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Abstract. In the study of quantum chaos relating to entanglement dynamics, it is
found that local dynamical features in the classical phase space, such as the tori in
regular island and the chaotic sea, can have subtle influence on the entanglement
production rate, the maximum entanglement entropy etc. In this paper, we revisit
the two-coupled quartic oscillator system, whose entanglement dynamics was shown
by Chung and Chew (2009, Phys. Rev. E, 80 016204) to be insensitive to these local
dynamical features. By means of a comprehensive set of initial coherent states, and
by considering both the quantum and semi-classical regime, we provide additional
numerical evidence and physical insights that support the conclusion that the en-
tanglement dynamics of this system is dependent on the global classical dynamical
regime while insensitive to the local classical behavior.
Keywords: Quantum-classical correspondence, Entanglement dynamics, Quantum
chaos, Classical chaos, Coupled quartic oscillators, Quantum information processing.

1 Introduction

The problem of quantum-classical correspondence is related to the subject of
quantum chaos. The study of how a classically chaotic system has a mysterious
influence on its quantized counterpart has made quantum chaos a fasinating
subject. The influence of chaos, instead of leading to an exponential divergence
of quantum wavefunctions through minute changes of initial conditions (which
is not possible since Schrödinger equation is linear), left its imprint through
quantum properties such as the energy level statistics, the localization, or the
scarring of the wavefunction [1].

Recently, there is great interest in the study of the effect of classical chaos on
the entanglement between composite quantum system [2–7]. This results from
the fact that entanglement is an important resource for information processing
in the quantum regime. In particular, its non-classical feature has enabled the
creation of novel information processing paradigms. For example, entangle-
ment has important application in superdense coding, quantum teleportation
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and quantum cryptography [8]. The importance of entanglement for quantum
information processing suggests the need to generate entangled quantum states.
A particular approach to create entangled quantum states is by means of quan-
tum harmonic and anharmonic oscillator systems. Experimentally, quantum
harmonic oscillator system has been achieved in the form of a micromechanical
resonators strongly coupled to an optical field [9]. An extension to this sys-
tem has also been proposed with the resonator interact with a trapped atom
through a quantized light field in a laser driven high-finesse cavity [10]. On
the other hand, quantum anharmonic oscillator system can be implemented by
optical fibre with Kerr nonlinearities. By injecting coherent states into such a
fibre, two Schrödinger cat-like states can be generated [11].

The consideration of the effects of chaos on entanglement have led to the
studies of many diverse systems beyond quantum anharmonic oscillator sys-
tems. These systems are coupled kicked tops [2,7], Rydberg molecules [5]
and interacting spin systems [6]. Generically, it is found in these investiga-
tions that when the classical system is more chaotic, the corresponding quan-
tized system has more entanglement and also a faster entanglement production
rate, although there are some notable exceptions [12,13]. In addition, the fre-
quency of oscillation of the entanglement dynamics increases as the classical
system becomes more chaotic. An important observation made by many re-
searchers [4,5,2] is that the magnitude and production rate of the entanglement
is dependent on the local dynamical structure of the corresponding classical
phase space. This places the existence of a universal quantum-classical corre-
spondence in terms of dynamcial entanglement production in a doubtful posi-
tion. However, we have shown in [3] that contrary to such a local phase space
dependence, it is possible for the entanglement dynamics to depend solely on
the global classical dynamical regime.

In this paper, we will present our investigation on the correspondence be-
tween classical system and its quantized version through the entanglement en-
tropy. More precisely, for the classical systems, we shall study its dynamics in
the classical phase space and then relate it to the corresponding entanglement
dynamics in the quantized system. We shall study such quantum-classical cor-
respondence in an anharmonic oscillator system that can exhibit regular, mixed
and purely chaotic dynamics. By perfoming detailed numerical computations,
we have strengthed our earlier conclusion in [3] that it is possible for the en-
tanglement dynamics to depend on the global classical dynamical regime.

2 The Coupled Quartic Oscillator

To begin, let us introduce our coupled nonlinear oscillator system. It is the
coupled quartic oscillator given by the following Hamiltonian [14]:

H =
1

2

(
p21 + p22

)
+ 3x41 + x42 − λx21x22 , (1)

where p1 and p2 are the momenta, x1 and x2 the positions of the oscillator, and
λ is the coupling constant. Depending on the value of λ, the classical dynamics



Chaotic Modeling and Simulation (CMSIM) 3: 451–459, 2012 453

of this coupled quartic oscillator can display three distinct features: (a) regular
dynamics (see Fig. 1), (b) a mixture of regular and chaotic dynamics (see Fig.
2), and (c) purely chaotic dynamics (see Fig. 3). Note that Figs. 1 to 3 gives
the Poincaré section of the dynamics in the x2-p2 plane with x1 = 0 and p1 > 0.

Fig. 1. Classical phase portrait for the coupled quartic oscillator system with coupling
constant λ = 0.4. Note that twenty-nine equally spaced points are selected on the
straight line with their corresponding coherent states serve as initial conditions for
the entanglement dynamics evaluation.

Next, we proceed to quantize the coupled quartic oscillator system and
investigate its quantum dynamics. This requires us to replace xi and pi with
the corresponding operators x̂i and p̂i. We select the product states |n1〉⊗ |n2〉
as our basis for the numerical computation. |n1〉 and |n2〉 are the eigenvectors
of the harmonic oscillator. With this basis, we can express the Schrödinger
equation in the following form:

ih̄
d

dt
〈m1m2|ψ(t)〉 =

M∑
n1=0

M∑
n2=0

〈m1,m2|Ĥ|n1, n2〉〈n1, n2|ψ(t)〉 , (2)

where Ĥ is the quantized Hamiltonian and |ψ(t)〉 the quantum state at time t of
the two-coupled quartic oscillator. For the sake of computation, we have trun-
cated the size of the basis to M . Thus, 〈m1,m2|Ĥ|n1, n2〉 is a four-dimensional
matrix. The initial states |ψ(0)〉 are chosen to be the coherent states |α1〉⊗|α2〉,
which provides the connection between the classical and quantum domains.
More specifically, the center of the coherent state corresponds precisely to the
point (x1, p1, x2, p2) in the classical phase space, with αl = (xl + ipl) /

√
2.

With the defined initial quantum state, we evolve the states of the bipartite
quantum system numerically through Eq. (2). Note that more efficient com-
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Fig. 2. Classical phase portrait for the coupled quartic oscillator system with coupling
constant λ = 0.8. Note that twenty-nine equally spaced points are selected on the
straight line with their corresponding coherent states serve as initial conditions for
the entanglement dynamics evaluation.
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Fig. 3. Classical phase portrait for the coupled quartic oscillator system with coupling
constant λ = 2.7. Note that twenty-nine equally spaced points are selected on the
straight line with their corresponding coherent states serve as initial conditions for
the entanglement dynamics evaluation.
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putation can be achieved with the two-step approach [15–17] since it is suited
for the evaluation of the time-evolved states of nonlinear quantum systems.

The entanglement dynamics is determined through the time variation of
the von Neumann entropy, which is defined as follow:

SV N (t) = −Tr (ρ1(t) ln ρ1(t)) , (3)

where
ρ1(t) = Tr2 (ρ(t)) (4)

is the reduced density matrix of oscillator 1. It is obtained by taking the partial
trace over oscillator 2 on the density matrix ρ(t) of the two-coupled quantum
quartic oscillator, as shown in Eq. (4). Note that since

ρ(t) = |ψ(t)〉〈ψ(t)|

is pure as our system is assumed to be protected from the decohering en-
vironment, the von Neumann entropy is an applicable measure of quantum
entanglement. Furthermore, the replacement of ρ1(t) by the reduced density
matrix of oscillator 2,

ρ2(t) = Tr1 (ρ(t)) ,

in Eq. (3) would not make any difference to the evaluation of the entanglement
entropy.

In [3], we had computed the entanglement dynamics by picking coherent
states which correspond to points in the classical phase space for each of the
dynamical regimes, i.e., the regular, the mixed and the chaotic regimes (refer
to Figs. 3 to 5 in [3]). For example, a selection of points in the mixed phase
space with some in the regular islands and some in the chaotic sea had been
picked (see Fig. 4 of [3]) with the corresponding coherent states serve as initial
points for the entanglement dynamics calculation.

We had performed this computation in the quantum and semi-classical
regimes. We had employed the parameter R = h̄/Λ to quantify the “quan-
tumness” of the system. Note that Λ = |α1|2 + |α2|2 is the action of the system
with α1 and α2 being the coordinates of the coherent state. When R� 1, the
system is in the quantum regime. On the contrary, when R � 1, the system
is in the semi-classical regime. The semi-classical regime can be approached in
either of two ways: h̄ → 0 or Λ → ∞. The latter case in fact corresponds to
the high-energy approximation in the semi-classical theory. The former case is
the one adopted in this paper.

Our earlier results [3] show that the entanglement entropy is much larger
in the semi-classical regime. We observe that for both the quantum and semi-
classical regimes, the entanglement production is the highest in the pure chaos
case, follow by the mixed case, and is lowest in the regular case. We also ob-
serve that when the classical system becomes more chaotic, the frequency of
oscillation of the entanglement dynamics increases. These results correspond
to those reported in the literature. However, for each of the regular, mixed and
chaotic case, we observe that identical results are obtained when different ini-
tial conditions are employed. This is a surprising result that differs from others
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in the literature. This result has led us to conclude in [3] that it is possible for
the entanglement dynamics to depend entirely on the global dynamical regime
while insensitive to the local classical behavior.

3 Results and Discussion

One may question the conclusion at the end of the last section as follow: is
it possible that such global dependence arises from the choice of the initial
coherent states? This query is especially relevant for the mixed case as the
chosen initial coherent states may lie too close to the edge of the regular island,
thus allowing it to sample the chaotic sea surrounding the island. This may
have obscured the local dynamical structure and led to the identical results
observed.

In this section, we present numerical results that will address these issues.
To do this, we need to check the conclusion with a more extensive choice of
initial conditions. In consequence, we select a set of initial conditions that lie
along the straight lines as shown in Figs. 1, 2 and 3 for the regular, mixed and
chaotic case respectively. By considering twenty-nine initial conditions that are
equally and closely spaced on each of these straight lines, we can ascertain the
validity of the conclusion since these initial conditions correspond to different
local dynamical features of the classical phase space.
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Fig. 4. The maximum and average entanglement entropy versus the basis size M .
Note that the computation is based on λ = 0.8.

Due to the existence of scale invariance in the classical dynamics of Eq.
(1) [14], we can select an energy E = 0.0001 that is small so that we do not
need to use a large basis size for our numerical calculation of the entanglement
dynamics. Our computations, as illustrated in Fig. 4, shows that a size of
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M = 135 is sufficient to ensure convergence for our calculation. With this
basis size, we determine the maximum entanglement entropy

SM = max
t
SV N (t)

and the mean entanglement entropy

Savg =
1

T

∫ T

0

SV N (t)dt

of the entanglement dynamics, which are initiated by coherent states that cor-
respond to the set of initial conditions discussed above. In our computation, we
consider h̄ = 1 for the quantum regime and h̄ = 0.00001 for the semi-classical
regime. This implies an uncertainty circle with size of order 0.7 for the quantum
regime and 0.002 for the semi-classical regime.
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Fig. 5. The maximum and average entanglement entropy for initial coherent state
in the quantum regime with x1 = x2 = 0 but different values of p1 and p2. From
top to bottom, we have SM and Savg for λ = 2.7, SM for λ = 0.8 and 0.4, Savg for
λ = 0.8 and 0.4. Note that the parameters used are h̄ = 1, M = 135 and E = 0.0001.
Note that the circles and squares represent a sample of the chaotic and regular initial
conditions respectively.

Our results for the regular case (dashed lines in Figs. 5 and 6) show a
constant SM and Savg for all the initial coherent states in both the quantum
and semi-classical regime. This is in marked contrast to [4] where initial co-
herent states that situate on the outer tori have a larger entanglement entropy
than those that locate at the inner tori. Interestingly, the outcome here for a
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Fig. 6. The maximum and average entanglement entropy for initial coherent state in
the semi-classical regime with x1 = x2 = 0 but different values of p1 and p2. From
top to bottom, we have SM for λ = 2.7 and 0.8, Savg for λ = 2.7, SM for λ = 0.4,
Savg for λ = 0.8 and 0.4. Note that the parameters used are h̄ = 0.00001, M = 135
and E = 0.0001. Note that the circles and squares represent a sample of the chaotic
and regular initial conditions respectively.

nonlinear oscillator system is analogous to that of the linear systems discussed
in [3].

In addition, Figs. 5 and 6 also show that SM and Savg attain a constant
value for all the chosen initial coherent states in the mixed case (solid lines
in the figures). This may be explained by the fact that the uncertainty circle
of the initial coherent states in the quantum regime is large enough to sam-
ple a mixture of different local phase space structures, leading to the uniform
results. However, with similar results obtained in the semi-classical regime,
this explanation becomes untenable since the uncertainty circle of the initial
coherent states is sufficiently small in this case for the differentiation of local
phase space structure.

Finally, we observe a constant SM and Savg for the chaotic case as shown
by the dotted lines in Figs. 5 and 6.

4 Conclusions

By means of a more comprehensive range of initial coherent states that cor-
respond to diverse local dynamical structures in the classical phase space, we
have shown that SM and Savg are insensitive to the choice of the initial coher-
ent states. This is shown to be true for the regular, mixed and chaotic cases in
both the quantum and semi-classical regimes for the coupled quartic oscillator
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system. We have thus reaffirmed our earlier conclusion that it is possible for
the entanglement dynamics to depend solely on the global classical dynamical
regime while insensitive to the local classical behavior. An advantage of models
that possess such global dependence is that they can serve to generate encoding
subspaces that are stable against any errors in the preparation of the initial
separable coherent states. We believe that these encoding subspaces will be
significant in the design of robust quantum information processing protocol.
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Abstract: Atmospheric flows exhibit selfsimilar fractal spacetime fluctuations 
manifested as the fractal geometry to global cloud cover pattern and inverse power law 
form for power spectra of meteorological parameters such as windspeed, temperature, 
rainfall etc. Inverse power law form for power spectra indicate long-range spacetime 
correlations or non-local connections and is a signature of selforganised criticality 
generic to dynamical systems in nature such as river flows, population dynamics, heart 
beat patterns, etc. The physics of selforganised criticality is not yet identified. The author 
has developed a general systems theory which predicts the observed selforganised 
criticality as a signature of quantumlike chaos in dynamical systems. The model 
predictions are (i) The fractal fluctuations can be resolved into an overall logarithmic 
spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. 
(ii) The probability distribution represents the power (variance) spectrum for fractal 
fluctuations and follows universal inverse power law form incorporating the golden 

mean. Such a result that the additive amplitudes of eddies when squared represent 
probability distribution is observed in the subatomic dynamics of quantum systems such 
as the electron or photon. Therefore the irregular or unpredictable fractal fluctuations 
exhibit quantumlike chaos. (iii) Atmospheric aerosols are held in suspension by the 
vertical velocity distribution (spectrum). The atmospheric aerosol size spectrum is 
derived in terms of the universal inverse power law characterizing atmospheric eddy 
energy spectrum. Model predicted spectrum is in agreement with the following two 
experimentally determined atmospheric aerosol data sets, (i) SAFARI 2000 CV-580 
Aerosol Data, Dry Season 2000 (CARG) (ii) World Data Centre Aerosols data sets for 
the three stations Ny Ålesund, Pallas and Hohenpeissenberg. 
Keywords: Universal atmospheric aerosol size spectrum, SAFARI 2000 aerosol size 
spectra, World data center aerosol size spectra, Fractal fluctuations in atmospheric flows, 
Chaos and nonlinear dynamics..  

