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Abstract: A model sample of a finite nanosize with the volumetric lattice in the form of 

a rectangular parallelepiped is considered. On the basis of the previously proposed one-

point model, a two-point model is constructed, which uses the theory of fractional 

calculus and the concept of fractal. The features of the behavior of the deformation field 

of fractal dislocation and possible correlation connections are investigated. It is shown 

that complex correlation connections have negative, positive and sign changing 

correlation coefficients. The strongly pronounced stochastic behaviour of amplitudes and 

phases of average functions is established. The change of the statistics from Fermi-Dirac 

type to the statistics of Boze-Einstein type for separate internal nodal planes is shown by 

the method of numerical modeling. 
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1. Introduction 
For experimental studies of the physical properties of individual atoms 

(electrons, photons) and the quantum measurement it is necessary to create 

special traps: nanosystem - trapped particles (or group of particles) in a trap. 
These traps can be useful for realization of optical quantum computation with 

quantum information processing, measurement in quantum optics [1]. In his 

Nobel lecture in Physics in 1989 W. Paul [2] considered electromagnetic traps 

for charged and neutral particles. For the observation of Bose-Einstein 

condensation phenomenon [3] the magnetic traps were used. Serge Haroche and 

David Wineland, 2012 Nobel laureates in Physics, proposed experimental 

methods that made it real to measure individual quantum systems and govern 

them [4, 5]. The experimental studies of the features of the statistical properties 

of individual quantum systems in neutron spin measurements [6], with the 

observation of Bose-Einstein condensation [7] showed the presence of 

correlations in the measured values. Near singular points (Dirac points) Dirac 

fermions in molecular graphene show quantum and statistical features of 

behavior [8]. 
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Fractal dislocation is one of the structural objects in nanostructured materials 

[9, 10]. The core of a linear dislocation is a set of singular points. The 

deformation field of fractal dislocation has unusual quantum and statistical 

properties [11 - 13] and shows the presence of quantum chaos [14]. Earlier a 

one-point model was used to describe the structural states of the deformation 

field of fractal dislocation [10, 12] (fractal dimension was an effective 

coordinate). In this model, the elements of the displacement of the lattice nodes 

are real random functions and were determined without the effect of bifurcation 

of solutions of a nonlinear equation. However, consideration of the effect of 

bifurcation of solutions [11] leads to the four branches of the lattice nodes 

displacement function. Elements of the lattice nodes displacement matrix 

become complex random functions. In order to describe possible correlation 

effects and statistical properties of the deformation field of fractal dislocation of 

pure structural states a two-point model was proposed [15] in which the theory 

of fractional calculus [16] and the concept of fractal [17] are used. It is 

necessary to investigate the mixed states, the description of which requires 

introducing the density of states and accounting for the distribution of this 

density of states on nodes of the volumetric lattice. 

The purpose of this paper is to generalize the two-point model to the case of 

mixed state and investigate correlation connections and the statistical properties 

of the deformation field of fractal dislocation in the model nanosystem. 

2. Description of mixed states in the two-point model 
A model nanosystem [15] is considered: a sample in the form of a rectangular 

parallelepiped of finite size with volumetric discrete lattice 1 2 3N N N× × . 

Deviations of the lattice nodes from the state of equilibrium in a separate plane 

1 2N N×  for two different points of 1( )z j  and 2 ( )z j  are described by non-

hermitian displacements operators
 1ˆ( )u z  and 2ˆ( )u z , corresponding to the 

rectangular matrix with dimensions 1 2N N× , 3[1, ]j N∈ . 

For the description of mixed states the effective composite operators of 

displacements for the states 1,2,...8p =  are introduced, respectively, 

1 12 1ˆˆ ˆ ( )u u zρ += ;  3 12 2ˆˆ ˆ ( )u u zρ += ;  5 1 12ˆˆ ˆ( ) Tu u z ρ= ;  7 2 12ˆˆ ˆ( ) Tu u z ρ= ;     (1) 

2 21 1ˆˆ ˆ( )u u zρ= ;  4 21 2ˆˆ ˆ( )u u zρ= ;  6 1 21ˆˆ ˆ ( ) Tu u z ρ+= ;  8 2 21ˆˆ ˆ ( ) Tu u z ρ+= .   (2) 

Here the symbols «+» and «T » mean the operation of hermitian conjugation 

and transposition. The square matrices with sizes 1 1N N×  for 1,3,5,7p =
 
and 

2 2N N×  for 2,4,6,8p =  correspond to the introduced operators ˆpu ; so that 

5 1ˆ ˆu u+= , 7 3ˆ ˆu u+= , 6 2ˆ ˆu u+= , 8 4ˆ ˆu u+= . The density state operators 12 12ˆ ˆ, ,Tρ ρ
 

21 21ˆ ˆ, Tρ ρ
 
are represented by 

12 1 2 1 2
ˆ ˆˆ /T
N N N Nρ ξ ξ= ; 12 2 1 1 2

ˆ ˆˆ /T T
N N N Nρ ξ ξ= ; 21 12ˆ ˆTρ ρ= ; 21 12ˆ ˆTρ ρ= ,   (3) 
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where 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors of dimensions 11 N× , 21 N× , with elements 

equal to one. The rectangular matrices 12ρ̂ , 21ρ̂  have dimensions
 1 2N N× , 

2 1N N× . For the operators in (3) the normalization conditions are fulfilled 

1 12 2
ˆ ˆˆ 1T
N Nξ ρ ξ = ;      2 21 1

ˆ ˆˆ 1T
N Nξ ρ ξ = .                            (4) 

Having performed an averaging over the index nodes ,n m  by calculating trace 

Sp  of square matrices (1), (2), the averaged functions pu , | |pu , ptgϕ
 
for 

states with 1,2,...8p =  are obtained 

ˆ | | exp( )p p p p p pu Spu u iu u iϕ′ ′′= = + = ;  
* ˆp pu Spu+= ;  /p p ptg u uϕ ′′ ′= ,  (5) 

where Rep pu u′ = , Imp pu u′′ = ; the symbol «∗» means the operation of 

complex conjugation; | |pu , pϕ  are a module, a phase of the complex averaged 

functions pu . Here the averaging across an index j  is not made. 

Then we find the correlation function of the first order. For , 1,3,5,7p q =  we 

obtain 

| | exp( )pq pq pq pq pq pq pqK S H K iK K iθ′ ′′= − = + = ; 

ˆ | | exp( )pq pq pq pq pq pqS SpS S iS S iψ′ ′′= = + = ;  ˆ ˆ ˆpq p qS u u+= ;  ˆ ˆ
pq pqS S+ ≠ ; 

*ˆ ˆ( )( ) | | exp( )pq p q p q pq pq pq pqH Spu Spu u u H iH H iδ+ ′ ′′= = = + = ; 

| | | | | |pq p qH u u= ⋅ ;   pq p qδ ϕ ϕ= − .                              (6) 

In the case , 2,4,6,8p q =  we obtain 

| | exp( )pq pq pq pq pq pq pqC A B C iC C iβ′ ′′= − = + = ; 

ˆ | | exp( )pq pq pq pq pq pqA SpA A iA A iχ′ ′′= = + = ; ˆ ˆ ˆpq p qA u u+= ; ˆ ˆ
pq pqA A+ ≠ ; 

ˆ ˆ( )( ) | | exp( )pq p q pq pq pq pqB Spu Spu B iB B iγ+ ′ ′′= = + = ; 

| | | | | |pq p qB u u= ⋅ ;   pq p qγ ϕ ϕ= − .                        (7) 

From (6) at p q=  we have 0ppδ = , 
2| | | |pp pp pH H u= = ; operators 

ˆ ˆ
pp ppS S +=  are hermitian, 0ppS ′′ = , pp ppS S ′=  and 

| | | | exp( )pp pp pp pp ppK S H K iθ′= − = .                            (8) 

From (8) it follows that pp kθ π= , where 0, 1, 2,..k = ± ±  and autocorrelation 

function can be either positive ( 0, 2, 4,..k = ± ± ) or negative ( 1, 3,..k = ± ± ). 

