εqs =
~2

8m

[
4(∇R)2 +R2(∇θ)2 +R2 sin2 θ(∇φ)2

]
(45)

Using the amplitudes of equation (32) and the definition of Fisher information
density of equation (4) we arrive at the result:

FIp = FI↑ + FI↓ = 4
[
(∇a↑)

2 + (∇a↓)
2
]

= 4(∇R)2 +R2(∇θ)2 (46)

Hence:

ρ̂εqt =
~2

8m
FIp +

1

2
ρ̂(1− α2)(∇β)2 (47)

Thus the Lagrangian density of the spin flow given in equation (39) can be
written as:

LP = −ρ̂[
∂ν

∂t
+α

∂β

∂t
+

1

2
(1−α2)(∇β)2 +

V

m
+

1

2
(∇ν+α∇β)2]− ~2

8m
FIp (48)

The pre-factor ~2

8m seems to appear in every case in which Fisher information
appears in a quantum Lagrangian and may be significant.
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4.2 Towards a More complete description in terms of Fisher
information

The definition of the velocity field given in equation (27) is not unique [3]. This
definition is based on the conserved current given in equation (26). However it
is clear that the current:

jtotal = j + ∇×G (49)

is also conserved for an arbitrary G. This will lead to a new fluid dynamics
with a different velocity:

vtotal = v +
1

ρ̂
∇×G. (50)

For instance Holland [3] has suggested to consider the form:

vtotal = v +
~

2mρ̂
∇× (ρ̂ŝ). (51)

Demanding that α is comoving:

∂α

∂t
+ vtotal ·∇α = 0 (52)

and using equation (50) and equation (41) will result in:

1

ρ̂
∇×G ·∇α =

1

ρ̂
∇ ·

(
ρ̂(1− α2)∇β

)
(53)

Or:
∇×G ·∇α = ∇ · (α∇×G) = ∇ ·

(
ρ̂ sin2 θ∇β

)
(54)

Thus a comoving velocity will exist provided there is a Λ such that:

1

ρ̂
∇×G =

sin2 θ

cos θ
∇β +

1

cos θρ̂
∇×Λ (55)

It will be interesting to see if one can define a fluid dynamics such that vortex
lines are comoving. And perhaps when such velocity field is found one will
able to obtain a more accurate correspondence between Fisher information
and internal energy.

5 Conclusion

In this paper the original two state system was revisited, that is Pauli’s electron
with a spin. It was shown how Pauli’s theory can be formulated as a spin fluid
dynamics it terms of a Clebsch representation. The theory is given in terms
of a variational principle and the fluid equations are derived. The similarities
and differences with barotropic fluid dynamics were discussed. Although the
theories have similar Lagrangian densities it is shown that the α and β variables
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are not comoving in spin fluid dynamics nor do the vortex lines move with the
flow. This means that the topological invariants connected to vortex motion
which exist in barotropic flows are not invariant in spin fluid dynamics.

A fundamental problem in the fluid mechanical interpretation of quantum
mechanics still exist. This refers to the meaning of thermodynamic quantities
which are part of fluid mechanics. In thermodynamics Concepts like specific
enthalpy, pressure and temperature are derivatives of the specific internal en-
ergy which is given in terms of the equation of state as function of entropy and
density. The internal energy is a part of any Lagrangian density attempting to
describe fluid dynamics. The form of the internal energy can in principle be
explained on the basis of the microscopic composition of the fluid, that is the
atoms and molecules from which the fluid is composed and their interactions
using statistical mechanics. However, the quantum fluid has no microscopic
structure and yet analysis of the equations of both the spin less [5,6] and spin
[22] quantum fluid dynamics shows that terms analogue to internal energies
appear in both cases. The question then arises where do those internal en-
ergies come from, surely one would not suggest that the quantum fluid has a
microscopic sub structure as this will defy the conception of the electron as a
fundamental particle. The answer to this question comes from an entirely dif-
ferent discipline of measurement theory [38]. Fisher information a basic notion
of measurement theory is a measure of the quality of the measurement of any
quantity. It was shown that this concept is proportional to the internal energy
of a spin less electron and can explain most parts of the internal energy of an
electron with spin.

To conclude we suggest the following future directions of research:

1. Is is conjectured that same analogy found between Pauli’s theory and fluid
dynamics may be found between Dirac’s relativistic electron theory and
relativistic fluid dynamics.

2. Electromagnetic fields were nulled in the present paper. It will be interest-
ing to study the connections between the theory of a charged fluid and the
full Pauli theory which includes electromagnetic interactions.
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