 
1    Introduction 

Information on the size distribution of atmospheric aerosols is important for the 
understanding of the physical processes relating to the studies in weather, 
climate, atmospheric electricity, air pollution and aerosol physics. Aerosols 
affect the radiative balance of the Earth/atmosphere system via the direct effect 
whereby they scatter and absorb solar and terrestrial radiation, and via the 
indirect effect whereby they modify the microphysical properties of clouds 
thereby affecting the radiative properties and lifetime of clouds [1]. At present 
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empirical models for the size distribution of atmospheric suspended particulates 
is used for quantitative estimation of earth-atmosphere radiation budget related 
to climate warming/cooling trends. The empirical models for different locations 
at different atmospheric conditions, however, exhibit similarity in shape 
implying a common universal physical mechanism governing the organization 
of the shape of the size spectrum. 
Atmospheric flows exhibit selfsimilar fractal fluctuations generic to dynamical 
systems in nature. Self-similarity implies long-range space-time correlations 
identified as self-organized criticality [2]. The physics of self-organized 
criticality ubiquitous to dynamical systems in nature and in finite precision 
computer realizations of non-linear numerical models of dynamical systems is 
not yet identified. During the past three decades, Lovejoy and his group [3] have 
done extensive observational and theoretical studies of fractal nature of 
atmospheric flows and emphasize the urgent need to formulate and incorporate 
quantitative theoretical concepts of fractals in mainstream classical 
meteorological theory. The empirical analyses summarized by Lovejoy and 
Schertzer [3] directly demonstrate the strong scale dependencies of many 
atmospheric fields, showing that they depend in a power law manner on the 
space–time scales over which they are measured. In spite of intense efforts over 
more than 50 years, analytic approaches have been surprisingly ineffective at 
deducing the statistical properties of turbulence. Conclusions about 
anthropogenic influences on the atmosphere can only be drawn with respect to 
the null hypothesis, i.e. one requires a theory of the natural variability, including 
knowledge of the probabilities of the extremes at various resolutions. At present, 
the null hypotheses are classical so that they assume there are no long-range 
statistical dependencies and that the probabilities are thin-tailed (i.e., 
exponential). However observations show that cascades involve long-range 
dependencies and (typically) have fat tailed (algebraic) distributions in which 
extreme events occur much more frequently and can persist for much longer 
than classical theory would allow [3]. 
A general systems theory for the observed fractal space-time fluctuations of 
dynamical systems [4-7] helps formulate a simple model to explain the observed 
vertical distribution of number concentration and size spectra of atmospheric 
aerosols. The atmospheric aerosol size spectrum is derived in terms of the 
universal inverse power law characterizing atmospheric eddy energy spectrum. 
A universal (scale independent) spectrum is derived for suspended atmospheric 
particulate size distribution expressed as a function of the golden mean τ (≈ 
1.618), the total number concentration and the mean volume radius (or 
diameter) of the particulate size spectrum. Knowledge of the mean volume 
radius and total number concentration is sufficient to compute the total 
particulate size spectrum at any location. The physical basis and the theory 
relating to the model are discussed in Sec. 2. The model predictions are (i) 
Fractal fluctuations can be resolved into an overall logarithmic spiral trajectory 
with the quasiperiodic Penrose tiling pattern for the internal structure. (ii) The 
probability distribution of fractal space-time fluctuations represents the power 
(variance) spectrum for fractal fluctuations and follows universal inverse power 
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law form incorporating the golden mean. Such a result that the additive 
amplitudes of eddies when squared represent probability distribution is observed 
in the subatomic dynamics of quantum systems such as the electron or photon. 
Therefore the irregular or unpredictable fractal fluctuations exhibit quantumlike 
chaos. (iii) Atmospheric aerosols are held in suspension by the vertical velocity 
distribution (spectrum). The normalised atmospheric aerosol size spectrum is 
derived in terms of the universal inverse power law characterizing atmospheric 
eddy energy spectrum. Model predicted spectrum is in agreement with the 
following two experimentally determined atmospheric aerosol data sets, (i) 
SAFARI 2000 CV-580 Aerosol Data, Dry Season 2000 (CARG) (ii) World 
Data Centre Aerosols data sets for the three stations Ny Ålesund, Pallas and 
Hohenpeissenberg. 
 
2    General systems theory for atmospheric aerosol size spectrum 

The atmospheric eddies hold in suspension the aerosols and thus the size 
spectrum of the atmospheric aerosols is dependent on the vertical velocity 
spectrum of the atmospheric eddies. Atmospheric air flow is turbulent, i.e., 
consists of irregular fluctuations of all space-time scales characterized by a 
broadband spectrum of eddies. The suspended aerosols will also exhibit a 
broadband size spectrum closely related to the atmospheric eddy energy 
spectrum. 
A general systems theory for turbulent fluid flows predicts that the eddy energy 
spectrum, i.e., the variance (square of eddy amplitude) spectrum is the same as 
the probability distribution P of the eddy amplitudes, i.e. the vertical velocity W 
values. Such a result that the additive amplitudes of eddies, when squared, 
represent the probabilities is exhibited by the subatomic dynamics of quantum 
systems such as the electron or photon. Therefore the unpredictable or irregular 
fractal space-time fluctuations generic to dynamical systems in nature, such as 
atmospheric flows is a signature of quantum-like chaos. The general systems 
theory for turbulent fluid flows predicts [4-7] that the atmospheric eddy energy 
spectrum follows inverse power law form incorporating the golden mean τ [7] 

and the normalized deviation t for values of t ≥ 1 and t ≤ -1 given as 
tP 4τ−= . 

Normalised deviation t ranging from -1 to +1 corresponds to the primary eddy 
growth region. In this region the probability density distribution P is shown to 

be equal to 
kP 4τ−=  where k is the fractional volume dilution by eddy mixing 

equal to 
z

k
2

π
= where z is the eddy length scale ratio ranging from 2 to 10 

and the corresponding to t values are equal to 1.1-(z/10). 
The normalised height is also represented by z. The model predicted probability 
density distribution P along with the corresponding statistical normal 
distribution with probability values plotted on linear and logarithmic scales 
respectively on the left and right hand sides are shown in Figure 1. The model 
predicted probability distribution P for fractal space-time fluctuations is very 
close to the statistical normal distribution for normalized deviation t values less 
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than 2 as seen on the left hand side of Figure 1. The model predicts 
progressively higher values of probability P for values of t greater than 2 as seen 
on a logarithmic plot on the right hand side of Figure 1 and may explain the 
reported fat tail for probability distributions of various physical parameters [8]. 
 

 
Figure 1. Probability distribution of fractal fluctuations. Comparison of 
theoretical with statistical normal distribution. 
 
The atmospheric eddies hold in suspension the aerosols and thus the size 
spectrum of the atmospheric aerosols is dependent on the vertical velocity 
spectrum of the atmospheric eddies. Atmospheric air flow is turbulent, i.e., 
consists of irregular fluctuations of all space-time scales characterized by a 
broadband spectrum of eddies. The suspended aerosols will also exhibit a 
broadband size spectrum closely related to the atmospheric eddy energy 
spectrum. 
The normalized aerosol size spectrum is obtained by plotting a graph of 

normalized aerosol concentration 
( )

tP
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2

n 2
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lnd

d1
τ=  versus the normalized 

aerosol radius 
32

n
t

arrr τ==  where ar  is the mean volume radius, � the 

total number concentration and d� the number concentration in the size interval 
dr. The normalized aerosol size spectrum is derived directly from the universal 
probability density P distribution characteristics of fractal fluctuations and is 
independent of the normalised height z of measurement and is universal for 
aerosols in turbulent atmospheric flows. The aerosol size spectrum is computed 
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starting from the minimum size, the corresponding probability density P refers 
to the cumulative probability density starting from 1 and is computed as equal to 

tP 4τ1 −−= . The model predicted universal scale-free aerosol size spectrum is 
shown in Figure 2. 

 
Figure 2. Model predicted aerosol size spectrum 

 
3    Comparison of Observed and Model Predicted Aerosol Size 

Spectra 

The following two data sets were used for comparison of observed with model 
predicted aerosol size spectrum:  
(i) SAFARI 2000 CV-580 Aerosol Data, Dry Season 2000 (CARG). The Cloud 
and Aerosol Research Group (CARG) of the University of Washington 
participated in the SAFARI-2000 Dry Season Aircraft campaign with their 
Convair-580 research aircraft. This campaign covered five countries in southern 
Africa from August 10 through September 18, 2000. The UW Technical Report 
for the SAFARI 2000 Project 
(http://daac.ornl.gov/data/safari2k/atmospheric/CV-580/comp/SAFARI-
MASTER.pdf) gives a complete detailed guide to the extensive measurements 
obtained aboard the UW Convair-580 aircraft in support of SAFARI 2000 
[Hobbs PV. SAFARI 2000 CV-580 Aerosol and Cloud Data, Dry Season 2000 
(CARG). Data set. Available on-line (http://www.daac.ornl.gov/) from Oak 
Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, 
Tennessee, U.S.A. doi:10.3334/ORNLDAAC/710, 2004]. The mean and 
standard deviation of normalised aerosol size spectrum was computed for 
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245037 and 189761 individual spectra respectively for pcasp and tsi3320 
aerosol measurement instrument systems and shown in Figure 3 along with the 
model predicted universal normalized aerosol size spectrum. 
(ii) Aerosol size distributions for three land stations (Ny Ålesund, Pallas and 
Hohenpeissenberg) were obtained from World Data Centre for Aerosols 
(http://wdca.jrc.it/data/parameters/data_size.html) at The Aerosol Size 
Distribution Data Archive. The annual means (2001 to 2004 for the first two and 
2001 to 2005 for the third staion) normalized aerosol size spectra with 
associated standard deviations were computed for the three stations Ny Ålesund, 
Pallas and Hohenpeissenberg for each year and shown in Figure 4. 
 

 
Figure3. Average aerosol size spectrum for SAFARI 2000 CV-580 aerosol 
size spectra and comparison with model prediction. Error bars indicate one 
standard deviation on either side of the mean  
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Figure 4. Mean aerosol size spectrum for World data center aerosols data sets 
and comparison with model prediction. Error bars indicate one standard 
deviation on either side of the mean 
 
4    Conclusions 

There is a close agreement between the model predicted and the observed 
aerosol size distributions for the two aerosol data sets (SAFARI 2000 and World 
Data Center) used in the study. SAFARI 2000 aerosol size distributions reported 
by Haywood et al. [1] also show similar shape for the distributions. The 
physical hypothesis relating to the dynamics of the atmospheric eddy systems 
proposed in the present paper can be extended to other planetary, solar and 
stellar atmospheres. 
 
References 

1. J. Haywood, P. Francis, O. Dubovik, M. Glew and B. Holben. Comparison of aerosol 
size distributions, radiative properties, and optical depths determined by aircraft 
observations. Journal of Geophysical Research, 108:NO. D13, 8471, pp. SAF 7 – 1 
to 12, 2003. doi:10.1029/2002JD002250. 

2. P .C. Bak, C. Tang and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A., 
38:364–374, 1988. 

3. S. Lovejoy and D. Schertzer. Towards a new synthesis for atmospheric dynamics: 
space-time cascades. Atmos. Res., 96:1-52, 2010. 
doi:10.1016/j.atmosres.2010.01.004. 
http://physics.mcgill.ca/~gang/eprints/eprintLovejoy/neweprint/Atmos.Res.8.3.10.fi
nalsdarticle.pdf. 



A. M. Selvam 468 

4. A. M. Selvam. Deterministic chaos, fractals and quantumlike mechanics in 
atmospheric flows. Can. J. Phys., 68:831–841, 1990. 
http://xxx.lanl.gov/html/physics/0010046 

5. A. M. Selvam. A general systems theory for chaos, quantum mechanics and gravity for 
dynamical systems of all space-time scales. ELECTROMAG�ETIC PHE�OME�A, 
5 No.2 (15):160–176, 2005. http://arxiv.org/pdf/physics/0503028; 
http://www.emph.com.ua/15/selvam.htm. 

6. .A. M. Selvam. Chaotic Climate Dynamics. Luniver Press, U.K., 2007. 

7. A. M. Selvam. Fractal fluctuations and statistical normal distribution. Fractals, 17 
(3):333-249, 2009. 

8. M. Buchanan. Power laws and the new science of complexity management. Strategy 

and Business Issue, 34:70–79, 2004. 

 



 

 
Chaotic Modeling and Simulation (CMSIM)  3: 469-476,  2012 

 

 

_________________ 

Received: 29 June 2011 / Accepted 30 March 2012   

© 2012 CMSIM                                                                                ISSN 2241-0503 

Chaos and Complexity Models in Sustainable 

Building Simulation 
 

Xiaoshu Lu
1,2

, Charles Kibert
3
, Martti Viljanen

1
 

 
1
Department of Civil and Structural Engineering, School of Engineering, Aalto 

University, PO Box 12100, FIN-02150, Espoo, Finland  

E-mail: xiaoshu@cc.hut.fi  
2
Finnish Institute of Occupational Health, Finland  

3
Powell Center for Construction & Environment, University of Florida, PO Box 

115703, Gainesville, Florida 32611-5703  USA  

 

 

 

 
Abstract: This paper intends to provide suggestions of how sustainable building 

simulation might profit from mathematical models derived from chaos and complexity 

approaches. It notes that with the increasing complexity of building systems which are 

capable of intelligently adjusting buildings' performance from the environment and 

occupant behaviour and adapting to environmental extremes, building performance 

simulation is becoming more crucial and heading towards new challenges, dimensions, 

concepts, and theories beyond the traditional ones. The paper then goes on to describe 

how chaos and complexity theory has been applied in modelling building systems and 

behaviour, and to identify the scarcity of literature and the need for a suitable 

methodology of linking chaos and complexity approaches to mathematical models in 

building sustainable studies. Chaotic models are proposed thereafter for modelling 

energy consumption, nonlinear moisture diffusion, and building material properties in 

building simulation. This paper provides an update on the current simulation models for 

sustainable buildings.  

Keywords: Chaos and complexity theory, Sustainable building simulation, 

Energy consumption, Moisture diffusion and Material properties.  

 

1. Introduction 
Buildings represent a large share of the world’s end-use energy consumption. 

Due to rapid worldwide increases in energy consumption, climate change driven 

by global warming, and rising energy shortages, there is no doubt that 

renewable energy and sustainable buildings will play a major role in the future. 

Today, sustainable buildings are seen as a vital element of a much larger 

concept of sustainable development that aims to meet human needs while 

preserving the environment so that the needs can be met not only in the present, 

but in the indefinite future [1]. Moreover, the concept itself keeps on evolving 
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and resulting in iterations of sustainability [2].  Technically, sustainable 

buildings require integration of a variety of computer-based complex systems 

which are capable of intelligently adjusting their performance based on the 

environment and occupant behaviour and intelligently adapting to 

environmental extremes [2].  

 

With the increasing complexity of building systems, simulation based design 

and predictive control of building performances are becoming more and more 

important for a sustainable energy future. Consequently, this makes building 

performance models more complex and crucial and they are heading towards 

new challenges, dimensions, concepts, and theoretical framework beyond the 

traditional building simulation theories. It has been suggested that as a basis 

chaos and complexity theory is valid and can handle the increasing complexity 

of building systems that have dynamic interactions among the building systems 

on the one hand, and the environment and occupant behaviour on the other. In 

this paper we do not distinguish between chaos and complexity theories even 

though there has been a debate about their differences [3].  

 

The chaos models have already been applied to some problems in building 

simulation applications. Chow et al. investigated chaos phenomena of the 

dynamic behaviour of mixed convection and air-conditioning systems for 

buildings with thermal control [4]. Weng et al. applied chaos theory to the study 

of backdraft phenomenon in room fires [5]. Morimoto et al. studied an 

intelligent control technique for keeping better quality of fruit during the storage 

process [6]. For humidity control purpose, the sampled relative humidity data in 

storage house were measured and analysed. Chaos phenomenon was identified 

in such measured relative humidity data during daytime hours.  

 

In spite of the studies discussed above, the application of chaos theory to 

building performance simulation, especially to sustainable buildings, is still in 

its infancy. Building performance simulation models can be roughly classified 

into either the physical model or the black-box approach. Some may be difficult 

to categorise in this way. As far as the physical model is concerned, there is a 

voluminous literature on the models ranging from detailed to local thermal 

analysis of energy demand, passive design, environmental comfort and the 

response of control [7,8]. These physical models often require sufficient 

information on systems, control and environmental parameters for buildings. 

The output of the model is only as accurate as the input data.  

 

Presently input data for buildings are often poorly defined, which creates 

ambiguity or uncertainty in interpreting the output. This is the general drawback 

of these models. Therefore, for many practical applications, a black-box 

approach, a model without internal mechanisms or physical structure, is often 

adopted. For example, neutral networks, fuzzy logic, and time series models 

[9,10] are generally better suited for prediction. However, these models have 

several limitations. Take neural networks as an example. Firstly, large 
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experimental input and output data are needed in order to build neural networks 

which can be difficult and expensive to obtain in practice. Secondly, they are 

susceptible to over-training. Above all, the models have been criticised as 'black 

box' models with no explanation of the underlying mechanisms that drive the 

study systems [11]. 

 

More specifically, as for sustainable buildings, the current models often lack the 

long-term economics factors, evolving factors, and flexibility necessary for 

dynamic predictions. These weaknesses and the current status of sustainable 

building simulation models have encouraged us to focus instead on a chaos-

based model incorporating physical model to enhance our understanding and 

prediction of building physical behaviour. Chaos theory is characterised by the 

so-called 'butterfly effect' [12]. It is the propensity of a system to be sensitive to 

initial conditions so that the system becomes unpredictable over time. Yet, a 

chaotic process is not totally random and has broadened existing deterministic 

patterns with some kind of structure and order [12]. This paper extends the 

literature by proposing potential chaotic models in sustainable building 

simulation. Below we describe three such models. The first is a building energy 

consumption model. The second deals with a nonlinear moisture diffusion 

model. The third is related to building material properties. 

 

 

2. Building Energy Consumption Model  
Swan provided an up-to-date review of various simulation models used for 

modelling residential sector energy consumption and sustainability [13]. Most 

models rely on input data whose levels of details can vary dramatically. Li 

presented an overview of literature regarding long-term energy demand and CO2 

emission forecast scenarios [14]. These reviews reflect general modelling 

approaches currently in existence for sustainable buildings.  Two approaches are 

generally adopted: top-down and bottom-up. The top-down approach utilises 

historic aggregate energy values and regresses the energy consumption of the 

housing stock as a function of top-level variables such as macroeconomic 

indicators. While the generally employed techniques account for future 

technology penetration based on historic rates of change, they lack of evolving 

factors. Hence an inherent drawback of the generally employed approaches is 

that there is no guarantee that values derived from the past will remain valid in 

the future, especially given the fact that the levels of details of input data vary 

significantly [13].  

 

The bottom-up approach extrapolates the estimated energy consumption of a 

representative set of individual houses to regional and national levels, and 

consists of two distinct methodologies: the statistical method and the 

engineering method [13]. Methodologically, extrapolation has been questioned 

for many good reasons. It is therefore noted that the statistical technique is 

hampered by multicollinearity resulting in poor prediction of certain end-uses 
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while the engineering technique requires more inputs and has difficulty 

estimating the unspecified loads [13, 15]. 

 

The major disadvantage of these models is their lack of flexibility due to the fact 

that there is no deterministic structure provided to characterise the data. In this 

context, chaos theory offers a solid theoretical and methodological foundation 

for interpreting the fundamental deterministic structure of the data which 

present the increasingly complexity of building systems. Karatasou applied 

chaos theory in analysing time series data on building energy consumption [16]. 