From (7) at p q=  we obtain 0ppγ = , 
2| | | |pp pp pB B u= = ; then operators 
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ˆ ˆ
pp ppA A+=  are hermitian, 0ppA′′ = , pp ppA A′=  and 

| | | | exp( )pp pp pp pp ppC A B C iβ′= − = .                            (9) 

From (9) it follows that pp lβ π= , where 0, 1, 2,..l = ± ±  and autocorrelation 

function can be either positive ( 0, 2, 4,..l = ± ± ) or negative ( 1, 3,..l = ± ± ). 

Having done the normalization of the above functions, we obtain the 

distribution function of mixed states of Bose-Einstein type and Fermi-Dirac type 

for 1,3,5,7p =  in form 

1pp ppf f′ − = ;   /pp pp ppf S H′ = ;   /pp pp ppf K H= ;                (10) 

1pp ppF F′ + = ;   /pp pp ppF H S= ;   /pp pp ppF K S′ = ,                (11) 

and for 2,4,6,8p =  in form 

1pp ppf f′ − = ;   /pp pp ppf A B′ = ;   /pp pp ppf C B= ;                (12) 

1pp ppF F′ + = ;   /pp pp ppF B A= ;   /pp pp ppF C A′ = .                (13) 

By numerical simulation it will be shown that for mixed states all 

autocorrelation functions ( ), ( )pp ppK j C j  are positive in the interval 

3[1; ]j N∈ . Earlier in [15] it was shown that for pure states similar 

autocorrelation functions are negative. 

At p q≠  from (6), (7) it follows that the functions ,pq pqK C  are complex. For 

some values ,p q  these functions have a sense of cross-correlated functions (for 

a pair of different points 1 2,z z ). In this case, to investigate the correlations it is 

necessary to introduce second-order correlation functions. For , 1,3,5,7p q =  

we have 

pq pq pqG V W= − ;   ˆ
pq pqV SpV= ;   ˆ ˆˆ

pq pq pqV S S += ;   ˆ ˆ
pq pqV V+ = ; 

* 2ˆ ˆ( )( ) | |pq pq pq pq pq pqW SpS SpS S S S+= = = .                  (14) 

Using (6), we find a representation for
 

2 2| | (| | | | | |) 2 | | | | | | (1 cos )pq pq p q p q pq pqS K u u u u K= − ⋅ + ⋅ ⋅ + Φ ,   (15) 

where pq pq pqδ θΦ = − . For , 2,4,6,8p q =  we obtain 

pq pq pqg v w= − ;   ˆpq pqv Spv= ;   ˆ ˆˆpq pq pqv A A+= ;   ˆ ˆpq pqv v+ = ; 

* 2ˆ ˆ( )( ) | |pq pq pq pq pq pqw SpA SpA A A A+= = = .                  (16) 

Using (7), we find a representation for 

2 2| | (| | | | | |) 2 | | | | | | (1 cos )pq pq p q p q pq pqA C u u u u C= − ⋅ + ⋅ ⋅ + Ψ ,   (17) 



Chaotic Modeling and Simulation (CMSIM)  3:  357-365, 2013 

 

361 

 

where pq pq pqγ βΨ = − . At some points 3[1; ]j N∈  changes sign at second 

order correlation functions ( ), ( )pq pqG j g j  from the expressions (14) - (17) 

which confirms the presence of a mixed statistics. 

When describing pure states [15] of the deformation field of fractal dislocation 

in the two-point model, the following operators and functions were introduced 

7 2 1
ˆ ˆ ˆ( ) ( )M u z u z+= ;   8 1 2

ˆ ˆ ˆ( ) ( )M u z u z+= ;   ˆ ˆ ˆ
r r rS M M += ; 

ˆ
r rS SpS= ;       ˆ ˆ( )( )r r rH SpM SpM += ;       r r rK S H= − ; 

1r rf f′ − = ;   /r r rf K S= − ;   /r r rf H S′ = ;     7,8r = .            (18) 

Correlation functions rK  are sign changing within the interval 3[1; ]j N∈  and 

describe the states with mixed statistics. 

3. Numerical simulation and the analysis of results 

The original rectangular matrix displacement 1ˆ( )u z  and 2ˆ( )u z  with elements 

1 1 1( ) ( )nmu z u zε= , 2 1 2( ) ( )nmu z u zε=  in bulk lattice 1 2 3N N N× × =  

30 40 67= × ×  were obtained by the method of iterations on an index m  for 

the first branch of the dimensionless complex function displacement
 

1( ) ( )u z u zε=  by the formulas in [15] under the same input parameters and 

initial conditions. In the calculations it should be: 

1 0.053 0.1( 1)z j= + − ; 2 6.653 0.1( 1)z j= − − , which corresponds to the 

forward and backward waves of displacements 1( )nmu z , 2( )nmu z ; 1,30n = ; 

1,40m = ; 1,67j = . The choice of the model parameters determines the state 

of a discrete rectangular sublattice 1 2N N×  with fractal dislocation, localized 

within this region parallel to the axis Om . 

The analysis of the results of the numerical simulation for the mixed states 

(Fig. 1) shows that all of the first-order correlation functions ppK  are positively 

defined on the whole interval [1,67]j∈ . This means that for states pp  there 

are correlation relations with positive correlation coefficients. The distribution 

function of the Fermi-Dirac type 55 ( )F j  with increasing j  (Fig. 1, a) varies 

randomly around the value of 0.1, goes to the stochastic peak at 26j =
 
with the 

value 55 (26) 0.3315F =  and then again randomly changed by another law near 

the value of 0.1. The distribution function of the 77 ( )F j  with increasing j  

(Fig. 1,c) also varies randomly near the value of 0.1, comes to a peak at the 

other stochastic value of 42j =  with the same value of 77 (42) 0.3315F =  and 

then again changes randomly by another law near the value of 0.1. In this case 

the values of the functions of 55 ( )F j , 77 ( )F j  in the peaks do not exceed the 

value of 0.5, which is typical for the ground state Fermi-system. The 
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distribution functions of Bose-Einstein type 55 ( )f j , 77 ( )f j  (Fig. 1,b,d) 

randomly change with increasing j  near the population number equal to 10, in 

separate planes the peaks with large population numbers are observed. Such a 

behavior of functions 55 ( )f j , 77 ( )f j  indicates that the ground state of a Bose-

system is populated (the population number greater than 1). The global minima 

with the values 55 77(26) (42) 2.0162f f= = are observed in the points at 

which the main peaks of the functions 55 ( )F j , 77 ( )F j
 
are observed. The 

above values of the functions in global minima and main peaks indicate that the 

correlations in both ground and excited states of both Bose- and Fermi-systems 

are taken into account. 

