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Abstract. In this work we extend the details of a linear least squares method to
estimate the noise level in chaotic time series which has been previously proposed in
[1]. For this purpose we analyze a non iterative algorithm based on the functional form
obtained by Schreiber in 1993 where the effects of noise on L∞ norm correlation sums
can be quantified via the nonlinear functional. The modified version of the functional
leads to a linear approach that gives satisfactory results for simulated continuous
flow data even for high level of noise contamination (up to 80%). The approach is
especially useful to determine the effective fitting range of data. The range is limited
by the curvature effects of the attractor and fluctuations in small scales. We also seek
for a phenomenological model for the curvature effect depending on the empirical
distribution of estimation errors.
Keywords: linearization, noise level, chaos, curvature effect, data analysis.

1 Introduction

For the last three decades, analysis of chaotic time series has seen a great many
numbers of improvements and has became one of the most demanded approach
while investigating the systems with unpredictable complex behavior. Chaotic
analysis of complex systems usually takes its form through determination of
global structural properties (invariants) and the concept of nonlinear predic-
tion. The system under investigation may be perceived as a random fluctuation
whereas its behavior is controlled by a system of nonlinear deterministic equa-
tions, sometimes disturbed by observational or dynamic noise source. Although
it is possible to separate the noise and signal via conventional spectral tech-
niques, it is not the case for chaotic systems which show broadband spectra.
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For such a situation, it is crucial to comprehend the main source of fluctua-
tion whether it is generated by pure random noise or any nonlinear dynamical
system. If we are interested in the analysis of real world observations such as
financial time series, atmospherical measurements or trajectory of planetary
motions, then the observations are mostly a combination of the two. However
the weights in this combination may be related to the nature of the phenomena.

For noisy observations of a deterministic system, random noise contaminant
is evaluated as a negative effect that give rise to serious bias in the estimations
of statistical quantities related to the dynamics. This effects the reliability
of the information obtained from the system which is supposed to define its
overall behavior. Especially for the algorithms to calculate the invariants of the
chaotic dynamics, noise narrows the effective scaling ranges for computations,
since most of them has been derived under noise-free assumptions. Taking into
account of the effects of random noise on the analytical form of the invariants
is also advantageous to describe the exact amplitude of noise corruption which
can be extracted from the usual invariant statistics. Many of the algorithms
have been proposed using the mentioned framework.

In this work, we give a linear least square algorithm for the noise level de-
termination approach used in [2]. We also seek for a phenomenological model
for the curvature effects depending on the empirical distribution of estimation
errors. The sections are arranged as follows: in Section 2 we give the brief re-
sults of the literature dealing with the noise estimation algorithms depending
on correlation sum. We also describe a new linear algorithm for noise esti-
mation. In Section 3 we discuss about the curvature effects which has strong
bias for the map data while using Schreiber’s approach. In this section we also
propose an empirical model for the characterization of this effect depending on
our high-resolution simulations using synthetic chaotic data. Our conclusions
and future perspectives about some open problems are given in Section 4.

2 A Linear Algorithm for Noise Estimation

In chaotic systems, the spatial distribution of phase space vectors follows the
power law for relatively small length scales compared to the attractor size.
Noise shows its disturbing effects on the distribution of nearby vectors that
are closer than ε distance in phase space. General approach to determine the
noise amplitude is to append the analytical form of the disturbance effects
on to the mathematical form of invariant descriptions. For example Liu et.al
[11] proposed an analytic technique where noise level could be estimated from
the geometrical form of the exponential divergence curves [12]. On the other
hand studies adopting correlation sum approaches exploit the effects of noise
disturbance on the point density over the attractor. Due to the self-similarity,
the point distribution follows the very basic power law. If we consider the
definition of correlation sum approach [13], the point distribution depends on
the fractal dimension of (D2) the system. For the length scales ε → 0 the
distribution is given by,