The correlation dimension 3.47 and largest Lyapunov exponent 0.047 were 

estimated for the data, which indicates that chaotic characteristics exist in the 

energy consumption data. Therefore, chaos theory techniques can be used to 

model and predict buildings energy consumption. 

 

3. Strong )onlinear Moisture Diffusion Model  
Building envelopes can be susceptible to moisture accumulation which may 

cause mould growth and the deterioration of both occupant health and building 

materials. A certain duration of exposure conditions, such as humidity, 

temperature, and exposure time, is required for the growth of organisms and the 

start of the deterioration process. Critical exposure duration depends on the 

particular exposure and material. Take a critical moisture level as an example. If 

the moisture content in the material exceeds the critical level, there is a risk of 

damage [17] and mould growth [18]. Trechsel summarised that the critical 

moisture level can be presented as critical factors such as 'the critical moisture 

content' and 'the critical accumulative exposure time' [19].  He emphasised that 

with qualitative criteria it is not possible to assess the risk. Qualitative criteria 

can be used only if performance limit states are known which need statistical 

data. Evidence has shown the existence of inherent randomness and nonlinearity 

in mould growth and the data [18]. Therefore, the moisture transfer process 

manifestly has chaos. 

 

From a physical modelling point of view, heat and moisture transfer phenomena 

in a medium are governed by heat or diffusion equations which are partial 

differential equations. For a homogeneous and isotropic medium, the diffusivity 

coefficient is often assumed to be constant in the entire domain under study. In 

inhomogeneous media, it depends on the coordinates [20]. Until now, there is no 

model has considered time-dependent diffusivity. However, time-dependent 

diffusivity, which might be due to the time-dependent perturbation of 

environment such as sudden structural change, is an optional explanation for the 

critical moisture level. 

 
Yao studied one-dimensional Kuramoto–Sivashinsky (KS) equation, a nonlinear 

partial differential equation, in the hope of clarify the role of the time-dependent 

governing parameter and the sensitivity of the long-time solution to initial 

conditions [21]: 
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0)(4 =+++ xxxxxxxt uuuuu λ   (1) 

 
Nonlinear stability analysis was investigated with respect to time-dependent λ. 
After a certain time (t =4), chaotic behavior was observed.  

 

It is not difficult to see that the KS equation and nonlinear moisture diffusion 

equations do not differ significantly. Thus the KS equation example is expected 

to more easily expose major points and hopefully identify open questions that 

are related to the critical moisture level or mould phenomena as related to chaos 

phenomena. 

 

4. Material Properties Model  
Porous media have played a major role in building engineering applications. 

They are important elements of heat and mass conservation for buildings and 

have been extensively studied [22]. A porous material has a unique structure of 

complex geometry which is characterised by the presence of a solid matrix and 

void phases with porosity. The heat and mass transport behaviour of porous 

media is largely governed by the interactions among coexisting components. 

These interactions occur through interfaces. Theoretically, transport processes in 

a porous medium domain may be described by a continuum at the microscopic 

level based on the Navier-Stokes equations for example, as taking into account 

the multi-phase nature of the domain.   However, for most cases this is 

impractical because of the inability to both describe the complex geometry and 

trace a large number of interfacial boundaries for the porous domain. Therefore, 

the porous media models are often constructed through averaging the governing 

equations, for example Navier-Stokes equations, in continua at the microscopic 

level over a length scale such as representative elementary volume [23].  During 

the averaging process some integrals are performed, introducing a weighted 

average of the relevant variables, parameters and properties which can be 

determined by laboratory and field measurements. 

 

However, both laboratory and field measurements are often tedious, time 

consuming and expensive. This has motivated researchers toward the 

development of mathematical modeling approaches based on routinely 

measured properties. In general, three types of mathematical models are used to 

model material transport properties: empirical, bundle of tubes, and network 

models [24]. The empirical models provide a set of analytical functions to fit the 

measurement data for material properties. The model has the advantage of 

simplicity but the disadvantage of limited flexibility and adjustability and hence 

low reliability. 

 

Depending on how they represent the geometry of the material, both the bundle 

of tubes and the network models rely on the pore structure, such as pore 

distribution, connectivity and tortuosity, to derive the material’s transport 

properties. These models are also called pore-distribution models and were 
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pioneered by Fatt [25-27]. The bundle of tubes model approximates the pore 

structure in a fairly simple way, for example, a set of parallel tubes [24]. 

Networks models approximate the pore structure by a lattice of tubes and throats 

of various geometrical shapes on the microscopic scale. Creating a network 

model is laborious and not straightforward especially for 3D models [28]. 

 

Most importantly, these models, or current state of material property modelling 

approaches, are case sensitive depending on the excited boundary or the 

environment. Therefore, variations of material properties under different 

conditions are large, which has been a challenge for modellers. On a longer time 

scale, a large quantity of data is often needed to build the model and this can be 

difficult and expensive to accomplish in practice. In addition, in a wide 

environment setting when different environmental phenomena overlap, material 

properties become complicated and difficult to predict [29]. This is due to the 

lack of a deterministic structure or a core mechanism which characterises the 

material transport properties. Chaos theory provides a tool to exploit the 

underlying structures that appear random or unpredictable under traditional 

analysis. 

 

Stazi et al. applied chaos theory to investigate the hygrometric properties of 

building materials, such as adsorption and suction curves [29]. The constitute 

relationship of a material’s water content and the environment humidity was 

modelled on the basis of fractal geometry using the material’s pore radius as: 

 

u = u(φ, D)  (2)  

 

where u is the hygroscopic content inside the material and φ the relative 
humidity of the material. Their relationship was determined through finding the 

material 's fractal dimension of water inside the pores, D, which was 2.5265 for 

mortar [29].  

 

The novelty of the model lies in its ability to construct the relationship between 

the water content inside the material and the relative humidity of the 

environment based on the material's geometric property characterised by the 

fractal dimension. The knowledge of the fractal dimension of the pore spacing 

in a porous medium is enough to work out the suction and adsorption curves of 

the material. It is, therefore, natural for us to consider chaos theory as a source 

of inspiration to envisage the importance of the concerns raised in research in 

different fields of building material properties. 

 

5. Conclusions  
This paper suggests some new thinking about how to update the current status of 

simulation models for sustainable buildings. Three chaotic models are proposed. 

The first is the building energy consumption model because chaotic 

characteristics have been observed in the specific energy consumption data. The 

second deals with the investigation of nonlinearity of the moisture diffusion 
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model. The third model involves the investigation of material physical 

properties. The conclusion to be drawn is that chaos theory may reflect real 

situations, deepen our understanding, and make predictions more realistic in 

sustainable building simulation. 
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Abstract. GRS 1915+105 is prominent black hole system exhibiting variability over
a wide range of time scales and the light curves from the source have been classified
into 12 temporal states. Here we undertake an analysis of the light curves from all the
states using three important quantifiers from nonlinear time series analysis, namely,
the correlation dimension (D2), the correlation entropy (K2) and singular value de-
composition (SVD). An important aspect of our analysis is that, for estimating these
quantifiers, we use algorithmic schemes which we have proposed recently and tested
successfully on synthetic as well as practical time series from various fields. We show
that nearly half of the 12 temporal states exhibit deviation from randomness and
their complex temporal behavior can be approximated by a few (3 or 4) coupled
ordinary differential equations. Based on our results, the 12 states can be broadly
classified into three from a dynamical perspective: purely stochastic with D2 tending
to infinity, affected by colored noise and those which are potential candidates for de-
terministic non linearity with D2 ≤ 4. Our results could be important for a better
understanding of the processes that generate the light curves and hence for modeling
the temporal behavior of such complex systems. A more detailed analysis and results
are presented elsewhere [1].
Keywords: Time Series Analysis, Applied Chaos, Black Hole Binaries.

1 Introduction

Most of the systems in Nature are described by models which are inherently
nonlinear. Since the discovery of deterministic chaos a few decades back and
the development of various techniques in subsequent years, there remained the
exciting prospect of a better understanding of the complex behavior shown by
various natural systems in terms of simple nonlinear models. A large number
of techniques from nonlinear dynamics are routinely being employed for this
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purpose. For example, see Hilborn [2] and Lakshmanan & Rajasekhar [3] for
details.

Astrophysical objects are among the most interesting real world syatems
where methods from nonlinear dynamics have been attempted right from the
development of chaos theory. Important examples include the analysis of vari-
able stars [4] to understand the nature of variability, the study of the temporal
variations in the sun spot activities [5] and to develop possible measures to
differentiate between AGNs and black holes [6]. One major limitation regard-
ing the analysis of astrophysical objects is that the only available information
regarding the source is the light intensity variations emitted by it, called the
light curve, over which one has no control. It is a single scalar variable recorded
as a function of time, namely, a time series. Thus the main task in the analysis
is to understand the nature of variability and to reconstruct the underlying
model using the methods of time series analysis.

A number of computational schemes and measures are used for the nonlinear
time series analysis as discussed by many authors [7,8]. The most important
quantifiers among these are the correlation dimension (D2) and the correlation
entropy (K2). We have recently proposed automated algorithmic schemes [9,10]
for computation of D2 and K2 from time series based on the delay embedding
technique and applied them successfully to various types of time series data.
In this work, we apply these computational schemes to analyse the X-ray light
curves from a very prominent black hole binary, GRS 1915+105.

2 Analysis of the Light Curves

Among the most important nonlinearity measures used for the analysis of time
series data are D2 and K2. D2 is often used as a discriminating measure for
hypothesis testing to detect nontrivial structures in the time series. However,
if the time series involves colored noise, a better discriminating measure is
considered to be K2 [11]. We employ surrogate analysis using both D2 and K2

as discriminating measures and to compute these measures, we make use of the
automated algorithmic schemes proposed by us recently [9,10]. The scheme
involves creation of an embedding space of dimension M with delay vectors
xj constructed from the time series. One then counts the relative number of
data points in the embedded attractor within a distance R from a particular
ith data point

pi(R) = lim
Nv→∞

1

Nv

Nv∑
j=1,j 6=i

H(R− |xi − xj |) (1)

where Nv is the total number of reconstructed vectors and H is the Heaviside
step function. Averaging this quantity over Nc number of randomly selected
centres gives the correlation sum

CM (R) =
1

Nc

Nc∑
i

pi(R) (2)
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Fig. 1. Light curves from the 12 temporal states of the black hole system GRS
1915+105. Only a part of the generated light curve is shown for clarity.

The correlation dimension D2(M) is then defined to be,

D2 ≡ lim
R→0

d(logCM (R))/d(log(R)) (3)

which is the scaling index of the variation of CM (R) with R as R→ 0. In our
scheme, D2 is computed by choosing a scaling region algorithmically.

To compute K2, one measures the ratio at which the trajectory segments
are increased as M increases, using the formal expression

K2∆t ≡ lim
R→0

lim
M→∞

lim
N→∞

log(CM (R)/CM+1(R)) (4)

To generate the surrogate data sets, we apply the IAAFT scheme [12,13] using
the TISEAN package [8]. Finally, in order to visualise the qualitative features
of the underlying attractor, we use the singular value decomposition (SVD)
analysis (for details, see [10]). The SVD analysis computes the dominant eigen
vectors whose projection, called the BK projection, shows the reconstructed
attractors from the time series. Here we use the TISEAN package to generate
the SVD plots.

The black hole source under investigation in this work, GRS 1915+105,
is unique among all such sources in that it shows a wide range of variability
in the light curves. Belloni et al. [14] have classified the light curves into
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Fig. 2. Surrogate analysis with D2 as a discriminating measure for the light curves
from four states of GRS 1915+105. Surrogates are represented by dashed lines with-
out error bar. Here we have done surrogate analysis with 10 surrogates. For more
detailed surrogate analysis with 20 surrogates, see [1]. Note that the null hypothesis
can be rejected in all cases except the φ state.

12 spectroscopic classes based on the RXTE observations. The nature of the
light curves changes completely as the system flips from one temporal state to
another. We have chosen a representative data set from each temporal class and
extracted continuous data streams 3200 seconds long from it. The light curves
were generated with a time resolution of 0.5 seconds resulting in approximately
7000 continuous data points for each class. More details regarding the data are
given elsewhere [15].

Fig.1 shows all the 12 light curves used for the analysis, which are labelled
by 12 different symbols representing the 12 temporal states of the black hole
system. An earlier analysis of these light curves has shown that more than
half of these 12 states deviated from a purely stochastic behavior [16]. Here we
combine the results of D2, K2 and SVD analysis to get a better understanding
regarding the nature of these light curves.

Fig.2 shows the results of surrogate analysis on four of the 12 states. It
is clear that, of the states shown in the figure, only φ shows purely stochastic
behavior. Of the remaining 8 states not shown, three more, namely γ, δ and
χ, are found to belong to this category. Thus, only four out of the 12 states
show behavior consistent with white noise in the D2 analysis.
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Fig. 3. Surrogate analysis of the light curves from four states with K2 as the discrim-
inating measure. While the data and the surrogates can be distinguished for β and
θ, κ and φ behaves like colored noise and white noise respectively.

It is known that the X-ray emissions from the accretion discs may also
involve colored noise. The colored noise gives a saturated value of D2 and
hence it is difficult to identify it in D2 analysis. For this, we undertake surrogate
analysis with K2 as discriminating statistic. While data involving nontrivial
structures give a saturated value of K2, for pure colored noise, K2 → 0 as
the embedding dimension M is increased. Results of K2 analysis for four
representative states are shown in Fig.3. While the behavior of β, θ and φ
are consistent with earlier D2 analysis, the bahavior of κ suggests that it is
contaminated with colored noise. In fact 3 of the 8 states - κ, λ and µ - which
showed deviation from stochastic behavior in the D2 analysis are found to be
contaminated with colored noise in the K2 analysis. For more details regarding
D2 and K2 analysis, see [1].

Finally, we perform a SVD analysis on all the states which clearly shows
the qualitative nature of the underlying attractors. The plot of attractors for
selected states is shown in Fig.4. The most interesting plot is for the ρ state
which shows a typical limit cycle type attractor added with noise. Also, note
that the SVD plot for the κ state has nontrivial appearance, eventhough the
surrogate analysis suggested the presence of colored noise. This may be an
indication that the state is not a pure colored noise. The same behavior is
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Fig. 4. The plot of attractors underlying four states of the black hole system recon-
structed via SVD analysis. Except the φ state, which behaves as a white noise, all
the others indicate the presence of underlying attractors, the most interesting being
the ρ state.

found for two other states, λ and µ. Thus, these 3 states are likely to be a
mixture of deterministic nonlinearity and colored noise.

Based on our results, the 12 states can thus be divided into 3 broader
classes from the point of view of their temporal properties. It turns out that
some of the states which are spectroscopically different, behave identically in
their nonlinear dynamics characteristics. This may be an indication of of some
common features in the mechanism of production of light curves from these
states.

3 Conclusion

Identifying nontrivial structures in real world systems is considered to be a
challenging task as it requires a succession of tests using various quantitative
measures. Eventhough a large number of potential systems from various fields
have been analysed so far, the results remain inconclusive in most cases. Here
we present an interesting example of an astrophysical system, which we analyse
using several important quantifiers of nonlinear dynamics. We find that out of
the 12 spectroscopic states of the black hole system, only 4 are purely stochas-
tic. The remaining states show signatures of deterministic nonlinearity, with 3
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of them contaminated by colored noise. All these 8 states are found to have
D2 < 4 so that their complex temporal behavior can be approximated by 3 or
4 coupled ordinary differential equations. Based on our results, the 12 states
can be broadly classified into 3 from a dynamical perspective: purely stochastic
with D2 → ∞, affected by colored noise and those which show deterministic
nonlinear behavior with D2 < 4.

KPH and RM acknowledge the financial support from Department of Sci-
ence and Technology, Govt. of India, through a research grant No. SR/SP/HEP-
11/2008.
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1    Introduction 

 

Due to the time-frequency dualism nonlinear resonant (NRM) medium makes 

possible to calculate integral transformations of the convolution type in 

frequency space with the same connectivity as multiplication in time space.  

In this case nonlinear effects will lead not to frequency mixing resulting in 

generation of oscillations with combinational frequencies, but to time mixing, 

i.e. to generation of signals (pulses) at combinational instants of time [1, 3]. This 

time-frequency dualism phenomenon is illustrated by fig. 1. 

 

Fig. 1. Responses of nonlinear 

systems to multisignal excitation: 

above – responses of the nonlinear 

circuit to a series of harmonic 

excitations, below – responses of the 

nonlinear resonant medium to the 

excitation in the form of delta 

functions. 

 

The time positions of responses are as rigidly connected to the time position of 

excitation pulses in nonlinear frequency space as combinational frequencies 

arising in a nonlinear circuit are connected to the excitation frequencies. 
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Let us define the resonant medium as a set of high-Q oscillators, resonating in a 

frequency band. Such representation depicts the medium’s local heterogeneity. 

The term "oscillator" here covers such concepts as separate micro particles or 

medium collective excitations – quasi-particles – under quantum-mechanical 

consideration, and as molecules or even the macroscopical particles carrying all 

properties of the substance - at the classical approach. In such a model the 

nonlinear properties of the medium can be provided both by the interaction of 

external excitation with a separate oscillator, and by the interaction between 

separate excited oscillators and thus reduced to the following types 

�   Anharmonicity; 

�   Nonlinear excitation; 

�   Nonlinear attenuation; 

�   Nonlinear interaction between oscillators. 

In the latter case it is required to resolve a problem of many particles for the 

description of the model while solving one-partial problem is sufficient for the 

first three kinds of nonlinearity. The medium’s response to the external 

excitation will be calculated by summing the responses of separate oscillators 

regarding with respect to their frequency distribution density g(ω). It is 

appropriate to mention here that the resonant medium represented by a set of 

oscillators is a real frequency space and it is convenient to describe it in terms of 

frequency representation. 