 

 
a b 

 
c d 

  

e f 
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Fig. 1. Dependencies of the distribution functions of the Fermi-Dirac type 

(a, c, e, g) and Bose-Einstein type (b, d, f, h) on j  for mixed states pp 

In this case, the autocorrelation function 55K  describes a forward wave, and 

the autocorrelation function 77K  describes a backward wave. The distribution 

functions of the Fermi-Dirac type 66 88( ), ( )F j F j  with increasing j  

(Fig. 1,e,g) vary randomly around 0.5. The values of the functions in individual 

peaks are higher than 0.5, which is typical for inverted states of Fermi-systems. 

The distribution functions of Bose-Einstein type 66 ( )f j , 88 ( )f j  (Fig. 1,f,h) 

randomly change with increasing j  near the occupation numbers from 0 to 10, 

in separate planes the peaks with large population numbers are observed. 

Accounting ordering pair operators in (1), (2) (the displacement and density of 

states of the lattice nodes) in the correlation function (6) - (9) leads to different 

distribution functions (10) - (13), as confirmed by numerical simulations  
(Fig. 1). 

The dependencies of the distribution functions with mixed statistics (18) on an 

integer index j  of a nodal plane for pure states at 7,8r =  are shown in Fig. 2. 

 

  
a b 

Fig. 2. Dependencies of the distribution functions with mixed statistics 

on j
 
for pure states 

 

At some points j  changes sign at functions 7 8,f f , which confirms the 

presence of a mixed statistics. In this case functions rf  and rf ′  
may be 
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interpreted as Fermi-Dirac type distribution functions for those areas of changes 

for j , where 0rK > , and at 0rK <  as Bose-Einstein type distribution 

functions in the main and excited states, respectively. Note the pronounced 

stochastic behavior of the amplitudes | |rM  and phases rµ  have of averaged 

functions ˆ
r rM SpM= = | | exp( )r rM iµ= . 

The possibility of changing the sign of real parts of the first order complex 

correlation functions ( ), ( )pq pqK j C j  (6), (7) and second order correlation 

functions ( ), ( )pq pqG j g j  (14), (16) is also confirmed by the results of the 

numerical simulations. 

4. Conclusions 
The numerical simulation has confirmed the theoretical conclusion of the 

presence of a mixed statistics: the change of the statistics from Fermi-Dirac type 

to the statistics of Boze-Einstein type for separate internal nodal planes of the 

bulk lattice. The analysis of the distribution functions of the occupation numbers 

for mixed states shows that particular nodal planes may be in inverse structural 

states. 

Based on the analysis of the correlation functions of the first and second order a 

possibility of changing the sign of real parts of the correlation functions is 

shown. This indicates a possible change in the nature of the interaction 

(attraction or repulsion) between lattice nodes within a single nodal plane as 

well as between different planes. 

Accounting ordering pair operators (displacement and density of states the 

lattice nodes) in the correlation function has the effect of deviations of the initial 

distribution function. 

References 
1. M.O Scully, M.S. Zubairy. Quantum Optics. Cambridge: Cambridge Univ. Press, 1997. 

2. W. Paul. Electromagnetic traps for charged and neutral particles. Rev. of Modern Physics 

62, 3: 531-543, 1990. 

3. M.H. Anderson, J.R. Ensher, M.R. Matthews et al. Observation of Bose-Einstein 

condensation in a dilute atomic vapor. Science 269, 5221: 198-201, 1995. 

4. S. Gleyzes, S. Kuhr, C. Guerlin et al. Quantum jumps of light recording the birth and 

death of a photon in a cavity. Nature 446: 297-300, 2007. 

5. C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland. Optical clocks and relativity. 

Science 329: 1630-1633, 2010. 

6. J. Erhart, S. Sponar, G. Sulyok. Experimental demonstration of a universally valid error-

disturbance uncertainty relation in spin measurements. Nature Physics 8: 185-189, 2012. 

7. A. Perrin, R. Bücker, S. Manz. Hanbury Brown and Twiss correlations across the Bose-

Einstein condensation thereshold. Nature Physics 8: 195-198, 2012. 

8. K.K. Gomes, W. Mar, W. Ko, F. Guinea et al. Designer Dirac fermions and topological 

phases in molecular graphene. Nature 483, 7389: 306-310, 2012. 

9. V.S. Abramov. Fractal dislocation as one of non-classical structural objects in the nano-

dimensional systems. Metallofiz. i Noveishie Tekhnologii 33, 2: 247-251, 2011. 



Chaotic Modeling and Simulation (CMSIM)  3:  357-365, 2013 

 

365 

 

10. O.P. Abramova, S.V. Abramov. Alteration of the structure of the stochastic dislocation 

deformation field under the change of governing parameters. Metallofiz. i Noveishie 

Tekhnologii 33, 4: 519-524, 2011. 

11. V.S. Abramov. Behavior of the deformation field of fractal dislocation in the presence of 

bifurcftions. Bul. of Donetsk Nat. Univers. Ser. A, 2: 23-29, 2011. 

12. O.P. Abramova, S.V. Abramov. Deterministic and stochastic governance of the alteration 

of the fractal dislocation structure. Bul. of Donetsk Nat. Univers. Ser. A, 2: 30-35, 2011. 

13. V.S. Abramov. Inverse structural states of the stochastic deformation field of fractal 

dislocation. Book of Abstracts 4th Chaotic Modeling and Simulation International 

Conference (CHAOS 2011), May 31 - June 3, 2011, Agios Nikolaos, Crete Greece. p. 10, 

Greece, 2011. 

14. H.-J. Stockmann. Quantum Chaos. An Introduction. Cambridge Univers. Press, 1999. 

15. V.S. Abramov. Features of statistical properties of the deformation field of the fractal 

dislocation. Bul. of Donetsk Nat. Univers. Ser. A, 1: 105-113, 2012. 

16. S.G. Samko, A. Kilbas, O. Marichev. Fractional Integrals and Derivatives. Theory and 

Applications. Gordon and Breach Sci. Publ., New York et alibi, 1990. 

17. B.B. Mandelbrot. The Fractal Geometry of Nature. Freeman, New York, 1982. 

 





 

 
Chaotic Modeling and Simulation (CMSIM) 3 : 367-375, 2013 

 

_________________ 

Received: 2 April 2013 / Accepted:  17 July 2013 

© 2013 CMSIM                                                                                ISSN 2241-0503 

Governance of Alteration of the Deformation Field of 

Fractal Quasi-Two-Dimensional Structures 

in Nanosystems 
 

Olga P. Abramova, Sergey V. Abramov 

 

Donetsk National University, Ukraine 

E-mail: oabramova@ua.fm 

 
Abstract: A model nanosystem is investigated: a sample in the form of a rectangular 

parallelepiped of finite size with volumetric discrete lattice. It is shown that a separate 

nodal plane of a model nanosystem can be in different structural states: stochastic state of 

the deformation field on the whole rectangular lattice; the state with the linear fractal 

dislocation of different orientations; quasi-two-dimensional structures of the type of 

fractal elliptical, hyperbolic dislocations and fractal quantum dot. Using the numerical 

modelling method, the behaviour of the deformation field and a possibility of the 

alteration of these structures is investigated. The analysis of the behavior of the averaged 

functions allows to determine the critical values of the governing parameters. 

Keywords: fractal quasi-two-dimensional structures, nanosystem, stochastic deformation 

field, numerical modeling, averaged functions, alteration of the structure. 

 

1. Introduction 
Investigation of fundamental properties of nanosystems and nanomaterials of a 

new generation [1, 2] is actual for modern areas of science and nanotechnology. 