C(ε) ∝ εD2 (1)
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where C(ε) is defined as,

C(ε) = lim
N→∞

1

N2

N∑
i,j=1

Θ(ε− ‖ si − sj ‖) (2)

In Eq.(2), ‖ · ‖=‖ · ‖L∞ and si,j are embedding vectors satisfying si =
(yi, yi+τ , . . . , yi+(m−1)τ ) that are generated by the time-delay reconstruction of
the time series sequence {yi}Ni=0 with delay time (τ) and embedding dimension
(m). Then the Heaviside step function Θ(·) is used to estimate the probability
of a nearby trajectory vector to fall inside the selected hypercube of side length
2ε.

If the measurements are noisy, then the functional form in Eq.(2) for L2

can be represented by the complicated form given by Smith [3] and a modified
version discussed in [6]. By using the correlation sum definition in [6], Jayawar-
dena et.al [4] gave a linear least squares approach to detect the noise level in
chaotic time series. They have shown that the correlation function in [6] satis-
fies an ordinary linear differential equation where it is possible to extract both
dimension and noise level information by a least squares fitting of calculated
correlation sum data.

Our approach here is different from [4] in terms of the norm definition.
Schreiber [2] has shown that the L∞ norm definition of correlation sum can be
used to estimate the noise amplitude σ via the nonlinear functional g(·). In
this case the effects of noise on the spatial distribution is characterized by (the
usual form),

dm(ε) = dr(ε) + (m− r)g(
ε

2σ
), g(z) =

2√
π

z e−z
2

erf(z)
(3)

The correlation dimension estimates obtained from n dimensional embed-
ding space dn is defined by,

dn = lim
ε→0

lim
N→∞

dn(ε), dn(ε) =
d ln(Cn(ε))

d ln(ε)
(4)

In Eq.(3) embedding space of m dimensions should theoretically satisfy
m > r > 2d, whereas m > r > d give better estimates. It is possible to show
that the noise functional g(z) can be represented in terms of the confluent type
hypergeometric function of the first kind 1F1, such that,

g(z) =

(
1F1(1,

3

2
, z2)

)−1
(5)

where 1F1(a, c, x) can be defined by the integral representation in Eq.(6).

1F1(a, c, x) =
Γ (c)

Γ (a)Γ (c− a)

∫ 1

0

ext ta−1 (1− t)c−a−1 dt c > a > 0 (6)
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We approximate the gaussian noise functional by a stretched exponential
decay function (Eq.(7)), where longer derivations including the asymptotic ex-
pansion of the form in Eq.(5) was explained in [1]. The final form is,

g(z) =
2√
π

z e−z
2

erf(z)
≈ e−α z

λ

(7)

in which (α, λ) are optimized parameters for g(z) (see [1]). Although there
has been successful attempts to directly fitting (global optimum) the exponen-
tials, it is noted that there is still not a direct technique that linearize the expo-
nentially scattered data in to a linear one except ordinary log transformation
(see [7]). In the present work we follow a relatively practical way to linearize
the functional form that was obtained in Eq.(7) by converting the original ex-
ponential fitting problem in to an initial value problem (IVP) which is linear in
its parameters [14]. Since g(z) = exp(−αzλ), then g(z)′ = −αλzλ−1g(z) with
initial condition g(0) = 1. Despite being a basic property of dimension esti-
mates for small length scales, statistical fluctuations of the data accumulated
in g(z) can be efficiently smoothed via the integration based solution. Finally,
the linear least squares algorithm for the solution of the mentioned differential
equation for zi = εi/2σ yields with,

min

(
N∑
i=1

w(zi)

{
g(zi) + αλ

∫ zi

0

zλ−1g(z) dz − g(0)

}2
)

(8)

including the multiplier term w(zi) as the statistical weighting factors.