The response of such nonlinear resonant medium - echo - signal – is a result of 

in-phase summation of oscillations of the excited oscillators, therefore the term 

«phased echo» is frequently used for this signal definition. 

Specific physical and mathematical models distinguished by both the wide 

variety, and significant complexity are used in various type echo researches. In 

the applied perspective the theory of a spin echo [2] is most elaborated, still in 

this field the analysis is limited to small-signal approximation. The statistical 

analysis of the known physical and mathematical models of echo phenomenon 

in various media, not limited by the small-signal approximation framework, 

represents significant mathematical difficulties. The volume of such calculations 

even more increases due to the wide variety of specific physical mechanisms of 

echo – signals formation. 

The purpose of the given article is to elaborate a unified description of the echo 

phenomenon regardless of the specific physical mechanism of its formation, 

suitable for the analysis of EP operation constituting a part of various radio 

engineering systems affected by signals and interference of any intensity. The 

mechanisms of nonlinearity mentioned above have the peculiarities related to 

responses’ amplitude behavior and responses’ phase - exciting pulses’ phase 

dependence. The dependence of responses’ shape on the shape of excitation 

pulses is the same for all types of nonlinearity. Therefore one kind of 

nonlinearity, that is anharmonicity,  is considered in the given article.  

 

2 �RM model with anharmonic oscillators.   

Let us present the equation of the  i-th anharmonic oscillator as follows 
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Di yi (t) + Fi [yi (t)] = x (t),   (1) 

where x (t) - external excitation, 

2
2

02
2i i i

d d
D

dt dt
σ ω= + +  - linear 

operator, σi and ω0i -  loss characteristic and resonant frequency of linear 

approximation, correspondingly, yi(t) – response of the  i-th oscillator, 

( ) ( )
2

p
k

k

k

F y t a y t
=

=   ∑  is a polynomial of the p-th degree, ak - the constants 

including power constants and geometrical values. Later, due to the equity of all 

oscillators the index i will be omitted. To solve (1) let us pass to the integral 

relation (2) 

( ) ( ) ( ) ( ) ( )
0 0

T T

t t

y t h x t d h F y t dτ τ τ τ τ τ= − − −  ∫ ∫  (2) 

where  ( ) { }
1

0
2

j t d
h F y e

ω ω
τ

π

∞
−

=   ∫  -  (3) 

pulse function of the linear part of (1), [F {⋅}]
-1

 – inverse Fourier transform. 

Substituting specific operator D in (3) we will have 

( ) 0

1
sin ,      0,

0,                            0,

ee
h

στ ω τ τ
ωτ

τ

− >
= 

 ≤

 (4) 

where  2 2

0 0eω ω σ ω= − ≈ . 

The solution of (2) will be found by the iterative method that results in 

the representation of  y (t) in the form of  Volterra finite series in case of weak 

nonlinearity (ak <<1, k = 2, 3, …, p): 

( ) ( ) ( )1

1 1

,...,
p

pn

p p p i i

p iE

y t h h x t dτ τ τ τ
= =

= + −∑ ∏∫ ,   (5) 

where E
p
 - p-dimensional Euclidean space, in which Volterra kernels hp (τ1, τ2, 

…, τp), representing pulse functions of nonlinear transformation of the p-th 

order are determined. So, for example, 

( ) ( ) ( ) ( )1 2 1 2

2 1 2

,   ,  0,
,

0   for all other values .

h h h d
h

τ τ τ τ τ τ τ τ
τ τ

τ

∞

−∞


− − ≥

= 



∫  

Outside the framework of the simple model of the isotropic medium 

without space nonlocal coupling considered  above,  y (t) and x (t-ti) in (4) 
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should be vectors, and hp(τ1,…,τp) – tensor of the p + 1-th rank, having such 

values  as charges, masses, geometrical and power constants, as well as values 

characterizing  dissipation of energy as constants. This more general case which 

doesn’t lead to any change of the final conclusions is not considered here. 

However, transition to this case is quite obvious. 

Find the explicit form of the third order Volterra kernel 

( ) ( ) ( ) ( ) ( )
1

3 1 2 3 1 2 3, ,
E

h h h h h dτ τ τ τ τ τ τ τ τ τ τ= − − −∫  

The area of integration corresponding to a causal kernel, is shown as 

shaded in fig. 2, according to which 

( ) ( ) ( ) ( ) ( )
1 2 3min{ , , }

3 1 2 3 1 2 3

0

, ,h h h h h d

τ τ τ

τ τ τ τ τ τ τ τ τ τ τ= − − −∫
 

 

Fig. 2. The area of integration corresponding to a causal kernel. 

 

Let a = min {τ1,τ2,τ3}. Taking (1.2.4) into account we have 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 2

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, , 1

16

cos cos cos ;

a

e

e e e

h e e
σ τ τ τ στ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + += − − ×

− − + + − + − +  

 

Under condition of ωe>> σ  the terms having the factor 
51/16 eω  are rejected 

here.  

Thus: 

if min{τ1,τ2,τ3} = τ1 then 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, ,

16

cos cos cos ;

e

e e e

h e e
σ τ τ τ σ τ τ ττ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + + − − + + = − × 

− − + + − + − +  

(6) 

τ3 τ2 τ1 0 

1 

τ 

h(τ ) h(τ1 - τ ) h(τ2 - τ ) h(τ3 - τ ) 
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2) if min{τ1,τ2,τ3} = τ3 then 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, ,

16

cos cos cos ;

e

e e e

h e e
σ τ τ τ σ τ τ ττ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + + − + − = − × 

− − + + − + − +  
3) if min{τ1,τ2,τ3} = τ2  then 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, ,

16

cos cos cos ;

e

e e e

h e e
σ τ τ τ σ τ τ ττ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + + − − + = − × 

− − + + − + − +  

 

Another way to write the third order kernel is following below: 

( ) ( ) ( ) ( ) ( )
{ }

( ) ( )

1 2 3

1 2 3 1 2 3

3 1 2 3 1 2 3

max , ,

3

4

, , ,

1
,

16

t

t t

e

h t h t h t h t h t d

e e

τ τ τ

σ τ τ τ σ τ τ τ

τ τ τ τ τ τ τ τ

θ
σω

− − − − − + − −

= − − − − =

 − 

∫

if τ1 = max{τ1,τ2,τ3}; 

( ) ( ) ( )1 2 3 1 2 33

3 1 2 3 4

1
, , , ,

16

t t

e

h t e e
σ τ τ τ σ τ τ ττ τ τ θ

σω
− − − − − − + − = −   

if τ2 = max{τ1,τ2,τ3}; 

( ) ( ) ( )1 2 3 1 2 33

3 1 2 3 4

1
, , , ,

16

t t

e

h t e e
σ τ τ τ σ τ τ ττ τ τ θ

σω
− − − − − − − + = −      (7) 

if τ3 = max{τ1,τ2,τ3}; 

Here θ = ( ) ( ) ( )1 2 3 1 2 3 1 2 3cos cos cose e et t tω τ τ τ ω τ τ τ ω τ τ τ+ − − + − + − + − − + , 

Find the oscillator respond to an excitation in the form of three δ-functions (fig. 

3, at t1 = 0): 

x(t) = c1δ(t) + c2δ(t-t2) + c3δ(t-t3) 

 

Fig. 3. Three-pulse excitation. 

t 

t2 t3 0 
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In the third approximation of the solution we have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

{ }

( ) ( ) { }

( ) ( )

1 3

1 1 2 3

2 1 2 3

3 1

3

3 3 3 1 2 3

1

1 2 2 3 3

1 2 3 3 3 3 2 3 3 2 max , ,

3 3 3 2 3 3 2 max , ,

3 3 2 3 3 2 3 max ,

, , , ,

{ , , 0, , , ,0

,0, , , , ,0

,0, , , , 0,

r r

rE E

y t h t x d a h t x d

c h t c h t t c h t t

c c c a h t t t h t t t

a h t t t h t t t

a h t t t h t t t

τ τ τ τ

τ τ τ τ

τ τ τ

τ τ τ τ τ τ τ τ
=

=

=

=

= − =
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+ +  
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{ }

( ) { } ( ) { }
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2 3

2 3 1 2 3 1 3 1 2 3

1 2 1 2 3

,

2

3 1 2 3 2 2 3 2 2, max , , , max , ,

3 2 2 , max , ,

}

[ ,0, , , , 0,

, , ,0 ] ...

a c c h t t t h t t t

h t t t

τ

τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ

= =

=

−

+ +

+

 

Here the first three terms correspond to the response of a linear circuit with 

the pulse characteristic h (t) and are not of interest from the echo – phenomena 

point of view. The expression in the first curly brackets defines the three-pulse 

response 
( )123

3y , arising at the  instant of time t = t2 + t3 (the top index 

corresponds to the numbers of stimulating pulses): 

( ) ( ) ( ) ( )2 3 2 33123 3 1 2 3
3 2 34

6
cos

16

t t t t t t

e

e

a c c c
y e e t t t

σ σ ω
σω

− − − − − + = − − −   

 

At the instant of time t = t2 + t3 all oscillators oscillate in the same phase and 

produce the pulse with the amplitude 

( ) ( ) ( ) ( )3 2 2 2
2123 2 2

3 2 3 3 1 2 3

3
1

8

t t t ty t t a c c c e e e
σ σ σ− − − −+ = −  

The last terms in square brackets describe a two-pulse echo 
( )12

3y  from the first 

two pulses: 

( ) ( ) ( ) ( )2

2
12 3 23 1 2

3 24

3
cos 2

8

t tt

e

e

a c c
y t e e t t

σσ ω
σω

− −− = − −   

 

There are two more echoes of two-pulse type from the second and third pulses 
( ) ( )23

3y t  and from the first and third pulses 
( ) ( )13

3y t  

A distinctive feature of the echo - signals provided by anharmonicity is growth 

of the echo amplitude as the delay t12 between the first and the second pulses of 

excitation first rises up to maximum and then almost exponentially recesses [4], 

fig. 4. 
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Fig. 4. Amplitude dependences of responses 

 

Research the response of the anharmonic oscillator system to the excitation of 

three finite signals of the optional form within the framework of the third 

approximation. 

 

The distinctive features associated with the record of the transformation kernel 

for various combinations of min {τ1,τ2,τ3} and max {τ1,τ2,τ3} will be shown in 

this calculation ,   as well as rules of calculating Volterra functionals stated. 

The solution of the basic equation to a third approximation contains the first and 

third order functionals: 

 

( ) ( ) ( ) ( ) ( )∫ ∏∫
=

−=
31

3

1

321333 ,,,,
E r

rr

E

dxthadxthty ττττττττ , (8) 

 among which only last one contains echo – responses . 

As the all oscillators system response is of interest it should be specified that the 

solution (8) corresponds to the oscillator with the resonant frequency ωe.  

Omitting a linear functional, we have:  

 

( ) ( ) ( )
3

3 3 3 1 2 3

1

, , , ,
e r r

rE

y t a h t x dω τ τ τ τ τ
=

= − ∏∫ , (9) 

 

The total system response in view of a frequency distribution density is as 

follows : ( ) ( ) ( )3 3 , e ey t g y t dω ω ω
∞

−∞

= ∫  

e
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12 1-e
-σt

12 

e
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12(1 - e
-σt

12) 
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t 
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First find the three-pulse echo expression provided by the product of all three 

input pulses in (9). For this purpose we write of all terms resulting from the 

opening the brackets in the product  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( )[ ],

)(

333231

232221131211

3

1

Txxx

TxxxTxxxx
r
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×−+−+−+−+=∏
=

ττττ

τττττττττ

 
 
those which are of interest for us   

( ) ( ) ( ) ( ) ( ) ( )
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132231231231

133221331221

233211131211
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=

TxxxTxxx
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r
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τττττττττ

 (10) 

We notice that for the first term in (10) τ3 = max{τ1,τ2,τ3}, and τ1 = 

min{τ1,τ2,τ3}. Consequently, the kernel (7) should be used with the first term. In 

this kernel we should take that one of the three cosines in whose argument 

min{τ1,τ2,τ3} has a sign "plus", i.e. cosω(t+τ1-τ2-τ3). Thus, the transformation 

kernel for the first term (10) x1(τ1)x2(τ2-τ)x3(τ3-τ) is 
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1 1 2 3
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| max , ,3 1 2 3 4
| min , ,
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1 2 3

1
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=
=

− − − − − − − +

= ×

 − + − − 

 (11) 

The other terms’ kernels should be found in the same way. For example, in the 

fourth term τ1 = max{τ1,τ2,τ3},  and  τ2 = min{τ1,τ2,τ3}. This term’s kernel is 
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2 1 2 3
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As for the physical model under consideration Volterra kernels are symmetric 

the appropriate replacement of arguments in the terms (10) and in the 

corresponding kernels will reduce both all the terms and kernels to one. Indeed, 

the consequent change τ1 ↔ τ3,  τ2 ↔ τ1 reduces the kernel (12) to the kernel 

(10). Such arguments replacement simultaneously reduces the fourth term to the 

first one. 

Thus, the property of kernels symmetry appears to be rather useful and should 

be applied when possible in order to minimize rather bulky calculations of 

Volterra functionals.  

All the terms in expression (10) are reduced to the same type, therefore 

(9) transforms in: 
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In this case it appears simpler to calculate all oscillators system response than 

that of one oscillator due to possibility of using spectral densities of the input 

signals:  
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Internal integrals (13) represent spectral density of the input signals multiplied 

by the exponents exp (±στi). Introducing definitions 
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where ( )i eS σ ω±
%  - spectral density of the signal xi(t)e

±σ t
  whose rise-up portion 

coincides with the time zero, we can write (13) as follows 
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where g1(ω) = g(ω)/ω4
. 

As entrance signals duration is supposed to be negligible with reference to the 

decay time constant of the oscillators (ti <<1/s, i = 1, 2, 3), one can consider the 

approximate equality i iS Sσ σ−≈% %  valid. Then 
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It follows from the last expression that the three-pulse echo signal form is 

defined by the product of spectral densities of the entrance signals, the spectrum 

of the first signal should be taken in a complex conjugated form.  Composed of 

exponents factor at the integral sign determines the dependence of the three-

pulse echo- signal amplitude on the entrance signals time positions. The echo - 

signal clusters about the moment of time t = T+τ. 
(14) can be written in the other form 
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where symbol * means convolution, and ⊗ - correlation. 

Introducing multidimensional Fourier transforms of Volterra kernels instead of 

Volterra kernels themselves we can pass to the frequency representation for y(t) 
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where S (ω) - spectral density of excitation x (t) which use is determined by the 

assumed pulse character of x (t). The reduced form of the record used in [5] is 

done in (16). In this record the total number of terms in the subintegral 

expression is equal to 0 1( ... ) 2 ,  where p p k

p p p pC C C C+ + + =  - number of 

combinations of p elements over k, containing k "minus" signs in the arguments  

of a gain. The first term in (16) describes signal x (t) transmission through the 

linear quadripole with the gain K1(ω), the others depict nonlinear signal 

transformation. The gain characteristics (16) are presented in [5].  

If the frequencies in the gain arguments are not equal, i.e. ω1 ≠ ω2 ≠…≠ωp, the 

ratio (16) describes occurrence of the new spectral components with frequencies 

±ω1±…±ωk±…±ωp, passing through filters with the gain Kp(ω1,…, ωk,…, ωp). 

Assuming the Q-quality of oscillators to be high it is possible to consider 

Kp(ω1,…, ωk,…, ωp) = 0 at ω1 ≠…≠ ωk ≠…≠ωp. To exclude the highest 

harmonics of the signal the number of "plus" and "minus" signs in argument Kp 

should differ by unit. Such integrated transformation kernel in (16) is called a 

kernel with sum - differential argument in [5]. In this case 
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where c.c. - is a complex conjugate part of the expression presented above. The 

reduced form of the record is also applied here. Thus, for example,   total 

description (17) of the second term of the series looks like this: 
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The block diagram of the device providing transformation (17) with all 

oscillators taken into account is shown in fig. 5. Filters Φi(ω), i = 1, 2, …, m, 

m=N, select spectral bands of a signal with a bandwidth ∆ωi; output  oscillations 

of these filters are subject to instantaneous nonlinear transformation in nonlinear 

blocks with instantaneous characteristics 2 1

2 1 ,   1, 2,..., ,k

ka k nξ −
− =  linear filters 

( ) ( )2 1

i

kK ω−
 select the first spectral bands of the transformed oscillations, adders 

make linear summation of all output oscillations. 

  

Fig. 5. The block diagram of the device making transformation (17). 
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The minimal order of nonlinearity in the equation (1) providing echo 

phenomena equals to three. This is the cubic medium and it can be represented 

by the radio engineering equivalent shown in Fig. 6. Putting aside thin 

distinctions of higher order echo time relations we can substantially simplify the 

block diagram transforming it as shown in Fig. 7.  

 

 
 
Fig. 6 

 

 
 
Fig. 7 

We find the explicit form of the third order gain K3(-ω,ω,ω) using the 

appropriate Volterra functional kernel (6): 
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Considering only positive frequencies domain and taking into account, that σ>> 

1, we write K3 (-ω,ω,ω) in the following form 
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as shown in fig. 7. 