Among the real nanomaterials the active nanostructural elements are clusters, 

porous, quantum dots, wells, corrals, surface superlattices. The physical 

properties of these elements can demonstrate chaotic behavior [3]. The active 

nanostructural elements can find their application in the quantum 

nanoelectronics, quantum informations [4], quantum optics. Previously in paper 

[5] fractons – vibrational excitations on fractals – were introduced. Fractal 

dislocation [6, 7] is one of the non-classical active nanostructural objects. For 

the theoretical descriptions of fractal objects it has been proposed [6, 7] to use 

the theory of fractional calculations [8] and the concept of fractals [9]. The new 

structural states [10-13] of fractal dislocation were investigated on the basis of 

fractional calculation theory and Hamilton operators. The purpose of the paper 

is to research a possibility of governing the alteration of the deformation field of 

fractal quasi-two-dimensional structures in model nanosystems. 

2. Basic nonlinear equations 
A model nanosystem is investigated: a sample in the form of a rectangular 

parallelepiped of a finite size with volumetric discrete lattice 1 2 3N N N× × , 
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whose nodes are given integers , ,n m j ( 11,n N= ; 21,m N= ; 31,j N= ). In 

papers [11] the dimensionless variable displacement u  of the lattice nodes is 

described by function 

( )( )2
01 1 2 ( , )u sn u u k Qα= − − − ,   01 1 2 3Q p p n p m p j= − − − .   (1) 

Here α  is the fractal dimension of the deformation field u  along the Oz -axis 

( [0,1]α∈ ); 0u  is the constant (critical) displacement; k  is the modulus of the 

elliptic sine; governing parameters 01 1 2 3, , ,p p p p  do not depend on the 

integers , ,n m j . This paper takes into account the parameters 

01 1 2 3, , ,p p p p depending on the integers , ,n m j . While modeling deformation 

fields of stochastic fractal quasi-two-dimensional structures, this allowed to 

obtain the basic non-linear equations that take into account the interaction of 

nodes in the plane of the discrete rectangular lattice 1 2N N× . The structure of 

these equations is similar to the expression (1), but with a different value of the 

function Q . For a linear fractal dislocation the function Q  has the form 

( ) ( )0 1 0 2 0( ) / ( ) /c cQ p b n n n b m m m= − − − − ;                  (2) 

1 cos( / 2 ( ))b jπ ϕ= + ;    2 cos ( )b jϕ= .                         (3) 

For other fractal quasi-two-dimensional structures the function Q  has the form 

( ) ( )
2 2

0 1 0 2 0( ) / ( ) /c cQ p b n n n b m m m= − − − − ,               (4) 

where for the elliptic dislocation and fractal quantum dot 

1 2 cos ( )b b jϕ= =                                               (5) 

and in the case of fractal hyperbolic dislocation 

1 cos ( )b jϕ= ;    2 cos( ( ))b jπ ϕ= + .                        (6) 

Now here the governing parameters are 0 0 0, , , , ,c cp n n m m ( )jϕ . Varying 

these parameters both a structural state of the self-fractal dislocation and the 

type of dislocation (for example, the transition from fractal elliptical dislocation 

to fractal quantum dot) can be governed. In general case the governing 

parameters can be changed from one node plane to another, which may be 

connected not only with external governance (for example, when a parameter 

0p  is changed), but also with internal governance (the process of self-

organization of structures when ( )jϕ  is changed). To investigate the behavior 

of the stochastic deformation field of fractal quasi-two-dimensional structure in 

terms of the statistical approach, averaged functions are introduced [11]. The 

necessity of averaging is connected with the fact that the elements of the lattice 

nodes displacement matrix are in general case random real functions. The 

average is taken only on nodes in the plane of the discrete rectangular lattice 

1 2N N× . For this the operators fields of displacement û  and density of states 

ρ̂  are introduced. These operators are coincided to the matrix with the elements 
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of nmu ; 2 11 /mn N Nρ = . Rectangular matrices û  and ρ̂  have the dimensions 

of 1 2N N× ; 2 1N N× , respectively. For a homogeneous distribution the 

operator ρ̂  is given by 

2 1 2 1
ˆ ˆˆ /T
N N N Nρ ξ ξ= ,                                            (7) 

where «T » denotes transposition; 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors with elements 

equal to one. The averaged function M  has the form [11] 

ˆ ˆ( )M Sp u M i Mρ ′ ′′= = + ;   ReM M′ = ;   ImM M′′ = .        (8) 

Here Sp  is an operation of calculating the trace of a square matrix; Re, Im  

represent an allocation of real and imaginary parts of the complex function M ; 

i  is an imaginary unit. Averaged function M  depends on the governing 

parameters 0 ( )p j , ( )jϕ . In general case ( )M M j=  is a random function, as 

an average over the index j  is not made. This means that there are some critical 

values 0 ( )p j , ( )jϕ , during the transition through which the behavior of 

function M  can vary from regular to stochastic. Therefore there is a problem of 

finding the critical values of these governing parameters. 

3. Numerical simulation and the analysis of results 

Solution of the nonlinear equation (1) with the value of function Q  in the form 

(3) is constructed by the iteration method [11] for fixed values 0,5α = ; 

0,5k = ; 0 29,537u = . The iterative procedure on the index m  simulates a 

stochastic process on a rectangular discrete lattice with a size 

1 2 30 40N N× = × . The initial parameters were the following: 0 14,3267n = ; 

9,4793cn = ; 0 19,1471m = ; 14,7295cm = . In the simulation it was 

assumed that
 

( ) ( 1) /10j jϕ π= − . A separate nodal plane of a model 

nanosystem can be in different structural states: the state with the linear fractal 

dislocation of different orientations (Fig. 1); stochastic state of the deformation 

field on the whole rectangular lattice (Fig. 2. b, Fig. 3. b); quasi-two-

dimensional structures of the type of fractal elliptical (Fig. 2. a), hyperbolic 

dislocations (Fig. 3. a. c) and fractal quantum dot (Fig. 2. c). Governance of 

alteration (Fig. 1-Fig. 3) of the deformation field is achieved by changing the 

internal parameters 1 2,b b . At the same time the external parameter 

0 0.1453p =  has been fixed and is chosen from the field of stochastic behavior 

of the averaged function M  (Fig. 4-Fig. 6). Rotation of a linear dislocation 

(Fig. 1) is achieved by governing the internal parameters 1 2,b b  (3) by changing 

the angle ( )jϕ . At rotation there is a change of the structural state of the 

dislocation and substructures appear, which is related to the influence of the 

stochastic iteration process along the axis Om . If cos ( ) 0jϕ >  the quasi-two-

dimensional structure (4), (5) is a structure of the type of fractal elliptical 
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dislocation, for which the location of the singular points is typical for real 

ellipse. If cos ( ) 0jϕ <  the quasi-two-dimensional structure is a structure of the 

type of the fractal quantum dot [12], for which the location of the singular points 

is typical for an imaginary ellipse. Fig. 2 show the transition from the elliptic 

dislocation to the quantum dot through the stochastic state of the whole lattice. 

 
Fig. 1. The behavior of functions u  (a,b,c,g,h,i) and their cuts (d,e,f,j,k,l) at 

[ 0.5,0.5]u∈ −  (top view) depending on the lattice index n  and m  

for linear fractal dislocation 
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This transition is realized when governing the internal parameters of 1 2,b b  (5) 

by changing the angle ( )jϕ . At the same time a reorientation of the peaks, a 

change of the substructure, an expansion (at [1,5]j∈ ) and a restriction (at 

[17,21]j∈  ) of the area of the elliptical dislocation; a restriction (at 

[7,11]j∈  ) and an expansion (at [12,15]j∈ ) of the area of the quantum dot 

are observed. 