System NR NR N̂R σ σ̂ Linear Region
N = 20000 (real) (estimated) (real) (estimated)

Henon 0.05 0.0502 0.0518 0.0363 0.0374 0.12-0.77
σs = 0.72210 0.20 0.1995 0.2285 0.1444 0.1653 0.19-0.71

0.50 0.5015 0.6094 0.3629 0.4410 0.17-0.47

Rössler 0.10 0.1004 0.1122 0.8020 0.8957 0.07-0.71
σs = 7.9328 0.40 0.3999 0.4451 3.1933 3.5534 0.16-0.77

0.80 0.8001 0.8698 6.3876 6.9442 0.23-0.88

Lorenz 0.10 0.1001 0.1090 0.7923 0.8628 0.11-0.734
σs = 7.9193 0.40 0.3989 0.4452 3.1575 3.5251 0.15-0.77

0.80 0.7963 0.8548 6.3047 6.7675 0.23-0.70

Table 1. Estimated noise amplitudes (σ̂) by the proposed linear algorithm in Eq.(8).
Number of observations for all series is N = 20000 where transients are discarded.

We test the algorithm on Lorenz, Rössler flow systems and Henon map to
see the efficiency (Table.1). Here and in the following, NR ratio is defined as
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the standart deviation of the noise contaminant σn divided by the standard
deviation of the original noise free signal σs, NR = σn/σs. In Table.1 it
can be observed that the linear algorithm works relatively well for the flow
data whereas it has strong positive bias for maps. It is clear that the noise
estimations for flow systems give reasonably acceptable estimates for extreme
noise levels up to 80% (NR = 0.8) . In Section 3 we discuss the dominant
effect of curvature of the attractor geometry which cause bias for map data.

3 Empirical Modeling of Curvature Effects: The Peak
Function Approach

For some statistics obtained from a chaotic time series, the curvature effect
is dominant. From a technical point of view, the curvature effect is highly
related to the limit assumption of ε → 0 made on the point distribution over
the attractor. In the literature the bias of density estimates sourced from
geometric effects is related to various concepts such as edge or boundary effect.
The sparsity pattern in relatively small scales also cause measurement bias and
related to the lacunarity of the attractor. However the relationship between
noise level and the bias of estimations caused by macroscopic geometric effects
has not been clearly described. In this section our aim is to represent the
results of our simulations and describe the effects of attractor geometry when
the noise level is extremely high.

The point density measurements obey the power law for very small scales.
However for large distances ( ε >> 0 ) the macro-scale geometrical character-
istics of the attractor is dominant for the density measurements which may
violate the power law assumption. This problem comes into prominence espe-
cially for the correlation dimension estimates where they suffer from positive
bias.

Noise level determination algorithms that use information coming from for
both micro-macro geometrical features are highly effected from the curvature
effects. For instance the ones that use the point density measurements. For low
level of noise ratios (NR) the estimated amplitudes are very accurate, whereas
estimated noise levels that are comparable to the size of the original attractor
show strong positive bias up to a 50% relative error rate. Here and in the
following, we define the relative error rate (RE) as the deviation of estimated
noise amplitude σ̂ from the real measurement σn, RE = (σ̂ − σn)/σn . It is
known that Schreiber’s algorithm gives overestimated results for 0.2 < NR <
0.8 which was investigated by Leontitsis et.al in [8]. They have shown that the
maximum norm estimation of noise function can be used as a practical way to
eliminate negative effects curvature. The prediction algorithm has been also
implemented to an adaptive locally projective noise reduction technique in [9].
The algorithm is also useful to describe the overall noise measurements through
non-adaptive techniques while analyzing financial time series [10].

In this section we investigate the empirical properties of curvature effects
and give a phenomenological model for the distribution of error rates. For a
computational description in noise-free systems we refer the reader to the work
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in [15]. Analytic description of the effect is possible, however we do not consider
such a mathematical model here. Here we will investigate another situation:
Destruction of the attractor geometry will eliminate any kind of geometrical
effect, since the chaotic attractor is converted in to a ’geometrically formless’
situation resembling the multivariate normal distribution.