Let us find the whole oscillator system response to the signal x (t): 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

1
2 22 1

2 1 2 1
1

2 2

1
( )  c.c.,

2 2

where  - 

pn
pp j

p p
p E

i

p

i

C
y t a g j S j S j e d

g j g K j

ωω ω ω ω
π

ω ω ω

−
−−

− −
=

−

′= +

′ =

∑ ∫

∑

 (18) 

the total resonant characteristic of the oscillator system, function g(ω) has the 

meaning of  the oscillator frequency distribution density. The first term of 

expression (18) describes linear transmission of the signal x(t) through the filter 

with the gain ( )g jω′ ; the second one corresponds to the nonlinear 

transformation of the third order and rather adequately characterizes the 

processes occurring in the nonlinear resonant medium: 
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The spectral density of the output signal corresponding to this transformation 

defines possible responses of medium. 

In time domain the medium response to the excitation x (t), determined by the 

second approximation of the basic medium equation solution, can be presented  

according to (20) in the form, where ( )g t′  - the pulse characteristic of the 

system with the gain ( )g jω′ . 
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The last expression determines functional capabilities of the devices which can 

use NRM properties, i.e. producing convolution, signal correlation function and 

Fourier transforms in real time.  

 

 

 

 



L. A. Rassvetalov 498 

References 
 

1. Korpel A., Chatterjee M. Nonlinear echoes, phase conjugation, time 

reversal, and electronic holography.  Proceedings IEEE, vol. 69, pp 1539 – 

1556, 1981. 

2. Hahn E.L. Physical Revue, vol. 80. pp. 580 – 594. 1950. 

3. Rassvetalov L. A. Radiotechnika i Electronika, vol. 31. № 1, pp 8 – 14, 

1987. 

4. Gould R.W. American Journal Physic, vol. 37, 6. pp. 595 – 597, 1969. 

5. Kashkin V. B. Functional polynoms in problems of a statistical radio 

engineering. Novosibirsk, Nauka, 1981, P. 145. 

 

 



 

 
Chaotic Modeling and Simulation (CMSIM)  3: 499-507,  2012 

 

 

_________________ 

Received: 21 July 2011 / Accepted 30 March 2012   

© 2012 CMSIM                                                                                ISSN 2241-0503 

Simulation and Control of Highly Maneuverable 

Aircraft under Turbulent Atmosphere using 

�onlinear Dynamics Inversion Technique 
 

Sunil Sharma
1
, A.K.Ghosh

1 

1
Indian Institute of Technology Kanpur, Kanpur-208016, India 

Email-ID  : sunilsharmaiitk@gmail.com  

 

                                           �omenclature                                                                                                                         

V                 Net Velocity of flight in body frame                                                                

Vz               Component of net velocity along body Z axis                                                                                                        

α                  Angle of attack                                                                                                                                             

β                  Sideslip angle                                                                                                                                                     

µ                  Velocity vector roll angle                                                                                                                                         

γ                   Flight path angle                                                                                                                                                                      

φ,θ ,Ψ           Body axis Roll,Pitch,Yaw angle respectively (Euler angles) 

Ω=[p,q,r]      Body axis Roll,Pitch,Yaw rate respectively (Angular velocities)                                                                                       

δa ,δe,δr         Aileron,Elevator,Rudder deflection  respectively                                                                                                                                     

Τ                  Thrust command 

Abstract : This paper presents a robust technique to design the flight controllers 

for the aircraft to fly under turbulent atmosphere as well as to perform 

maneuvers incorporating the whole highly nonlinear dynamics of the aircraft 

system. Aircrafts have 6 degrees of freedom (DOF) and so translational as well 

as rotational motion can be performed by the aircrafts in all those directions of 

freedom. Aircraft flight controller is required for the aircraft to undergo various 

flight conditions and to perform various types of maneuvers in a desired and 

controlled manner. In this study, completely nonlinear set of equations defining 

whole dynamics of the aircraft have been used for simulation and Nonlinear 

Dynamics Inversion (NDI) control technique has been used to design the 

controller of the flight vehicle. NDI control technique is a highly emerging time 

domain control methodology used to design the controllers for various types of 

highly nonlinear systems.                                                                     

Keywords : Nonlinear dynamics inversion (NDI), Aircraft flight controller, 

Flight envelope.    

1. Introduction               
In the field of aerospace vehicles, flight vehicle control law design methods 

have gained a lot of attention due to advancements in the theoretical concepts as 
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well as exponential improvements in the hardware technologies over past 

decades. Any sort of flight vehicle designed i.e aircraft, rocket, missile is 

required to perform its intended task and along with that, it is an essential 

requirement for the vehicle to perform the task in a well controlled and desired 

manner. To implement that, there is requirement of a controller which would 

ensure that the desired task is done in a controlled manner, even if there is 

sudden turbulence caused by wind gusts.  

It is extremely important that these vehicles undergo any of the flight condition 

in a controlled manner to avoid failure of missions and lethal accidents. Several 

attempts have been made to design the controllers for all sort of flight vehicles. 

There are a number of control techniques to design controllers for nonlinear 

dynamics systems like aircrafts. In this study, NDI technique is discussed and 

implemented to design the controller of an aircraft. 

 The advantage of preferring NDI control technique over other linear control 

methods is that the linear control methods linearize the nonlinear system about 

the equilibrium points to approximate it into a linear system and then design a 

control law; In this manner the approximated linearized equations can predict 

the actual system performance only in a very small flight envelope i.e. in a small 

range of operations and if the system goes beyond that range then these 

equations do not simulate the actual behavior of the system and so the linear 

controllers stay no more effective; whereas the NDI control technique does not 

linearize the system about any equilibrium point, rather it incorporates all the 

system nonlinearities while developing the control law and so NDI controllers 

stay quite efficient over a wide flight envelope.Thus NDI is a very efficient 

control technique to design controllers for the nonlinear systems.  

In the field of control of aerospace vehicles, NDI control technique has gained a 

lot of attention and it has been applied to many of aircraft applications, such as 

F-16[1], F-18 HARV [2], F-117 [3] for designing the controller. 

 

2. The Aircraft Model             

 
The modeled aircraft used in this study is McDonnell Douglas F-4 which is a 

highly maneuverable fighter aircraft. An attempt has been made to control the 

various flight conditions of the aircraft using NDI. The aircraft 6 DOF equations 

of motion are given by the following set of differential equations which explain 

the translational and rotational dynamics of the aircraft model [4,5]. 

 

                                           

  

  

 

+   
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                        --Eq.Set (1)  

 

Here   represent the net forces along X,Y,Z axes of the aircraft. Matrix 

[I] represent the moment of inertia matrix and M consists of the rotational 

moments about X,Y,Z axes of the aircraft and  represent the spatial 

position of the aircraft with respect to the earth axis system. C1, C2, C3 represent 

the transformation matrices about roll, pitch, yaw axis respectively.       

        
3. �DI Control Law                                                 
 
In the implementation of NDI control law, the control commands are generated 

based upon the error signal generated from the desired state and current state 

values received from the sensors via feedback path. In the NDI technique, 

generally a robust 2-scale separation method is used which allows the order of 

the controller to be smaller [6,7]. The NDI law used in this study uses time scale 

separation between slow variables and fast variables and correspondingly 

generates the control commands. Any aircraft system can be represented by the 

following nonlinear vector form dynamics equation 

 

                                                                             --Eq.(2) 

 

 represents the vector representing state variables,  represent nonlinear 

state dynamic function and represent the control distribution function. NDI 
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control law inverts the dynamics equation and then replaces the inherent rate of 

change of state variable by the desired rate of change of that variable to generate 

the required command which is fed to the system. Inverting eq. (2) we get 

 

                                                                         --Eq.(3) 

 
Applying NDI control logic, above equation is converted  into a form as 

 

                                                     --Eq.(4) 

  

 where,                                                   --Eq.(5)   
 

 in eq.(5) represents the vector consisting of the desired values of state 

variables and  represents the vector consisting of the measured values of 

corresponding state variables obtained via feedback path. represents state gain 

matrix whose elements are the tuning parameters of the controller and  

represents the vector consisting of the control commands generated i.e. elevator, 

aileron, rudder deflections and thrust command which are to be fed to the 

aircraft system as control input. 

 

4. Applicaton of �DI under various flight conditions 
 

The purpose of this study is to control the various parameters of the aircraft for 

different flight conditions like cruise flight, sideslip flight, cordinated turn,      

pull-up maneuver, velocity vector roll maneuver etc. Table 1 shows all the flight 

conditions studied in this paper and shows the corresponding variables to be 

controlled in each flight condition so that the flight vehicle performs in the 

desired manner. For each case, NDI control law is implemented on the 

concerned set of governing nonlinear equations of the aircraft system and 

control commands corresponding to the desired states are generated.   
       

  Table 1. Various flight conditions and corresponding control variables 

 

                Flight conditions               Control variables 
                      Cruise flight                                    α,β,µ,γ 

                      Steady sideslip flight                       α,β,Ψ,γ 

                      Coordinated turn                            α,β,γ,  
                      Pull-up maneuver                             p,q,r,V 

                      Velocity vector roll maneuver         α,β,γ,  
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Figure 1. �DI control approach for control variables α,β,µ,γ 

 

Figure 1 explains the implementation of NDI control law for the cases in which 

control variables are α,β,µ,γ.The desired states are represented by (α
d
,β

d
,µ

d
, γ

d
). 

Similarly other variables can be controlled in the similar fashion for other cases. 

In present case, (α,β,µ,γ) act as slow state variables whereas (p,q,r) act as fast 

state variables.NDI is applied on slow state variables as well as fast state 

variables as explained in equations (2)-(5) and control surfaces deflection 

commands (δa
d
,δe

d
,δr

d
) are generated.  

 

These command values are passed through the actuator dynamics system so as 

to ensure that the commands generated are well within the control surfaces 

deflection limits as well as within the maximum rate of deflection of control 

surfaces.Thrust command (T
d
) is generated by applying NDI on γ dynamics 

equation  in case of various flight conditions except pull-up and pull-down 

maneuvers as in these maneuvers, the thrust command is generated by applying  

NDI on dynamics equation of velocity. 

 

5. Simulation, Control and Results 
 

The 6 DOF equations of motion of the aircraft explain its translational and 

rotational dynamics.The equations were simulated using numerical method 

Runge-Kutta-4 (RK-4) algorithm. For simulation, completely nonlinear set of 

aerodynamic data of McDonnell Douglas F-4 aircraft has been used [8]. Results 

have been shown for different flight conditions. 

 

�ote : For all the following figures of results, the values of all the angles are in 

degree, distances are in meter, time is in second, angular velocities (p,q,r) are in 

radian/sec, velocities are in meter/sec and acceleration is in meter/sec
2
. 

 

Case 1. Cruise flight control under effect of wind gusts: 

 

In this case, Cruise flight is controlled under turbulent atmosphere as sudden 

gust comes and aircraft trim condition is disturbed and the controller has to 
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control the aircraft and bring it back to the trim condition. As shown in figure 2, 

Aircraft is cruising at α= 4 deg and a sudden gust comes to disturb the trim 

condition of the aircraft and the controller acts to bring the aircraft back to the 

trim condition. 
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                Figure 2. Cruise flight control under Turbulent Atmosphere 

 
 

Case 2. Steady sideslip flight under effect of wind gusts 

 

In this case, aircraft is undergoing steady sideslip flight and suddenly a vertical 

wind gust is introduced to disturb the aircraft states and the controller has to 

control and bring the aircraft states back to the desired values.  

 

As shown in figure 3, aircraft is flying at α = 4 deg, β = 2 deg and the aircraft is 

holding Ψ= -2 deg for proper steady sideslip and then a sudden gust is 

introduced but the aircraft controller still performs in the desired manner. 
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      Figure 3. Steady sideslip flight control under Turbulent Atmosphere 

 

Case 3. Steady Coordinated turn 
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Figure 4. Aircraft states and control commands for Coordinated turn 



S. Sharma and A. K. Ghosh 506 

In case 3, as explained by figure 4, the aircraft has to undergo steady 

coordinated turn i.e. the sideslip angle should be zero during the turn. In this 

case, aircraft is turning at the rate of change of Ψ as 2.5 deg/sec at α= 6 deg 

while maintaining sideslip to zero value. 

 

Case 4. Pull-up Maneuver 

 

In this case, aircraft performs a continuous pull-up maneuver in vertical XZ 

plane. In this case, maneuver is done at pitch rate of 0.1 rad/sec as shown by 

figure 5 which also shows that for vertical pull-up, the roll angle, roll rate, yaw 

rate should be zero. 
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Figure 5. Aircraft states and control commands for Pull-up Maneuver 

 

Figure 6 shows the aircraft trajectory in XZ plane during this flight condition. 
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Figure 6. Aircraft trajectory in XZ plane during Pull-up Maneuver  



Chaotic Modeling and Simulation (CMSIM)  3: 499-507,  2012 507 

Case 5.  Velocity vector roll Maneuver  
 

Aircraft performs a continuous roll maneuver about the velocity axis at high α. 

During this maneuver, aircraft should not lose altitude as well as should not go 

under sideslip motion. In this case, aircraft performs this maneuver at α=12 deg 

as shown in figure 7. 
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Figure 7. Velocity vector roll Maneuver at α =12 degree 
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Abstract. In this work we evaluate the notable results of four interrelated succes-
sive works ([2–5]) dealing with the classification properties and temporal evolution
of foreign exchange rates series (ForEX). The main idea in these works can be con-
ceptualized through the behavior of the exponential divergence curves of financial
time series that make a clear distinction for both spatial (between countries) and
temporal (between different time segments of ForEX series) patterns. Despite being
a well known concept, the use of exponential divergence curves for the classification
of ForEX series is a relatively new concept. The classification procedure discussed
here is based on the surrogate testing procedure where the statistics gathered from
the original system is compared to the ones that are gathered from a completely
randomized system. Our new researches on the data during the period of present
economic recession (January 2008-October 2009) by calculating the largest Lyapunov
exponent (LLE) has shown that the earlier classification of countries based on LLE’s
holds true. By a similar approach, we have investigated the temporal evolution of the
exponential divergence distance metrics where we have developed a computationally
consistent procedure to obtain the metrics for various ForEX series. Finally we ob-
tained strong indicators for the distinction of the temporal evolution of ForEX series
for developed and developing countries. We discuss possible reasons for the existing
separation of temporal structures.
Keywords: Lyapunov Exponents, surrogate test, randomness, fluctuation, nonlinear
classification, foreign exchange rates.

1 Introduction

In 1966, Benoit Mandelbrot introduced the basic principle of a Martingale in
finance theory as to describe the efficient market hypothesis (EMH). The idea
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can be written as follows: the random process z(t) is produced by a fair game
if,

〈z(t+∆t)〉Φ = z(t) (1)

where the average is calculated via an information source Φ. Typically such
an information may be evaluated through the historical observation of z(t) as
{z(t − ∆t), z(t − 2∆t), . . .}. If z(t) is a martingale, then the historical obser-
vations are irrelevant in predicting the future prices, 〈z(t + ∆t)〉 ≈ z(t) + R
for some return ratio R [1]. In this work, our approach towards financial se-
ries is different, such that historical observations of financial time series effects
to the current conditions where nonlinear statistics obtained from the series
follow distinguishably different patterns comparing to a random series. As-
sumptions of classical financial time series analysis about the source of local
or global fluctuations strongly dissociate from the ones belonging to the non-
linear deterministic analysis. Hsieh [6] and Scheinkman [7] emphasize the two
essential sources of the fluctuations that originate from the business cycles: (1)
according to the Box-Jenkins formalism, the overall economy is stable however
it is perturbed by permanent external shocks (such as whether, wars). In this
case the fluctuating behavior of the system is a result of external effects. (2)
In chaotic growth models, the system comes from a nonlinear dynamic one
and has an intrinsic self-generating structure where the system is supposed to
behave randomly. Although it is still possible to make short-term predictions,
such effort is bounded by the information loss (kolmogorov entropy) due to the
exponential divergence in phase space.

Few works investigate the similarity of nonlinear measures between origi-
nal dynamics and surrogate data while measuring nonlinear similarity of time
series. The independent works of Schreiber and Schmidtz [12] and Cellucci et
al. [8] can be given as the two important contributions coming into promi-
nence. The nonlinear similarity measures based on the exponential divergence
of nearby trajectories was investigated by Cellucci et al. [8] where they have
proposed an efficient procedure for estimating or to what extent a time series is
noise corrupted. From their point of view the distance between exponential di-
vergence curves ([13]) and the curves that were created from the phase-shuffled
surrogates reduces while signal to noise ratio decreases. Originally they intro-
duced the link between randomness and its effects on the statistics obtained
from phase flow of the dynamics. If the the governing dynamics are known,
then this effect may also be used to estimate the randomness of a time series
[9]. One of the interpretation of this observation as verified by Schreiber and
Schmidtz [12] is that the power of surrogate testing depends on the randomness
level of the investigated time series. Thus, when the noise level of a time series
is increased, then the nonlinear statistics gathered from the original series gets
closer to the ones obtained from the surrogate ones.

Nonlinear phenomenon is widely discussed in financial studies due to its
inevitable effects towards the evaluation of the nature of the considered sys-
tem. When a system is governed by a deterministic law, the characteristics of
the structure often show globally definable invariant measures such as fractal
dimension and Lyapunov exponents as an extension of sensitive dependence to
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initial conditions. In this work, we try to observe the behavior of separation
between ForEX series depending on the Lyapunov exponents as the nonlin-
ear statistics. The sections are arranged as follows: in Section 2 we give the
brief results of the literature dealing with the existence of nonlinear dynamics
in financial systems. In Section 3 we give the basic results of the nonlinear
similarity tests including the crisis period. To analyze the temporal patterns,
we also investigate the historical reactions of the ForEX system towards time
depended random fluctuation under the assumption of a stable nonlinear dy-
namic structure. Our conclusions and future perspectives are given in Section
4.