 

 

 
 

Fig. 2. The transition from the elliptic dislocation to the quantum dot. The 

behavior of the functions u  (a,b,c) and their cuts (d,e,f) at [ 0.5,0.5]u∈ −  

(top view) depending on the lattice index n  and m  
 

 

The reorientation of the branches of the fractal hyperbolic dislocation through 

the stochastic state of the whole lattice is achieved by governing the internal 

parameters 1 2,b b  from (6) by changing the angle ( )jϕ  (Fig. 3). Strongly 

pronounced stochastic behavior of the deformation field and the substructure 

can be observed for the region between the branches of the hyperbolic 

dislocation. The analysis of the behavior of the averaged functions allows to 
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determine the critical values of the governing parameters. In our case, the 

parameter 0p  is a parameter of the external governance, averaged function M  

is a real random function. The behavior of function M  for the fractal elliptical 

dislocation ( 0 0p > ,
 1 2 1b b= = ) is shown in Fig. 4. In the interval of 

0 [0;5]p ∈  a base peak (Fig. 4. a) and a stochastic behavior with smaller 

amplitudes (Fig. 4. b) are observed. The presence of several features (such as 

local resonance dispersion) allows us to determine the critical values of 0p , 

during the transition through which the stochastic behavior of M  is changed to 

a regular one(Fig. 4. c). These features allow us to study the mechanism of 

alteration of fractal quasi-two-dimensional structures of the type of elliptical 

dislocation. With a further increase in 0p  function M  is regular and 

asymptotically approach to zero from negative values. 

 
 

 

Fig. 3. The reorientation of the branches of the hyperbolic dislocation through 

the stochastic state. The behavior of the functions u  (a,b,c) and their cuts (d,e,f) 

at [ 0.5,0.5]u∈ −
 
(top view) depending on the lattice index n  and m  

 

 

The behavior of M  for the fractal quantum dot ( 0 0p < , 1 2 1b b= = ) is shown 

in Fig. 5. When changing 0p  the regular behavior of function M  (Fig. 5. a) 



Chaotic Modeling and Simulation (CMSIM)  3:  367-375, 2013 

 

373 

 

goes into pronounced stochastic (Fig. 5. b). The presence of such features as 

inflection points, local maxima and minima allows to determine the critical 

values of the parameter 0p  (Fig. 5. c). The behavior of the function M  of the 

parameter 0p  at 1 1b = − , 2 1b =  ( 11j = ) for the fractal hyperbolic 

dislocation (4), (6) is shown in Fig. 6. By changing 0p  a base peak and two 

additional peaks (Fig. 6. a) are observed, as well as a pronounced stochastic 

behavior with smaller amplitudes (Fig. 6. b). The features of the function 

behavior are given by a type of local inflection points, maxima and minima (as 

in the quantum dot of Fig. 5. c). This allows to determine the critical value of 

the parameter 0p , across which the regular behavior of the function M  

changes to stochastic (Fig. 6. c). 

 

 

 
Fig. 4. The behavior of M  of 0p  for the elliptic dislocation at 1j =

 
 

 
 

 
Fig. 5. The behavior of M  of 0p  for the fractal quantum dot at 1j =
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Fig. 6. The behavior of M  of 0p  for the hyperbolic dislocation at 11j =  

 

By changing the sign of 0p  (Fig. 6. d) there is a change in the orientation of the 

branches of the fractal hyperbolic dislocation. In this case the features of M  

have the form of a resonance dispersion type (Fig. 6. e) against the background 

of the step (Fig. 6. f). This allows to determine the critical value of the 

parameter 0p , across which the stochastic behavior of M  changes to regular. 

 

4. Conclusions 
In order to describe stochastic deformation fields of fractal quasi-two-

dimensional structures the basic non-linear equations taking into account the 

interaction of nodes in the plane of the discrete rectangular lattice were 

obtained. The alteration of the deformation field of fractal quasi-two-

dimensional structures is achieved by changing internal and external governing 

parameters. It is shown that in this case both the structural state of the self-

structure and the type of structure vary. The behavior of the averaged functions 

when changing the governing parameters correlates with the behavior of the 

deformation field and is related to the mechanisms of alteration of fractal quasi-

two-dimensional structures. 
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Abstract. We provide new conditions for the presence of generalized synchronization
in unidirectionally coupled systems. One of the main results in the paper is the
preservation of the chaos type of the drive system. The analysis is based on the
Devaney definition of chaos. Appropriate simulations which illustrate the generalized
synchronization are depicted.
Keywords: Generalized synchronization, Devaney chaos, Chaotic set of functions.

1 Introduction

The most general ideas about the synchronization of different chaotic systems
with an unrestricted form of coupling can be found in paper [1]. Rulkov et
al. [2] realized this proposal by introducing the concept of generalized synchro-
nization (GS) for unidirectionally coupled systems. The concept of GS [2]-[5]
characterizes the dynamics of a response system that is driven by the output
of a chaotic driving one.

In the present paper, the drive system will be considered in the following
form

x′ = F (x), (1)

where F : Rm → Rm is a continuous function, and the response is assumed to
have the form

y′ = Ay + g(x, y), (2)

where g : Rm ×Rn → Rn is a continuous function in all its arguments and the
constant n× n real valued matrix A has real parts of eigenvalues all negative.
We assume that system (1) admits a chaotic attractor.
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GS is said to occur if there exist sets Ix, Iy of initial conditions and a trans-
formation ϕ : Rm → Rn, defined on the chaotic attractor of the drive system,
such that for all x(0) ∈ Ix, y(0) ∈ Iy the relation limt→∞ ‖y(t)− ϕ(x(t))‖ = 0
holds. In this case, a motion which starts on Ix × Iy collapses onto a manifold
M ⊂ Ix× Iy of synchronized motions. The transformation ϕ is not required to
exist for the transient trajectories [2,3].

According to the results of [3], GS occurs if and only if for all x0 ∈ Ix,
y10, y20 ∈ Iy, the following criterion holds:

(A) lim
t→∞

‖y(t, x0, y10)− y(t, x0, y20)‖ = 0,

where y(t, x0, y10), y(t, x0, y20) denote the solutions of (2) corresponding to the
initial data y(0, x0, y10) = y10, y(0, x0, y20) = y20 with the same x(t), x(0) = x0.

A consequence of GS is the ability to predict the behavior of y(t), based
on the knowledge of x(t) and ϕ only. If ϕ is invertible x(t) is also predictable
from y(t). The usage of statistical estimations of predictability [2], analysis of
conditional Lyapunov exponents [3] and the auxiliary system approach [4] are
the main approaches to the observation of GS.

Let us introduce the ingredients of Devaney chaos [6] for continuous time
dynamics. Denote by

B = {ψ(t) | ψ : R→ K is continuous}

a collection of functions, where K ⊂ Rq is a bounded region.