Fig. 1. Destruction of curvature effects on the chaotic Ikeda Map by adding gaussian
noise to data (NR = 0%, 2%, 40%, 300%).

One way to eliminate all the curvature effects from the attractor is to add
appropriate amount of white noise to the original system. In this case, the
macro scale geometric form of the system is destroyed and becomes formless
(Figure(1)). To support the idea, we test the situation on well known chaotic
systems including Henon, Ikeda, Predator-Prey and Lorenz systems. All series
have N = 1500 observations where transients are excluded. We continuously
add normally distributed noise to the systems and estimate the noise level via
the nonlinear version of Schreiber’s algorithm on σ < ε < 4σ interval. When
the noise ratio exceeds 3σs (NR > 3), then any curvature effect is eliminated.
The relative error rates for all chaotic systems has a peak position in the interval
0.5 < NR < 1.5 where the peak level and position seems to depend on the
characteristics of the macroscopic geometry. The common features of error
distributions is concordant with the behavior of a peak function: 0 level error
rates for low noises, a peak point for some noise level and an asymptotic descent
of the error rates until convergence to a minimum, while σn/σs →∞ . Since we
do not make any prior assumptions, we have selected a log-normal type peak
function to describe the situation. The relative error rates of a chaotic system
arisen from the curvature effect is then modeled by h function in Eq.(9).

h(σ) = re0

(
σ

σ + 1

)
+

κ√
2π w σ

e−
(ln(σ/xc))

2

2w2 (9)

If the original series is corrupted by gaussian noise with standard deviation
of ε, it is possible to model the curvature effects via adding increasing amounts
of noise with standard deviation of σadd. The final noise amplitude is estimated
by σ ≈ (σ2

add+ε2)1/2. Since we do not have any information about the relative
error rates, observed standard deviations should be used. By using the form
used in Eq.(9), the peak model yields the final form in Eq.(10),
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Fig. 2. Upper Panel: The right skewed distribution of relative error rate scores with
respect to the noise level for various chaotic systems. The distribution is characterized
by a log-normal peak function of type y = y0 + A√

(2π)w xc
exp(−(ln(x)− xc)2/2w2).

Lower Panel: Modeling curvature effects via peak function approach described in
the text. Left panel: The noise estimates represent significant deviation from the
450 degree line (blue) which can be efficiently modeled by the phenomenological
approach. Right panel: The simulation results for four different chaotic systems and
moving average smoothed curves.

H(σadd) = (σ2
add + ε2)1/2 (re0(

(σ2
add + ε2)1/2

(σ2
add + ε2)1/2 + 1

)

+
κ√

2π w (σ2
add + ε2)1/2

e−
(ln((σ2

add
+ε2)1/2/xc))

2

2w2 + 1) (10)

which is obviously extremely nonlinear, but still useful to describe the ef-
fects. From Figure.(2), it can be seen that the fitting of error function H
accommodates well with the simulated data (significance of model and param-
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eters). If the noise level let one to describe the position of peak error rate, it is
possible to make better estimates for the exact level of noise via the peak func-
tion approach. On the other hand, for noise levels NR >> 1 where it goes far
beyond the peak position, it would be difficult to make reasonable estimations
for exact noise amplitude due to the nonlinearity of H(·) suffering from local
minima.

4 Results and Discussion

In this work we have discussed a linear least squares method to estimate the
noise level in chaotic time series. The efficiency of the method on map and
flow data are discussed. Although the proposed linear approach is used for to
estimate the noise level of a chaotic time series, it could also be used to deter-
mine the initial feasible estimates for nonlinear algorithms. Positive bias still
exists for linear approach where we have proposed a novel approach to model
the curvature effects depending on the distribution of estimation errors. Our
future investigations will be based on the analytical description of curvature
effect.
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