2 Deterministic Flow of Exchange Rates

The first studies related to the determination of nonlinearity in financial time
series approach the problem via statistical frameworks like BDS test for in-
dependence or bispectrum test for statistical nonlinearity. In spite of the dif-
ficulties in data quality concept, studies related to financial data have found
evidence for nonlinear or chaotic relationships. Due to the importance of a
key variable for macroeconomic policy, the exchange rates data have been re-
searched widely in financial analysis. Through all these, results of the studies
covering exchange rate dynamics are summarized by [10] as follows:

• The tests based on correlation dimension and some others confirmed non-
linear structure in exchage rates.

• Limited evidence for chaos.

• Residuals gathered from suitable statistical models (ARCH and GARCH)
do not show nonlinear characteristics, so the mentioned models are ade-
quate.

On the other hand studies that tries to quantify the geometrical peculiari-
ties of phase flow assume a self-similar structure which is a result of sensitive
dependence to initial conditions. For example Çoban and Büyüklü [3] ana-
lyzed the time series of New Turkish Lira with respect to US Dollars in be-
tween August 2001 and February 2007. The applied locally projective filtering
methodology removed most of the noise contaminant which irregularly shadows
the original phase flow (see Figure.(1)). The filtered series has a correlation
dimension of D2 = 4.5 and Lyapunov exponent of λ = 0.05. We state that,
the phase flow properties of daily ForeX return series exhibit continuous flow
characteristics rather than a discrete chaotic map or high dimensional random
walk (Figure.(1)). Obviously, for such flow properties, the exponential diver-
gence metrics has sense in terms of nonlinear dynamic analysis. Naturally, the
surrogate testing procedure is able to show whether the nature of the govern-
ing dynamics of considered series has a significantly different behavior from a
stochastic system.
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Fig. 1. The yearly phase flow representation of a highly noise reduced version of
Turkish Lira-Dollar daily logarithmic return series in between 2001-2007. PC1,2,3

stands for the first three principal directions used for projection.

3 Classification via Surrogate Testing

While working with real world observations generated by unknown dynamics
some distributive properties should be acquired for the system to be analyzed.
This may be realized by constructing random surrogate data sets that originate
from the real observations. Surrogate data are designed to mimic constrained
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properties of original data to allow a comparison between assumed dynamics
and some other stochastic structure which have similar properties. The two
basic versions for the surrogate data are produced via shuffling observations
(Random Surrogate) in random order and randomization of complex phase pa-
rameter of ’Fast Fourier Transformed’ series (FFT). Any random shuffle of the
original data destructs all linear and nonlinear dependencies between the obser-
vations and preserves only the empirical distribution. Thus, the observations
became completely independent by construction which could be evaluated as an
extreme case among surrogate methods. In FFT procedure, all linear properties
of original sequence remains constant since the power spectrum is preserved.
Thus, comparing invariant properties are gathered from the original signal and
FFT sequences by point of statistical assumptions under defined significance
level yield an interpretation about nonlinearity ([14]).

What makes the exchange rate changes in the recession era much more com-
plicated is the intervention from the respective governments during recession
period, in addition to the news in fundamentals as detailed in [2]. Apart from
usual complex rules governing the exchange rate, during the recession, most of
the countries tried to resist it by direct interventions. Sometimes it could be
change in policy or some times pumping huge amount of money into financial
market or imposing restrictions on pay or interest rates, huge economic stim-
ulus package etc. One can for example refer to Euro News for country-wise
details (for both EU and non-EU countries) [11]. For the present purpose, we
like to see if all these initiatives have effect on the exchange rate in the said
time period.

Based on the surrogate analysis, the work of Das & Das [2] has shown that
the direct distance of divergence curves between original and surrogate data
series is a good qualitative parameter for clustering exchange rates series. Here
and in the following, we use the term distance to a surrogate as a nonlinear
similarity measure which is the distance between exponential divergence curves
and their surrogate ones. The analysis in [2] have shown that ForEX series can
be classified in three categories via their distances to surrogates:

• Group A: For some countries (India, China, Sri Lanka) the distance is too
high.
• Group B: For some countries (Australia, Malaysia, Thailand) the distance

is moderate.
• Group C: For some countries (Canada, Japan, Singapore, Sweden, Switzer-

land, UK) the distance is small.

It is also conjectured that the behavior of macroeconomic indicators (for
example, the balance of trade) are highly related to the mentioned nonlinear
similarity in between the clusters.

In line with the work [2], nonlinear data analysis of the data during which
the economic recession had started. In that work, we considered daily data for
twelve countries, over the span of nearly 36 years. Now we investigate data
from the same 12 countries for the periods of January 2008 to October 2009, as
the present recession had started around July 2008. We have again calculated
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the largest Lyapunov exponent (LLE) and compared the LLE values calculated
in previous work to the present values- that is LLE values previous and during
recession.

During recession time, we find again that for countries whose LLE change
is positive are China, India and Sri Lanka. They exactly correspond to ear-
lier result of Group A. So we can say that countries with more the nonlinear
structure in its ForExRate data, LLE change is positive. For other countries,
we divide the change in two groups:

• When change is high- nearly -50% or more: Australia, Malaysia, Thailand
and UK

• When change is moderate: Canada, Japan, Singapore, Sweden, Switzerland

Again, we see that the countries falling in group B (Except UK) has suffered
high change. And finally, countries showing moderate change correspond to
Group C. So, on the basis of change in LLE value during recession, we can
conclude that the more nonlinear structure its foreign exchange rate shows the
more its LLE changes.

3.1 Temporal Analysis of Surrogate Measures for ForEX Series

Do nonlinear similarity statistics exhibit a high frequency random scattering
over long time intervals or they represent global fluctuations with wide wave-
lengths? In our simulations we show that the structure of the fluctuations of
nonlinear statistics over long time intervals can be used to classify the ForEX
series through their historical behavior. That means, for the last 3-4 decades
financial time series have shown different evolutionary patterns. In this section
our main aim is to give a consistent computational procedure depending on
the concepts in [8] to obtain the conjunctural fluctuation of the distance to
surrogate measures for various ForEX series. Here we use the term conjunc-
tural since the basic consideration is on the observation of similarity variation
for long time intervals (decades). For the simulations, we adopt the idea of
Celluci et.al. [8] for our similarity measures. Here we will not explain the
implementation of the algorithm in detail, instead we refer the reader to [5].

We start with the second formula of [8] defining the D statistics given in
Equation.(2)

D =
1

NkNsurr

Nsurr∑
j=1

Nk∑
i=1

|Λorigj (ki)− Λsurrj (ki)|. (2)

where

Λ(k) =
1

Nref

Nref∑
n0=1

log2

 1

|Uε(sn0
)|

∑
sn∈Uε(sn0

)

‖sn0+δk − sn+δk‖
‖sn0

− sn‖

 (3)

In Equation.(3), ‖ · ‖ = ‖ · ‖L2 and sn0 are embedding vectors satisfying
si = (yi, yi+τ , . . . , yi+(m−1)τ ) that are generated by the time-delay reconstruc-
tion of the time series sequence {yi}Ni=0 with delay time (τ) and embedding
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Fig. 2. D curves for the investigated ForEX series (subsegments set pD1500,5) where
m = 6, Nref = 500, Nε = 20, w = 80, Nsurr = 100.

dimension (m). k is the time evolution parameter where δk is the time span
of the reference trajectory to calculate Λ statistics. Uε(sn0) is the temporally
uncorrelated neighborhood of sn0

where at least Nε vectors are found.

D is a measure of direct distance between Λorig and Λsurr scores which
can be evaluated as a similarity measure that defines the rate of ’geometrical
equivalence’ of Λ curves for original and random shuffled surrogates. Obvi-
ously D depends on many parameters which lead to the form for any p given
in Equation(4).

(p)Dn,l(·) =(p) Dn,l(m, τ,N,Nk, Nsurr, Nε, Nref , w) (4)

m embedding dimension
τ delay time
N length of time series sequence
Nk time span of the reference trajectory vectors
Nsurr number of surrogates
Nε neighbor trajectory vectors
Nref number of reference trajectory vectors
w minimum window length for temporal correlation

The notation (p)Dn,l is used to describe the pth subinterval of the original
series {y}Ni=1 of length n with a shifting parameter l. Then the absolute distance
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Fig. 3. D curves for the investigated ForEX series (subsegments set pD1500,5) where
m = 6, Nref = 500, Nε = 20, w = 80, Nsurr = 100.

between two subsegments is l. TheD statistics are calculated via reconstructing
the phase space of these distinct subsegments.

Our findings on the ForEX rates let us to group the series in to two main
categories. The first group (I) includes Australia, UK, Japan and New Zealand
where their D statistics exhibit long term decreasing trend for the last 40 years
(see Figure.(2)). The mentioned trend is obvious for Australia and Japan. The
second group (II) includes Turkey, India, Singapore and Hong-Kong where
each series has their own characteristic fluctuations, probably depending on
the financial events in their history (see Figure.(3)). The fluctuations in the
second group is conjunctural including the jumps across different global phases.
The main difference of the sets is the decay pattern of fluctuations. Obviously
the series in group I are all developed economies whereas the second group
includes developing countries which brings the possibility of financial stability
issues effecting nonlinear statistics. Such stability issues are discussed in [2]
where the balance of trade data indicating the stability are consistent with
their classification.

4 Results and Discussion

In this short work, we tried to analyze the classification of ForEX series based
on Lyapunov exponents as the nonlinear statistics. We support that such a
classification of financial time series has ability to put forward bright under-
standing towards the nature of the system. In [15] Thomas Schreiber argue the
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validity of nonlinear statistics whether they are supposed to diverge from the
original value. He states that, ”we do not have to worry too much about the
theoretical basis of the quantities. The results are validated by the statistical
significance for the discriminative power. The classification of states can give
valuable insights into the structure of a problem”. From this point of view, we
give results of related works which make a clear distinction for both spatial
(between countries) and temporal (between different time segments of ForEX
series) patterns. Our next investigation will be based on the statistical cluster-
ing applications of nonlinear measures through a possible link between daily
return risk and nonlinear statistics from a temporal perspective.
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Abstract. In this work we extend the details of a linear least squares method to
estimate the noise level in chaotic time series which has been previously proposed in
[1]. For this purpose we analyze a non iterative algorithm based on the functional form
obtained by Schreiber in 1993 where the effects of noise on L∞ norm correlation sums
can be quantified via the nonlinear functional. The modified version of the functional
leads to a linear approach that gives satisfactory results for simulated continuous
flow data even for high level of noise contamination (up to 80%). The approach is
especially useful to determine the effective fitting range of data. The range is limited
by the curvature effects of the attractor and fluctuations in small scales. We also seek
for a phenomenological model for the curvature effect depending on the empirical
distribution of estimation errors.
Keywords: linearization, noise level, chaos, curvature effect, data analysis.

1 Introduction

For the last three decades, analysis of chaotic time series has seen a great many
numbers of improvements and has became one of the most demanded approach
while investigating the systems with unpredictable complex behavior. Chaotic
analysis of complex systems usually takes its form through determination of
global structural properties (invariants) and the concept of nonlinear predic-
tion. The system under investigation may be perceived as a random fluctuation
whereas its behavior is controlled by a system of nonlinear deterministic equa-
tions, sometimes disturbed by observational or dynamic noise source. Although
it is possible to separate the noise and signal via conventional spectral tech-
niques, it is not the case for chaotic systems which show broadband spectra.
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For such a situation, it is crucial to comprehend the main source of fluctua-
tion whether it is generated by pure random noise or any nonlinear dynamical
system. If we are interested in the analysis of real world observations such as
financial time series, atmospherical measurements or trajectory of planetary
motions, then the observations are mostly a combination of the two. However
the weights in this combination may be related to the nature of the phenomena.

For noisy observations of a deterministic system, random noise contaminant
is evaluated as a negative effect that give rise to serious bias in the estimations
of statistical quantities related to the dynamics. This effects the reliability
of the information obtained from the system which is supposed to define its
overall behavior. Especially for the algorithms to calculate the invariants of the
chaotic dynamics, noise narrows the effective scaling ranges for computations,
since most of them has been derived under noise-free assumptions. Taking into
account of the effects of random noise on the analytical form of the invariants
is also advantageous to describe the exact amplitude of noise corruption which
can be extracted from the usual invariant statistics. Many of the algorithms
have been proposed using the mentioned framework.

In this work, we give a linear least square algorithm for the noise level de-
termination approach used in [2]. We also seek for a phenomenological model
for the curvature effects depending on the empirical distribution of estimation
errors. The sections are arranged as follows: in Section 2 we give the brief re-
sults of the literature dealing with the noise estimation algorithms depending
on correlation sum. We also describe a new linear algorithm for noise esti-
mation. In Section 3 we discuss about the curvature effects which has strong
bias for the map data while using Schreiber’s approach. In this section we also
propose an empirical model for the characterization of this effect depending on
our high-resolution simulations using synthetic chaotic data. Our conclusions
and future perspectives about some open problems are given in Section 4.

2 A Linear Algorithm for Noise Estimation

In chaotic systems, the spatial distribution of phase space vectors follows the
power law for relatively small length scales compared to the attractor size.
Noise shows its disturbing effects on the distribution of nearby vectors that
are closer than ε distance in phase space. General approach to determine the
noise amplitude is to append the analytical form of the disturbance effects
on to the mathematical form of invariant descriptions. For example Liu et.al
[11] proposed an analytic technique where noise level could be estimated from
the geometrical form of the exponential divergence curves [12]. On the other
hand studies adopting correlation sum approaches exploit the effects of noise
disturbance on the point density over the attractor. Due to the self-similarity,
the point distribution follows the very basic power law. If we consider the
definition of correlation sum approach [13], the point distribution depends on
the fractal dimension of (D2) the system. For the length scales ε → 0 the
distribution is given by,

C(ε) ∝ εD2 (1)
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where C(ε) is defined as,

C(ε) = lim
N→∞

1

N2

N∑
i,j=1

Θ(ε− ‖ si − sj ‖) (2)

In Eq.(2), ‖ · ‖=‖ · ‖L∞ and si,j are embedding vectors satisfying si =
(yi, yi+τ , . . . , yi+(m−1)τ ) that are generated by the time-delay reconstruction of
the time series sequence {yi}Ni=0 with delay time (τ) and embedding dimension
(m). Then the Heaviside step function Θ(·) is used to estimate the probability
of a nearby trajectory vector to fall inside the selected hypercube of side length
2ε.

If the measurements are noisy, then the functional form in Eq.(2) for L2

can be represented by the complicated form given by Smith [3] and a modified
version discussed in [6]. By using the correlation sum definition in [6], Jayawar-
dena et.al [4] gave a linear least squares approach to detect the noise level in
chaotic time series. They have shown that the correlation function in [6] satis-
fies an ordinary linear differential equation where it is possible to extract both
dimension and noise level information by a least squares fitting of calculated
correlation sum data.

Our approach here is different from [4] in terms of the norm definition.
Schreiber [2] has shown that the L∞ norm definition of correlation sum can be
used to estimate the noise amplitude σ via the nonlinear functional g(·). In
this case the effects of noise on the spatial distribution is characterized by (the
usual form),

dm(ε) = dr(ε) + (m− r)g(
ε

2σ
), g(z) =

2√
π

z e−z
2

erf(z)
(3)

The correlation dimension estimates obtained from n dimensional embed-
ding space dn is defined by,

dn = lim
ε→0

lim
N→∞

dn(ε), dn(ε) =
d ln(Cn(ε))

d ln(ε)
(4)

In Eq.(3) embedding space of m dimensions should theoretically satisfy
m > r > 2d, whereas m > r > d give better estimates. It is possible to show
that the noise functional g(z) can be represented in terms of the confluent type
hypergeometric function of the first kind 1F1, such that,

g(z) =

(
1F1(1,

3

2
, z2)

)−1
(5)

where 1F1(a, c, x) can be defined by the integral representation in Eq.(6).

1F1(a, c, x) =
Γ (c)

Γ (a)Γ (c− a)

∫ 1

0

ext ta−1 (1− t)c−a−1 dt c > a > 0 (6)
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We approximate the gaussian noise functional by a stretched exponential
decay function (Eq.(7)), where longer derivations including the asymptotic ex-
pansion of the form in Eq.(5) was explained in [1]. The final form is,

g(z) =
2√
π

z e−z
2

erf(z)
≈ e−α z

λ

(7)

in which (α, λ) are optimized parameters for g(z) (see [1]). Although there
has been successful attempts to directly fitting (global optimum) the exponen-
tials, it is noted that there is still not a direct technique that linearize the expo-
nentially scattered data in to a linear one except ordinary log transformation
(see [7]). In the present work we follow a relatively practical way to linearize
the functional form that was obtained in Eq.(7) by converting the original ex-
ponential fitting problem in to an initial value problem (IVP) which is linear in
its parameters [14]. Since g(z) = exp(−αzλ), then g(z)′ = −αλzλ−1g(z) with
initial condition g(0) = 1. Despite being a basic property of dimension esti-
mates for small length scales, statistical fluctuations of the data accumulated
in g(z) can be efficiently smoothed via the integration based solution. Finally,
the linear least squares algorithm for the solution of the mentioned differential
equation for zi = εi/2σ yields with,

min

(
N∑
i=1

w(zi)

{
g(zi) + αλ

∫ zi

0

zλ−1g(z) dz − g(0)

}2
)

(8)

including the multiplier term w(zi) as the statistical weighting factors.