We say that B is sensitive if there exist positive numbers ε and ∆ such that
for every ψ(t) ∈ B and for arbitrary δ > 0 there exist ψ(t) ∈ B, t0 ∈ R and an
interval J ⊂ [t0,∞), with length not less than ∆, such that

∥∥ψ(t0)− ψ(t0)
∥∥ < δ

and
∥∥ψ(t)− ψ(t)

∥∥ > ε, for all t ∈ J.
On the other hand, the collection B is said to possess a dense function

ψ∗(t) ∈ B if for every ψ(t) ∈ B, arbitrary small ε > 0 and arbitrary large
E > 0, there exist a number ξ > 0 and an interval J ⊂ R, with length E,
such that ‖ψ(t)− ψ∗(t+ ξ)‖ < ε, for all t ∈ J. We say that B is transitive if it
possesses a dense function.

Furthermore, B admits a dense collection G ⊂ B of periodic functions
if for every function ψ(t) ∈ B, arbitrary small ε > 0 and arbitrary large

E > 0, there exist ψ̃(t) ∈ G and an interval J ⊂ R, with length E, such that∥∥∥ψ(t)− ψ̃(t)
∥∥∥ < ε, for all t ∈ J.

The collection B is called a Devaney chaotic set if: (i) B is sensitive; (ii)
B is transitive; (iii) B admits a dense collection of periodic functions.

We present two main results in the paper. The first one is the the occurrence
of GS in system (1)+(2), and the second one is the preservation of the chaos
type of the drive system. The GS is verified in the next section by means of the
criterion (A). The third section is devoted for the presence of Devaney chaos
in the response system. Moreover, an example that supports our theoretical
discussions is presented in the last section.
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2 Preliminaries

Throughout the paper, the uniform norm ‖Γ‖ = sup‖v‖=1 ‖Γv‖ for matrices
will be used.

Since the matrix A, which is aforementioned in system (2), is supposed to
admit eigenvalues all with negative real parts, there exist positive real numbers
N and ω such that

∥∥eAt∥∥ ≤ Ne−ωt, t ≥ 0. These numbers will be used in the
last condition below.

The following assumptions on systems (1) and (2) are needed throughout
the paper:

(A1) There exists a number H0 > 0 such that sup
x∈Rm

‖F (x)‖ ≤ H0;

(A2) There exists a number L0 > 0 such that ‖F (x1)− F (x2)‖ ≤ L0 ‖x1 − x2‖ ,
for all x1, x2 ∈ Rm;

(A3) There exists a number M0 > 0 such that sup
x∈Rm,y∈Rn

‖g(x, y)‖ ≤M0;

(A4) There exist numbers L1 > 0 and L2 > 0 such that

L1 ‖x1 − x2‖ ≤ ‖g(x1, y)− g(x2, y)‖ ≤ L2 ‖x1 − x2‖ ,

for all x1, x2 ∈ Rm, y ∈ Rn;
(A5) There exists a number L3 > 0 such that

‖g(x, y1)− g(x, y2)‖ ≤ L3 ‖y1 − y2‖ ,

for all x ∈ Rm, y1, y2 ∈ Rn;
(A6) NL3 − ω < 0.

Using the technique presented in the book [7], for a given solution x(t) of
system (1), one can verify the existence of a unique bounded on R solution
φx(t)(t) of the system y′ = Ay+g(x(t), y), which satisfies the following integral
equation

φx(t)(t) =

∫ t

−∞
eA(t−s)g(x(s), φx(t)(s))ds. (3)

Our main assumption is the existence of a nonempty set Ax of all solutions
of system (1), uniformly bounded on R. That is, there exists a positive real
number H such that supt∈R ‖x(t)‖ ≤ H, for all x(t) ∈ Ax.

Let us introduce the following set of functions

Ay =
{
φx(t)(t) | x(t) ∈ Ax

}
.

We note that for all y(t) ∈ Ay one has supt∈R ‖y(t)‖ ≤M, where M = NM0/ω.
Moreover, if x(t) ∈ Ax is periodic then φx(t)(t) ∈ Ay is periodic with the same
period, and vice versa.

Next, we will reveal that if the set Ax is an attractor with basin Ux, that
is, for each x(t) ∈ Ux there exists x(t) ∈ Ax such that ‖x(t)− x(t)‖ → 0 as
t→∞, then the set Ay is also an attractor in the same sense. In the following
lemma we specify the basin of attraction of Ay.

Suppose that the set Uy consists of solutions of the system y′ = Ay +
g(x(t), y), where x(t) belongs to Ux.
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Lemma 1. Uy is a basin of Ay.

Proof. Fix an arbitrary ε > 0 and let y(t) ∈ Uy. There exists x(t) ∈ Ax such
that ‖x(t)− x(t)‖ → 0 as t → ∞. Set α = ω−NL3

ω−NL3+NL2
and y(t) = φx(t)(t).

One can find R0 = R0(ε) > 0 such that if t ≥ R0 then ‖x(t)− x(t)‖ < αε and
N ‖y(R0)− y(R0)‖ e(NL3−ω)t < αε. Using the equation

y(t)− y(t) = eA(t−R0)(y(R0)− y(R0))

+

∫ t

R0

eA(t−s) [g(x(s), y(s))− g(x(s), y(s))] ds

+

∫ t

R0

eA(t−s) [g(x(s), y(s))− g(x(s), y(s))] ds,

we obtain for t ≥ R0 that

eωt ‖y(t)− y(t)‖ ≤ NeωR0 ‖y(R0)− y(R0)‖+
NL2αε

ω

(
eωt − eωR0

)
+NL3

∫ t

R0

eωs ‖y(s)− y(s)‖ ds.

Applying Gronwall’s inequality we attain that

eωt ‖y(t)− y(t)‖ ≤ NL2αε

ω
eωt +N ‖y(R0)− y(R0)‖ eωR0eNL3(t−R0)

−NL2αε

ω
eωR0eNL3(t−R0) +

N2L2L3αε

ω(ω −NL3)
eωt
(

1− e(NL3−ω)(t−R0)
)
.

Thus, we have

‖y(t)− y(t)‖ < N ‖y(R0)− y(R0)‖ e(NL3−ω)(t−R0) +
NL2αε

ω −NL3
, t ≥ R0.

For t ≥ 2R0, one can show that ‖y(t)− y(t)‖ <
(

1 + NL2

ω−NL3

)
αε = ε. Conse-

quently, ‖y(t)− y(t)‖ → 0 as t→∞. �

One can verify using Lemma 1 that for a fixed x(t) ∈ Ux, any two solutions
y(t), y(t) of the system y′ = Ay+g(x(t), y) satisfy the criterion (A). Therefore,
we have the following theorem.

Theorem 1. GS occurs in the coupled system (1)+(2).

3 The chaotic dynamics

We will prove that if the drive system (1) is Devaney chaotic then the response
system (2) is also chaotic in the same sense. The three ingredients of Devaney
chaos will be considered individually. We start with sensitivity in the next
lemma.

Lemma 2. Sensitivity of the set Ax implies the same feature for the set Ay.
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Proof. Fix an arbitrary δ > 0 and y(t) ∈ Ay. There exists x(t) ∈ Ax such
that y(t) = φx(t)(t). Choose a sufficiently small number ε = ε(δ) > 0 such

that
(

1 + NL2

ω−NL3

)
ε < δ, and take R = R(ε) < 0 sufficiently large in absolute

value such that 2M0N
ω e(ω−NL3)R < ε. Set δ1 = δ1(ε, R) = εeL0R. Since Ax

is sensitive, there exist ε0 > 0, ∆ > 0 such that ‖x(t0)− x(t0)‖ < δ1 and
‖x(t)− x(t)‖ > ε0, t ∈ J, for some x(t) ∈ Ax, t0 ∈ R and for some interval
J ⊂ [t0,∞) whose length is not less than ∆.