System NR NR N̂R σ σ̂ Linear Region
N = 20000 (real) (estimated) (real) (estimated)

Henon 0.05 0.0502 0.0518 0.0363 0.0374 0.12-0.77
σs = 0.72210 0.20 0.1995 0.2285 0.1444 0.1653 0.19-0.71

0.50 0.5015 0.6094 0.3629 0.4410 0.17-0.47

Rössler 0.10 0.1004 0.1122 0.8020 0.8957 0.07-0.71
σs = 7.9328 0.40 0.3999 0.4451 3.1933 3.5534 0.16-0.77

0.80 0.8001 0.8698 6.3876 6.9442 0.23-0.88

Lorenz 0.10 0.1001 0.1090 0.7923 0.8628 0.11-0.734
σs = 7.9193 0.40 0.3989 0.4452 3.1575 3.5251 0.15-0.77

0.80 0.7963 0.8548 6.3047 6.7675 0.23-0.70

Table 1. Estimated noise amplitudes (σ̂) by the proposed linear algorithm in Eq.(8).
Number of observations for all series is N = 20000 where transients are discarded.

We test the algorithm on Lorenz, Rössler flow systems and Henon map to
see the efficiency (Table.1). Here and in the following, NR ratio is defined as
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the standart deviation of the noise contaminant σn divided by the standard
deviation of the original noise free signal σs, NR = σn/σs. In Table.1 it
can be observed that the linear algorithm works relatively well for the flow
data whereas it has strong positive bias for maps. It is clear that the noise
estimations for flow systems give reasonably acceptable estimates for extreme
noise levels up to 80% (NR = 0.8) . In Section 3 we discuss the dominant
effect of curvature of the attractor geometry which cause bias for map data.

3 Empirical Modeling of Curvature Effects: The Peak
Function Approach

For some statistics obtained from a chaotic time series, the curvature effect
is dominant. From a technical point of view, the curvature effect is highly
related to the limit assumption of ε → 0 made on the point distribution over
the attractor. In the literature the bias of density estimates sourced from
geometric effects is related to various concepts such as edge or boundary effect.
The sparsity pattern in relatively small scales also cause measurement bias and
related to the lacunarity of the attractor. However the relationship between
noise level and the bias of estimations caused by macroscopic geometric effects
has not been clearly described. In this section our aim is to represent the
results of our simulations and describe the effects of attractor geometry when
the noise level is extremely high.

The point density measurements obey the power law for very small scales.
However for large distances ( ε >> 0 ) the macro-scale geometrical character-
istics of the attractor is dominant for the density measurements which may
violate the power law assumption. This problem comes into prominence espe-
cially for the correlation dimension estimates where they suffer from positive
bias.

Noise level determination algorithms that use information coming from for
both micro-macro geometrical features are highly effected from the curvature
effects. For instance the ones that use the point density measurements. For low
level of noise ratios (NR) the estimated amplitudes are very accurate, whereas
estimated noise levels that are comparable to the size of the original attractor
show strong positive bias up to a 50% relative error rate. Here and in the
following, we define the relative error rate (RE) as the deviation of estimated
noise amplitude σ̂ from the real measurement σn, RE = (σ̂ − σn)/σn . It is
known that Schreiber’s algorithm gives overestimated results for 0.2 < NR <
0.8 which was investigated by Leontitsis et.al in [8]. They have shown that the
maximum norm estimation of noise function can be used as a practical way to
eliminate negative effects curvature. The prediction algorithm has been also
implemented to an adaptive locally projective noise reduction technique in [9].
The algorithm is also useful to describe the overall noise measurements through
non-adaptive techniques while analyzing financial time series [10].

In this section we investigate the empirical properties of curvature effects
and give a phenomenological model for the distribution of error rates. For a
computational description in noise-free systems we refer the reader to the work
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in [15]. Analytic description of the effect is possible, however we do not consider
such a mathematical model here. Here we will investigate another situation:
Destruction of the attractor geometry will eliminate any kind of geometrical
effect, since the chaotic attractor is converted in to a ’geometrically formless’
situation resembling the multivariate normal distribution.

Fig. 1. Destruction of curvature effects on the chaotic Ikeda Map by adding gaussian
noise to data (NR = 0%, 2%, 40%, 300%).

One way to eliminate all the curvature effects from the attractor is to add
appropriate amount of white noise to the original system. In this case, the
macro scale geometric form of the system is destroyed and becomes formless
(Figure(1)). To support the idea, we test the situation on well known chaotic
systems including Henon, Ikeda, Predator-Prey and Lorenz systems. All series
have N = 1500 observations where transients are excluded. We continuously
add normally distributed noise to the systems and estimate the noise level via
the nonlinear version of Schreiber’s algorithm on σ < ε < 4σ interval. When
the noise ratio exceeds 3σs (NR > 3), then any curvature effect is eliminated.
The relative error rates for all chaotic systems has a peak position in the interval
0.5 < NR < 1.5 where the peak level and position seems to depend on the
characteristics of the macroscopic geometry. The common features of error
distributions is concordant with the behavior of a peak function: 0 level error
rates for low noises, a peak point for some noise level and an asymptotic descent
of the error rates until convergence to a minimum, while σn/σs →∞ . Since we
do not make any prior assumptions, we have selected a log-normal type peak
function to describe the situation. The relative error rates of a chaotic system
arisen from the curvature effect is then modeled by h function in Eq.(9).

h(σ) = re0

(
σ

σ + 1

)
+

κ√
2π w σ

e−
(ln(σ/xc))

2

2w2 (9)

If the original series is corrupted by gaussian noise with standard deviation
of ε, it is possible to model the curvature effects via adding increasing amounts
of noise with standard deviation of σadd. The final noise amplitude is estimated
by σ ≈ (σ2

add+ε2)1/2. Since we do not have any information about the relative
error rates, observed standard deviations should be used. By using the form
used in Eq.(9), the peak model yields the final form in Eq.(10),
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Fig. 2. Upper Panel: The right skewed distribution of relative error rate scores with
respect to the noise level for various chaotic systems. The distribution is characterized
by a log-normal peak function of type y = y0 + A√

(2π)w xc
exp(−(ln(x)− xc)2/2w2).

Lower Panel: Modeling curvature effects via peak function approach described in
the text. Left panel: The noise estimates represent significant deviation from the
450 degree line (blue) which can be efficiently modeled by the phenomenological
approach. Right panel: The simulation results for four different chaotic systems and
moving average smoothed curves.

H(σadd) = (σ2
add + ε2)1/2 (re0(

(σ2
add + ε2)1/2

(σ2
add + ε2)1/2 + 1

)

+
κ√

2π w (σ2
add + ε2)1/2

e−
(ln((σ2

add
+ε2)1/2/xc))

2

2w2 + 1) (10)

which is obviously extremely nonlinear, but still useful to describe the ef-
fects. From Figure.(2), it can be seen that the fitting of error function H
accommodates well with the simulated data (significance of model and param-
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eters). If the noise level let one to describe the position of peak error rate, it is
possible to make better estimates for the exact level of noise via the peak func-
tion approach. On the other hand, for noise levels NR >> 1 where it goes far
beyond the peak position, it would be difficult to make reasonable estimations
for exact noise amplitude due to the nonlinearity of H(·) suffering from local
minima.

4 Results and Discussion

In this work we have discussed a linear least squares method to estimate the
noise level in chaotic time series. The efficiency of the method on map and
flow data are discussed. Although the proposed linear approach is used for to
estimate the noise level of a chaotic time series, it could also be used to deter-
mine the initial feasible estimates for nonlinear algorithms. Positive bias still
exists for linear approach where we have proposed a novel approach to model
the curvature effects depending on the distribution of estimation errors. Our
future investigations will be based on the analytical description of curvature
effect.
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Abstract: In this paper we combine forwarding and backstepping techniques to stabilize 

mixed interlaced systems. All the signals in the close loop remain semiglobally 

ultimately bounded the output signal y follows a desired trajectory signal yd, with 

bounded derivatives up to mth order. We also present simulation examples that prove the 

adaptation of mixed interlaced forms, using a backstepping controller. 

1 Introduction 
Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two 

principal objectives in the scientific study of his environment: he wants to 

understand and to control. The two goals reinforce each other, since deeper 

understanding permits firmer control, and, on the other hand, systematic 

application of scientific theories inevitably generates new problems which 

require further investigation, and so on. Nonlinear control includes two basic 

forms of systems, the feedforward systems and the feedback systems.  

The strict feedback systems can be controlled using the well known 

backstepping technique. The purpose of backstepping is the recursive design of 

a controller for the system by selecting appropriate virtual controllers. Separate 

virtual controllers are used in order to stabilize every equation of the system. In 

every step we select appropriate update laws. The strict feedforward systems can 

be controlled using the forwarding technique that is something like 

backstepping but in reverse order. Other cases of systems that can be converted 

to the previous forms are part of a larger class of systems that are called 

interlaced systems as described by [9], and [3]. In these systems we combine 

backstepping and forwarding techniques together in order to recursively design 

feedback control laws. Interlaced systems are not in feedback form, nor in 

feedforward form.  These systems have a specific methodology that differs from 

backstepping and forwarding. We don’t start from the top equation, neither from 

the bottom.  

Other special cases of systems are part of other forms that we call mixed 

interlaced and we introduce their study in the present paper. The methodology is 

based on classical interlaced systems and is developed by the authors. We want 
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to make the systems solvable by one of the well known backstepping and 

forwarding methods. This can be reached after some specific steps that convert 

the system into a known form. We start from the middle equation and we 

continue with the top. The previous method is based on classical interlaced 

forms that are introduced by [9] and [3] and can be extended to more 

complicated systems. 

A lot of researchers developed a series of results that generalized and 

explained the basic idea of nonlinear control. Teel [10] in his dissertation 

introduced the idea of nested saturations with careful selection of their 

parameters to achieve robustness for nonlinear controllers. After Teel , 

Sepulchre, Jankovic and Kokotovic [9] proposed a new solution to the problem 

of forwarding that is based on a different Lyapunov solution.  
The paper consists of four sections including the current one. The next 

section introduces the meanings of Adaptive Control, Backstepping and 
Forwarding techniques. In Section 3, the main body of this paper, the mixed 
interlaced forms are analyzed. Finally section 4 draws some concluding remarks. 

2 Background in Adaptive Control 

The history of adaptive control began from the early 1950’s. With the 

passing of the years a lot of papers and books have been published. These 

research activities have proposed solutions for basic problems and for broader 

classes of systems. Especially the interest for nonlinear adaptive control began 

from the mid-1980’s. A lot of great scientists, such as Kokotovic et al [2], Lewis 

et al [4], Ioannou and Sun [7], Christodoulou and Rovithakis [5] have studied 

adaptive control and its applications extensively. 

Adaptive control is a powerful tool that deals with modeling uncertainties in 

nonlinear (and linear) systems by on line tuning of parameters. Very important 

research activities include on-line identification and pattern recognition inside 

the feedback control loop.  

Through time, adaptive control has existed big development (Sepulchre et 

al [9]) in order to control plants with unknown dynamics that appear linearly. 

Adaptive control is based on Lyapunov design. 

In order to make it clear, a short example will be reported. Let us consider 

the nonlinear plant: 

 
2x u xθ= +&       (1) 

And select the control law as: 

  
2ˆu qx xθ= − −     (2) 

 

which, if the estimated θ ( θ̂ ) is equal to real θ such that θ̂ θ≡ , then the result is 

a close loop system of the form: 

 

 x qx= −&      (3) 
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The filtered version of the signals x is: 

        21

1
fx x

s
=

+
    (4) 

The prediction error e is: 

 

ˆ ˆˆ ( ) f fe x x x xθ θ θ= − = − =    (5) 

 

We use the commonly normalized update law: 

 

2

2
ˆ

1
f

f

x
x

γ
θ θ= −

+

& %     (6) 

The previous update law is linear. It can be proved that θ%  does not converge to 

zero faster than exponentially and the easiest case is: 

 

(0)te γθ θ−=% %      (7) 

 

 Finally the close loop system has the following form: 

 
2x x xθ= − + %&                                                                   (8) 

 

where for simplicity q substituted with 1 and by substituting θ%  from the 

previous equation is obtained: 

 
2(0)tx x e xθ−= − + %&     (9) 

 

where for simplicity γ substituted with 1. 

It is easy to see that the explicit solution of the previous is determined by the 

following equation: 

 

2 (0)

(0) (0) [2 (0) (0)]t t

x
x

x e x eθ θ− −
=

+ −% %
                            (10) 

 

From the previous it is clear that if (0) (0)x θ% <2 then it is obvious that x 

converge to zero as t�∞. At the case that (0) (0)x θ% >2, at the time: 

 

1 (0) (0)
ln

2 (0) (0) 2
esc

x
t

x

θ

θ
=

−

%

%
 

 

the difference of the two terms of the exponential in the denominator becomes 

zero, that is: 
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| ( ) |x t →∞  as esct t→  

 

The previous model is unstable (x goes to infinity at tesc) and Lyapunov design 

models must be specified in order to achieve stabilization. 

Let choose the following Lyapunov function: 

 

2 21 1 ˆ( )
2 2

V x θ θ= + −     (11) 

 

The derivative of the Lyapunov function for our nonlinear plant is: 

 

2 2ˆ ˆ( ) ( )V x u xθ θ θ θ= + + −
&

&  

 

In order to find a control and an update law we must specify: 

 

2 2 2 2ˆ ˆ( ) ( )V x x u x xθ θ θ θ≤ − ⇒ + + − ≤ −
&

&   (12) 

 

From the previous equation in order to remove the unknown θ we use the update 

law: 

 

3ˆ xθ =
&

 

 

And the control law is: 
2ˆu x xθ= − −  

 

Both control law and update law yield 2V x≤ −&  such that stability maintains in 

opposition to the previous approach without Lyapunov. 

 

Adaptive control in most cases has tracking error that converges to zero. 

 

i) Adaptive Backstepping Design 

 

Backstepping ([1], [2], [4], [7]) is a recursive design for systems of the 

form: 

 

1 2 1 1 2

2 3 2 1 2 3

3 3 1 2 3

( , )

( , , )

( , , )

x x x x

x x x x x

x u x x x

ϕ θ

ϕ θ

ϕ θ

Τ

Τ

Τ

= +

= +

= +

&

&

&
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with state x=[x1
T
, x2

T
, x3

T
] and control input u. The value θ is a p x 1 vector 

which is constant and unknown. The function φ1 depends only to x1, x2 function 

φ2, φ3 depends only to x1, x2, x3. 

The purpose of backstepping is the recursive design of a controller for the 

previous system by selecting appropriate virtual controllers. The virtual 

controller for the first equation of the system is x2 and is used to stabilize the 

first equations, the virtual controller for the middle equation is x3 and is used to 

stabilize the first two equations, and finally the controller for the last is u. We 

use separate virtual controllers in order to stabilize every equation of the system. 

In every step we select appropriate update laws. 

In classical backstepping, the output is selected as the state x1 and the 

purpose of adaptive control is to make this state to follow a desired trajectory 

x1d. 

Adaptive backstepping design is a Lyapunov based design [4]. The previous 

procedure can be applied only to systems that have (or transformed to) the 

previous form (strict feedback).    

 

ii) Adaptive Forwarding Design 

 

Forwarding ([9]) is something like backstepping but for strict feedforward 

systems. Let us introduce forwarding technique with an example such as: 

 
2

1 2 3 2

2
2 3 3

3

x x x x u

x x x u

x u

= + +

= −

=

&

&

&

 

 

In the previous example we do not have feedback paths.  

Firstly we stabilize the last equation ( 3x u=& ). We take the following Lyapunov 

function:  

2
3 3

1

2
V x=  and a feedback to stabilize the system is 3u x= − . With the previous 

we augment 3 3x x= −&  by the middle equation, and write our system in the 

cascade form: 

 

2 2 3

3 3

( )x x

x x

ϕ=

= −

&

&
 

 

where 3
2 3 3 3( )x x xϕ = −  is the interconnection term. 2 0x =&  is stable and 

3 3x x= −&  is GAS and LES. The next step is to construct Lyapunov function V2 

for the augmented system when V3 is given. 

After some specific steps we reach the following control law: 
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3
23

3 2 3 3( )(1 )
3

x
u x x x x= − − + + +      (13) 

 

 

3 Mixed Interlaced Forms 

a. Introduction and Linearization Method 

To begin with we consider the following third order mixed interlaced 

system and via an example we will introduce mixed interlaced forms [12]: 

 

1 3 1 32 3 1 2 31 3 1 3

2 2 2 23 2 2 1 21 2 2 3

3 1 3 1 3

( ) ( )

( ) ( )

( ) ( )

x x a c x x a c x x

x x a c x x a c x x

x x c x u t

β

β

β

= − + − + −

= − + − + −

= − + −

&

&

&

 (14) 

 

The previous system is not in feedback nor is it in feedforward form 

because of specific terms such as x1x2, x1x3, x2x3. The Jacobi linearization of the 

previous system is a chain of integrators.  

Instead from starting on top, we start from the middle equation and treat x3 

as virtual control and we want 2 2x x= −&  for stability. There exists a Lyapunov 

function of the form 
2

1 2

1

2
V x=  and a stabilizing feedback is 

2 2 23 2 1 23 2 1 2
3

21 2 21 2

x a c x a x x x
x

a x a c

β− + − +
=

−
 which is x3=a(x1,x2). We employ one step 

of backstepping to stabilize the middle equation augmented by the top equation 

of our system:  

 

 

1 3 1 32 3 1 2

2 2 23 2 1 23 2 1 2
31 3 1

21 2 21 2

31 3 1

2 2

( )

( )( )

( )

x x a c x x

x a c x a x x x
a c x

a x a c

a c x v

x x v

β

β

= − + − +

− + − +
+ − +

−

+ −

= − +

&

&

 (15) 

 

where the control x3  has been augmented to x3=a(x1,x2)+v. With v=0, the 

equilibrium (x1,x2)=(0, 0) is globally stable and forwarding yields the following 

Lyapunov function: 
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- 

Intelligent Controller 
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Neural Networks 

u 
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e1�0 
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Plant Output 

Reference 
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x1d 

2 1 1

2 2
2 1

2 3
2 2

lim ( )

1 1
,

2 2

1 1

2 31 1 2

V V x s

x

x xx x

ξ

ξ

= +

= +

−= + −

%

   (16) 

 

The feedback law: 2
2 1(1 )v x ξ= − − maintains the system globally stable and the 

augmented control is 

 

 

2 2 23 2 1 23 2 1 2
3 1 1 2

21 2 21 2

2
2 1 2 1 2 1

( , )

(1 ) ( , , )

x a c x a x x x
x a x x v

a x a c

x a x x

β

ξ ξ

− + − +
= + =

−

− − =

 (17) 

 

 

 
In order to stabilize our system we apply the backstepping technique. 

b. Mixed Interlaced Forms, Adaptive Control and Simulations 

Adaptive Control of dynamical systems has been an active area of research 

since the 1960’s. The system is described by the following figure: 

  

 

 

 

 

 

 

 

 

 

 

 

Because we have 3 states our controller design is described with Kaynak et al 

[1] controller in 3 steps. 