By means of continuous dependence on initial conditions, one can verify that
‖x(t)− x(t)‖ < ε, t ∈ [t0 +R, t0]. Denote y(t) = φx(t)(t). Using the relation (3)
for both y(t) and y(t), we obtain for t ∈ [t0 +R, t0] that

eωt ‖y(t)− y(t)‖ ≤ NL3

∫ t

t0+R

eωs ‖y(s)− y(s)‖ ds

+
NL2ε

ω
(eωt − eω(t0+R)) +

2M0N

ω
eω(t0+R).

Applying Gronwall’s Lemma to the last inequality we attain that

‖y(t)− y(t)‖ ≤ NL2ε

ω −NL3
+

2M0N

ω
e(NL3−ω)(t−t0−R), t ∈ [t0 +R, t0].

Consequently, we have ‖y(t0)− y(t0)‖ ≤ NL2ε
ω−NL3

+ 2M0N
ω e(ω−NL3)R < δ.

Next, we will show the existence of a positive numbers ε1, ∆ and an interval
J1 ⊂ J with length ∆ such that the inequality ‖y(t)− y(t)‖ > ε1 holds for all
t ∈ J1.

Suppose that g(x, y) = (g1(x, y), g2(x, y), . . . , gn(x, y)) , where each gj , 1 ≤
j ≤ n, is a real valued function.

Since Ax and Ay are both equicontinuous on R, and the function g : Rm ×
Rm × Rn → Rn defined as g(x1, x2, x3) = g(x1, x3) − g(x2, x3) is uniformly
continuous on the compact region

D = {(x1, x2, x3) ∈ Rm × Rm × Rn | ‖x1‖ ≤ H, ‖x2‖ ≤ H, ‖x3‖ ≤M} ,

the set F with elements of the form gj(x(t), φx(t)(t)) − gj(x(t), φx(t)(t)), 1 ≤
j ≤ n, where x(t), x(t) ∈ Ax, is an equicontinuous family on R. Therefore, there
exists a positive number τ < ∆, independent of x(t), x(t) ∈ Ax, y(t), y(t) ∈ Ay,
such that for any t1, t2 ∈ R with |t1 − t2| < τ the inequality

|(gj (x(t1), y(t1))− gj (x(t1), y(t1)))− (gj (x(t2), y(t2))− gj (x(t2), y(t2)))|

<
L1ε0
2n

(4)

holds, for all 1 ≤ j ≤ n.
Condition (A4) implies that for each t ∈ J, there exists an integer j0 = j0(t),

1 ≤ j0 ≤ n, such that |gj0(x(t), y(t))− gj0(x(t), y(t))| ≥ L1

n
‖x(t)− x(t)‖ .

Let s0 be the midpoint of the interval J and θ = s0 − τ/2. One can find an
integer j0 = j0(s0), 1 ≤ j0 ≤ n, such that

|gj0(x(s0), y(s0))− gj0(x(s0), y(s0))| ≥ L1

n
‖x(s0)− x(s0)‖ > L1ε0

n
. (5)
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According to (4), for all t ∈ [θ, θ + τ ] we obtain that

|gj0 (x(s0), y(s0))− gj0 (x(s0), y(s0))|−|gj0 (x(t), y(t))− gj0 (x(t), y(t))| < L1ε0
2n

and therefore by means of (5), the following inequality:

|gj0 (x(t), y(t))− gj0 (x(t), y(t))| > L1ε0
2n

, t ∈ [θ, θ + τ ] .

The last inequality implies that∥∥∥∥∥
∫ θ+τ

θ

[g(x(s), y(s))− g(x(s), y(s))] ds

∥∥∥∥∥ > τL1ε0
2n

.

Therefore, we have

max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ ≥ ‖y(θ + τ)− y(θ + τ)‖

>
τL1ε0

2n
− [1 + τ(L3 + ‖A‖)] max

t∈[θ,θ+τ ]
‖y(t)− y(t)‖ ,

and hence, max
t∈[θ,θ+τ ]

‖y(t)− y(t)‖ > τL1ε0
2n[2 + τ(L3 + ‖A‖)]

.

Now, suppose that at the point η ∈ [θ, θ + τ ], the function ‖y(t)− y(t)‖

takes its maximum. Define ∆ = min

{
τ

2
,

τL1ε0
8n(M ‖A‖+M0)[2 + τ(L3 + ‖A‖)]

}
and θ1 =

{
η, if η ≤ θ + τ/2
η −∆, if η > θ + τ/2

. For t ∈ J1 = [θ1, θ1 +∆], we have

‖y(t)− y(t)‖ ≥ ‖y(η)− y(η)‖ −
∣∣∣∣∫ t

η

‖A‖ ‖y(s)− y(s)‖ ds
∣∣∣∣

−
∣∣∣∣∫ t

η

‖g(x(s), y(s))− g(x(s), y(s))‖ ds
∣∣∣∣

>
τL1ε0

4n[2 + τ(L3 + ‖A‖)]
.

Consequently, ‖y(t)− y(t)‖ > ε1, t ∈ J1, where ε1 = τL1ε0
4n[2+τ(L3+‖A‖)] and the

length of the interval J1 does not depend on the functions y(t), y(t) ∈ Ay. �

Lemma 3. Transitivity of Ax implies the same feature for Ay.

Proof. Fix arbitrary numbers ε > 0, E > 0, and y(t) ∈ Ay. There exists

a function x(t) ∈ Ax such that y(t) = φx(t)(t). Let γ = ω(ω−NL3)
2M0N(ω−NL3)+NL2ω

.

Since there exists a dense solution x∗(t) ∈ Ax, one can find ξ > 0 and an interval
J ⊂ R with length E such that ‖x(t)− x∗(t+ ξ)‖ < γε, for all t ∈ J. Without
loss of generality, assume that J is a closed interval, that is, J = [a, a+E] for
some real number a. Denote y∗(t) = φx∗(t)(t).
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Making use of the integral equation (3) for both y(t) and y∗(t), one can
verify for t ∈ J that

eωt ‖y(t)− y∗(t+ ξ)‖ ≤ 2M0N

ω
eωa +

NL2γε

ω

(
eωt − eωa

)
+NL3

∫ t

a

eωs ‖y(s)− y∗(s+ ξ)‖ ds.

Application of Gronwall’s Lemma to the last inequality implies that

‖y(t)− y∗(t+ ξ)‖ ≤ 2M0N

ω
e(NL3−ω)(t−a) +

NL2γε

ω −NL3

(
1− e(NL3−ω)(t−a)

)
.

Suppose that E > 2
ω−NL3

ln
(

1
γε

)
. If t ∈ J1 =

[
a+ E

2 , a+ E
]
, then it is

true that e(NL3−ω)(t−a) < γε. Consequently, we have ‖y(t)− y∗(t+ ξ)‖ <[
2M0N
ω + NL2

ω−NL3

]
γε = ε, for t ∈ J1. Thus, the set Ay is transitive. �

In a similar way to Lemma 3 one can prove the following assertion.

Lemma 4. If Ax admits a dense collection of periodic functions, then the same
is true for Ay.

The following theorem can be proved using Lemmas 2-4.

Theorem 2. If the set Ax is Devaney’s chaotic, then the same is true for the
set Ay.

In the next part, we will present an example which supports our theoretical
discussions. The usual Euclidean norm for vectors and the norm induced by
the Euclidean norm for square matrices will be used.