Step1: In this step we want to make the error between x1 and x1d (=yd) as 

small as possible. 

The previous is described by the following equation: 

 

1 1 1de x x= −      (18)  

       

 

We take the derivative of e1. After that we have: 
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1 1 1 1 1 1 1 1 2 1( ) ( )d de x x e f x g x x x= − ⇒ = + −& & & & &         (19)      

     

 

by using x2 as the virtual control input. The previous equation can be changed 

by multiplication and division with ( )1 1g x  to the following form: 

 

 1 1
1 1 1 1 1 1 1 2 1 1 1( )[ ( ) ( ) ( ) ]de g x g x f x x g x x− −= + −& &         (20)  

            

 

We choose the virtual controller as: 

 
1 1

2 2 1 1 1 1 1 1 1 1 1( ) ( ) ( )d dx x g x f x g x x k e− −= = − + −&        (21)  

    

 

where k1 is a positive constant. In order to approximate the unknown 

nonlinearities (functions f1(x1) and g1(x1)) we use RBF Neural Networks ([11]). 

A Neural Network based virtual controller is used as follows: 

 

2 1 1 1 1 1 1 1 1 1( ) ( )d dx x n x x k eθ ξ δΤ Τ= − + −&                 (22)         

    

 

where we have substituted the unknown nonlinearities  g1(x1)
-1

f1(x1) and g1(x1)
-1

 

with the RBF Neural Networks 1 1 1( )xθ ξΤ  and 1 1 1( )n xδ Τ  respectively based on 

Lyapunov stability ([6], [8]). 

We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

1 11 1 1 1 1 1[ ( ) ]e xθ ξ σ θ= Γ −&     (23) 

1 12 1 1 1 1 1 1[ ( ) ]de n x xδ γ δ= Γ − −& &                                (24)  

   

 

with σ1, γ1 small and positive constants and Γ11=Γ11
Τ
>0, Γ12=Γ12

Τ
>0 are the 

adaptive gain matrices. 

 

Step 2: In this step we make the error between x2 and x2d as small as possible. 

The previous is described by the following equation: 

 

2 2 2de x x= −              (25)                                                      

     

 

We take the derivative of e2. After that we have:  
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2 2 2 2 2 2 2 3 2

1 1
2 2 2 2 2 2 3 2 2 2

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x x x

g x g x f x x g x x− −

= − = + −

= + −

& & & &

&
      (26)  

            

 

By taking the x3d as a virtual control input and by substituting the unknown 

nonlinearities 1
2 2 2 2( ) ( )g x f x−  and 1

2 2( )g x −  with the RBF Neural Networks 

2 2 2( )xθ ξΤ  and 2 2 2( )n xδ Τ  respectively based on Lyapunov stability ([6], [8]), 

we have: 

 

3 1 2 2 2 2 2 2 2 2 2( ) ( )d dx e x n x x k eθ ξ δΤ Τ= − − + −&          (27)  

              

 

We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

2 21 2 2 2 2 2[ ( ) ]e xθ ξ σ θ= Γ −&  

2 22 2 2 2 2 2 2[ ( ) ]de n x xδ γ δ= Γ − −& &                 (28)              

               

 

with σ2, γ2 small and positive constants and Γ21=Γ21
Τ
>0, Γ22=Γ22

Τ
>0 are the 

adaptive gain matrices. 

 

Step 3(Final): In this step we make the error between x3 and x3d as small as 

possible. 

The previous is described by the following equation: 

 

3 3 3de x x= −                                                       (29)           

               

 

 We take the derivative of e3. After that we have:  

 

3 3 3 3 3 3 3 3

1 1
3 3 3 3 3 3 3 3 3

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x u x

g x g x f x u g x x− −

= − = + −

= + −

& & & &

&
         (30)              

 

Where u is the control input and by substituting the unknown nonlinearities 
1

3 3 3 3( ) ( )g x f x−  and 1
3 3( )g x −  with the RBF Neural Networks 3 3 3( )xθ ξΤ  and 

3 3 3( )n xδ Τ  respectively, we have: 

 

2 3 3 3 3 3 3 3 3 3( ) ( ) du e x n x x k eθ ξ δΤ Τ= − − + −&                  (31)                                                     
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We take the following adaptation laws (σ-modification) in order to avoid 

large values of the weights: 

 

3 31 3 3 3 3 3[ ( ) ]e xθ ξ σ θ= Γ −&  

3 32 3 3 3 3 3 3[ ( ) ]de n x xδ γ δ= Γ − −& &                    (32)                                                                     

with σ3, γ3 small and positive constants and Γ31=Γ31
Τ
>0, Γ32=Γ32

Τ
>0 are the 

adaptive gain matrices. 

In order to prove the stabilization of mixed interlaced systems we apply the 

previous described by [1] and we perform the following simulations: 

We make the assumption that c1>>x1, c2>>x2, c3>>x3 and 

a21=a32=β1=β2=β3=1, c1=9.99, c2=6.66, c3=3.33. Also we want our desired 

output to be yd=sin(t). 

Figs. 1-6 show the simulation results of applying the controller for tracking the 

desired signal yd. From figure 1 we can see that good tracking performance is 

obtained. Figure 2 shows the trajectory of the controller. Figure 3 shows the 

phase plane of the system. Figure 4 shows the error 1e , Figure 5 shows the error 

2e  and finally Figure 6 shows the error 3e . 

 

       
Fig. 1: The output of the system under adaptive controller. 
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Fig. 2: The trajectory of the adaptive controller. 

 

 
Fig. 3: The phase plane plot of the system. 
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Fig. 4: Error e1 

 
Fig. 5: Error e2 
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Fig. 6: Error e3 

 
4 Conclusion 

In this paper, we recognize a new form of systems that we call mixed 

interlaced form. We apply the well known backstepping and forwarding 

techniques via specific steps. Also Lyapunov functions can be selected to 

approve convergence and stability. A lot of systems have the mixed interlaced 

form. For example we can think systems in biological models that have many 

terms from different states. After the appropriate selection of the controller we 

can apply adaptive control to make the systems follow a desired trajectory. 

The tracking error is bounded and is established on the basis of the Lyapunov 

approach. Finally, only the states of the unknown plant which are related to the 

reduced order model are assumed to be available for measurement. 

The authors hope that the proposed approach would serve as a promising tool 

to analyze more complex systems. 
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Abstract: The energy of generalized logistic maps at full chaos is computed and 
examined in serving as a guide to multi-disciplinary applications. The maps considered 
are of the form xn+1 =f(xn)= r xn

λ(1-xn)
µ, limited above by 1 resulting in the maximum r 

that yields full chaos; the exponents λ and µ are taken to be any positive real numbers 
between 0.5 and 2. For given values of r, λ and µ, the average energy is calculated as the 
average squared x over 512 points starting at the 2049th iteration point. Near full chaos, 
its dependence on r for fixed values of λ and µ is highly non-linear consisting of a 
number of maxima and minima. For λ greater than 1.1, the energy diminishes 
independent of the initial iteration point. At full chaos, the energy dependence on values 
of λ in the range [0.5, 1.1] and values of µ in the range [0.5, 2] is depicted graphically. 
For a fixed λ or µ, this dependence is approximated linearly.        
Keywords: energy, full chaos, logistic map, generalized logistic maps.    

 

1  Introduction 
 

In the present paper, the energy of chaotic generalized logistic maps is 
computed and examined. The results of the present study may find applications 
in diverse scientific disciplines such as fracture mechanics, see for example, D. 
Sotiropoulos [1], social sciences (e.g. Skiadas & Skiadas [2]), population 
growth modeling (e.g. Marotto [3]), and music composition (e.g. D. 
Sotiropoulos et al [4]). For applications in astronomy and other areas the reader 
is referred to the monograph of Skiadas & Skiadas [5].     

The generalized logistic maps considered here are of the form,   
                                       

              
µλ )1(1 nnn xrxx −=+                                       (1) 

 
in which the parameters r, λ and µ are positive real numbers, while the variable 
x and its map range from 0 to 1. The classical logistic map is given by λ=1 and 
µ=1, whose chaotic nature of the produced x’s were discussed by May [6]. A 
discussion on the x’s produced by iteration for λ=1 and µ<1 as well as other 
specific values may be found in Skiadas & Skiadas [5]. Marotto [3] found that 
for the case λ=2 and µ=1, there is a range of values of r near its maximum ( 
which is obtained from the condition that the upper limit of x is 1) for which the 
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x’s produced are soon after attracted to zero, independent of the initial x chosen 
in the iteration process. Gottlieb [7] further discussed this by computing a region 
in the (initial x, r) space in which the produced x’s escape the zero value fixed 
point. The chaotic behavior of the case λ=µ=1/2 as applied to music 
composition was visited by V. Sotiropoulos [8], while that of the double logistic 
map was examined for music composition by by A. Sotiropoulos [9]. On maps 
of related functional dependence, Stutzer [10] investigated the iterative map xn+1 

= r xn
 (1-xn

1/2) as a macro-economic dynamic model, while Gottlieb [11] 
analyzed the map xn+1 = r xn

3/2 (1-xn
1/2).  Skiadas & Skiadas [5] looked at the 

chaotic behavior of the generalized rational iteration model xn+1 = xn + r xn
 (1-

xn)/[1-(1-σ)xn] with positive σ.  Last, D. Sotiropoulos [12] examined in detail 
the nature and regions of existence of fixed points for the map given by Eq,. (1) 
above.  

The upper limiting value of the map parameter r in Eq. (1) is given in 
D. Sotiropoulos [12]  in terms of the map exponents λ and µ as 

 

       
λµ λµµλ )/1()/1(max ++=r                      (2) 

 

It is at this value of r which yields full chaos that the energy produced by the 
map of Eq. (1) will be calculated and studied in the present paper for values of λ 
in the range [0.5, 1.1] and values of µ in the range [0.5, 2], since it is found in 
the present study that for λ greater than 1.1 the energy diminishes independent 
of the initial iteration point. Furthermore, for a fixed λ (or µ) the dependence of 
the map’s energy at full chaos on µ (or λ) will be established analytically by 
approximating the energy computed from x’s resulting from the iterations of Eq. 
(1).                 
  

2  The energy of generalized logistic maps   
 

The energy, E, of the generalized logistic maps given by Eq. (1) is defined as 
the sum of the squared iterated x’s  

                                                ∑
=

=Ε
�

n

nx
1

2
                             (3)                                                                                                                    

The energy clearly depends not only on the map’s parameters r, λ and µ but also 
on the number, N, of x’s taken into account in the summation and on the initial 
x (=x1) selected. To eliminate the energy’s dependence on the latter two factors, 
we divide the energy by a large number N and pick as initial x, the x produced 
by the map after a large number of iterations so that the resulting energy will be 
independent of both N and the initial x. Thus, we define the average energy 
which may be interpreted as the map’s generated power as 
 

                               ΝΕ=Ε /                                            (4) 
 

The average energy being, therefore, the map’s average squared iterated x.  
From the numerical calculations performed in the present study, we 

have concluded that the appropriate initial x to choose in order to satisfy the 
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aforementioned requirement is the x produced by the map after 2049 iterations. 
Moreover, in computing an invariant value for the average energy a large 
number of x’s needs to be taken into account and we have concluded that 512 
iterations are enough to satisfy this requirement. 

As an example of the chaos generated by the map of Eq. (1), the 512 
chaotic x’s generated at full chaos (r=rmax) after 2049 iterations with λ=1 and 
µ=0.5, 1, 2 are shown in Fig. 1a, b, c.       

 

 
                  

 

 
   Fig. 1. The fully chaotic productions, xn, of the generalized logistic maps with 
λ=1and µ=0.5 (α), 1 (b), 2 (c)    
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In Fig.1, the case λ=µ=1 (r=4) corresponds to the classical logistic map [6]. We 
see that the generated fully chaotic x’s are different for the three cases (a) (b) 
and (c) and, as we shall see in the following section, also the average energy 
produced is different.     
 Next, the average energy, Ē, of the generalized logistic maps of Eq. (1) 
is computed using Eqs. (3), (4) for a large range of the map’s multiplying 
parameter r and for different values of λ and µ. The upper limiting value of λ is 
taken as 1.1 since we have found computationally that larger values yield 
diminishing energy near full chaos (maximum r) as the generated x’s go to the 
fixed point zero after only very few iterations. The phenomenon of diminishing 
generated x’s near full chaos for the map of Eq. (1) with λ=2 and µ=1 was 
observed and explained by Marotto [3] and further discussed by Gottlieb [7] in 
terms of the nature of fixed points for this value of λ. In view of the findings by 
the second author of the present paper in [12] in respect of the nature and 
existence of fixed points for all values of λ and µ in the map of Eq. (1), we see 
that Marotto’s explanation holds true for diminishing x’s near full chaos for λ’s 
greater than 1.1.  

The computed average energy, Ē, versus the generalized logistic map 
parameter r is shown in Fig. 2 for different values of equal map exponents, λ=µ. 
Interest in the present study is in the chaotic regime or near it so that very small 
r’s are not considered in the computations. We observe that the maximum r 
considered increases with increasing λ=µ in accordance with Eq. (2). Further, 
we observe that the average energy decreases both at its maximum and at full 
chaos (maximum r) with increasing λ=µ. Last, the highly non-linear dependence 
of energy on r near full chaos is evident with the existence of a number of 
extrema.                              

 
       Fig. 2. The average energy, Ē, versus the generalized logistic map 
parameter r for equal exponents, λ=µ.   
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3  The energy at full chaos    
 

Of particular interest in the present paper is the energy generated by the 
generalized logistic maps of Eq (1) at full chaos, that is, when r=rmax as given by 
Eq. (2). To this end, the average energy, Ē, is computed at full chaos for 
different values of the map exponents λ and µ. In Fig. 3, the average energy, Ē, 
is shown versus the map exponents λ=µ. In solid line is the computed value.      

 

 
                                        

Fig. 3. The average energy, Ē, at full chaos versus the map exponents, λ=µ. 
 
We observe as already noted above, that the energy at full chaos decreases with 
increasing λ=µ. This decrease is substantial as exemplified by the relative 
energy decrease of 36% generated by the fully chaotic elliptic map (λ=µ=0.5) 
and the near-logistic map (λ=µ=1.1). Furthermore, we see that the decrease is 
weakly non-linear so that a linear approximation to the computed energy data 
points as performed by Excel results in the dashed line shown in the figure. The 
equation of the approximate linear dependence of the average energy on the 
map exponent λ (=µ)  is also shown in the figure. The squared regression 
coefficient between the two is 0.99. 

Next, the average energy, Ē, at full chaos was computed versus one of 
the map exponents for fixed values of the other exponent. The results are shown 
in Figs. 4, 5. In Fig. 4 the energy dependence on the map exponent λ for fixed 
values of µ is shown. 
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Fig. 4. The average energy Ē at full chaos versus the map exponent λ for fixed µ 
 
 It is observed that the average energy exhibits weak fluctuations with 
increasing λ and has a noticeable decrease with increasing λ only for the larger 
values of µ. To compare with this, Fig. 5 is shown where now λ is fixed and the 
energy dependence on the map exponent µ is depicted. 
 

 
Fig. 5. The average energy Ē at full chaos versus the map exponent µ for fixed λ 
 
It is seen that the energy’s dependence on µ is stronger than on λ as far as its 
decrease is concerned. 
 Last, as demonstrated above for λ=µ, it will be shown in Figs. 6, 7 that 
the energy’s dependence on λ or µ may also be linearly approximated for 
unequal λ and µ if one of the two exponents is kept constant.   
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Fig. 6. The linear approximation of the average energy, Ē, at full chaos on µ. 

 
In both Figs. 6, 7 the solid line connects the computed energy points at full 
chaos while the dashed line is the modeled linear approximation.   

    

 
Fig. 7. The linear approximation of the average energy, Ē, at full chaos on λ. 

 

The linear approximation of the energy with increasing map exponent λ or µ is 
satisfactory since the squared regression coefficients are 0.88 and 0.94 for Figs. 6 
and 7, respectively. 
 

4 Conclusions    
 

The energy of generalized logistic maps was studied. In order to be able to 
compare the energy generated by different maps and also have an invariant energy 
value for each map, the average energy was defined for a large number (512) of 
iterations as the total energy per number of iterations with an initial map value that 
given by the map after a couple of thousand (2049) of iterations. It was found that 
the average energy exhibits strong fluctuations with a number of extrema near the 
chaotic regime whose full development is given by the maximum map parameter r. 



         M. Stavroulaki and D. Sotiropoulos 550 

Further, the energy at fully developed chaos decreases with increasing map 
exponents λ and µ and this decrease was satisfactorily approximated in a linear 
fashion.           
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