4 An example

We consider the Lorenz equations [8]

x′1 = 10 (−x1 + x2)
x′2 = −x2 + 28x1 − x1x3
x′3 = −8

3
x3 + x1x2,

(6)

as the drive system. It is known that system (6) admits sensitivity and possesses
infinitely many unstable periodic solutions [8]. The equations for the response
system are chosen as

y′1 = −2y1 − y3 + 0.003y22 + x2 −
1

2
cosx2

y′2 = −y1 − 2y2 + 5x1 + 0.01x31

y′3 = y1 − y2 − 3y3 + 2 tan

(
x3 + y2

120

)
.

(7)
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System (7) is in the form of (2), where A =


−2 0 −1

1 −1 −3

0 0 0

 . The inequality

∥∥eAt∥∥ ≤ Ne−ωt is valid, where N = 4.829 and ω = 2. One can verify that

conditions (A4) − (A6) are satisfied with constants L1 =
√

3/180, L2 = 17
√

3
and L3 = 16

√
3/75.

According to the results of the present study, system (7) exhibits GS, saving
the sensitivity feature of the drive and the existence of infinitely many unstable
periodic solutions. Consider a trajectory of system (6)+(7) with x1(0) = 0.11,
x2(0) = 0.96, x3(0) = 18.98, y1(0) = −0.69, y2(0) = −11.09, y3(0) = 1.96.
Figure 1 shows the projections of this trajectory on the y1− y2− y3 space, and
supports the theoretical results such that the response system (7) possesses
chaotic motions. According to the GS, the attractor shown in Figure 1, (a) is
a nonlinear image of the chaotic attractor of system (6). Figure 1, (b), on the
other hand, depicts the projection on the x2 − y2 plane, and reveals that the
systems are not synchronized in the sense of identical synchronization [9].
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Fig. 1. The projections of the chaotic attractor generated by the coupled system
(6)+(7). (a) Projection on the y1−y2−y3 space; (b) Projection on the x2−y2 plane.
The pictures represent the synchronized behavior.
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Abstract: The task is to evaluate the differences in the human brain lability involving its 

opportunity to forget or reproduce the external rhythm for patients with neural disorders 

connected with disruptions of the thalamo-cortical or stem-cortical links. For solving the 

task the EEG segments before, during and after periodic light stimulation are examined 

by the wavelet transform method. The degree of the human brain lability is estimated by 

changing in the maximums of the global wavelet spectra and by the coefficients of 

reproduction and holding the rhythm. Maximal reproduction of the external frequency is 

observed in the ranges specific for the both groups of the patients. For the patients with 

stem-cortical disruptions the all parameters essentially differ from the parameters 

obtained for the patients with thalamo-cortical disorders. Thus, the study demonstrates 

the possibility of the wavelet analysis to estimate quantitatively the human brain lability 

of perception of light stimuli.  

Keywords: EEG, Wavelet transform, Reproduction of external rhythm.  

 

1. Introduction 
Bioelectrical activity of the human brain recorded from the head surface as 

electroencephalography time series (EEG) during solving the complex 

imaginary and real visual-motor tasks  or during awake and various sleep stages 

in healthy state exhibits nonstationary, chaotic and multifractal dynamics [1, 2, 

3]. The comparative analysis of the dynamics in EEG patterns of normal and 

pathological brain activities is one of the tools of elucidation of the degree the 

brain seizures [4, 5] and estimation of the efficiency of the drug or 

psychological treatment [6].  Photostimultaion, that is the light stimulation of 

the given frequency, is one of the functional probes applied for determining of 

the human brain lability to reproduce or to reject the suggested rhythm [7]. The 

degree of such lability characterizes the level of nerve excitability and can 

classify persons for whom drugs hyperactivating the nervours system are 

unsuitable due to their own  hyperexcitability.  

The aim of the work is to evaluate the differences in the potentialities of the 

human brain to forget or reproduce the external light rhythm for patients with 

chronic pain complaints rather resistant to medicinal treatment. These patients 

can be divided into two groups accordingly to the classification connected with 

the disruptions on the thalamic level or on the brain-stem level that leads as a 
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rule to changing the thalamo–cortical links in the first case and the stem–cortical 

links in the second case [8]. It results to the significant suppression of the alpha 

component prevailing for the healthy persons and the emergence of the theta 

acitivity or occurrence of polymorphous small amplitude activity, that is, to 

essential deviation from the healthy EEG patterns. 

 

2. Experimental procedure 
The scalp EEG data were recorded with Ag/AgCl electrodes from 10 healthy 

subjects and 16 patients with neural impairments connected with chronic pain 

complaints. Signals of reproducing the light rhythm propagate symmetrically 

and have maximal amplitude in the occipital lobes of the human brain, that is 

why the data were collected with electrodes placed at the occipital O1, O2, Oz 

sites. The recordings were obtained for three states: before the light rhythmic 

stimulation (the interval [0, tA ]), during it (the interval [tA , tB ]) and during 

relaxation (the interval [tB , tK ]) with eyes closed. The duration of each interval 

was 20 seconds. The data were sampled at a rate 256 samples/sec with a 

resolution of 12 bits/sample. Then the data were digitally filtered using 1–30 Hz 

band pass filter. After repeated recordings 60 non- artifact segments of equal 

duration were randomly chosen from the sets: “before stimulus”, “during 

stimulus” and “during relaxation”. 

 

3. Estimation of the global energy of the EEG segment 
To estimate the global energy of EEG segment we applied the continuous 

wavelet transform of a time series x(t): 

,)(
1

),( 0*
0 dt

a
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a
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 −
= ∫

+∞

∞−

ψ  

 

where a and t0  are the scale and space parameters, ψ((t- t0)/a) is the wavelet 

function obtained from the basic wavelet ψ(t) by scaling and shifting along the 

time, symbol * means the complex conjugate. As the basic wavelet we use the 

complex Morlet wavelet: 
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The value ω0=2π gives the simple relation between the scale a and frequency f:  

f=1/a. 
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The square of the modulus ׀W(f, t0)׀
2
  characterizes the instantaneous 

distribution of energy over frequencies  at the time t0 , that is, the local spectrum 

of the signal energy. 

The value   

∫=
2

1

0
2

0 ),()(
t

t

dttfWfE  

describes the global wavelet spectrum, i.e., the integral of energy distribution 

over frequency range on the interval [t1 , t2 ].  

The value 

∫=
2

1

2
00 ),()(

f

f

dftfWtE  

represents the integral of energy distribution over time shifts in the frequency 

range  [f1 , f2 ]. 

. 

4. The light time series 
The light time series limited on the interval [tA , tB ] was described as a sequence 

of k Gauss impulses following each other with frequency fC  equal to 4, 6, 8, 10, 

or 16, 20 Hz. The each impulse had the width  rO =10 ms. The centres of the 

impulses were in points  

,10,...,i        ,/0 −=+= kfitt cAi     

where tA   is the time of switching of the light series, that is the time of the 

beginning of the first impulse in the sequence. 

Thus, the light stimulus can be described as  
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The continuous wavelet transform of the light time series p(t) can be calculated 

in the form: 
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where            )(         ,)(21 0
2

0 ttfzfrs −=+=  is non-dimensional  time 

measured from time  tO . 

 

 

5. Estimation of the coefficients of reproduction and holding 

the rhythm  
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Let  EX1 (∆f)  and EX2 (∆f)  be the global wavelet spectra  of the EEG time series 

in the frequency range ∆f   over the intervals [0, tA ] and [tA , tB ], i.e. before and 

during  photostimulation. 

The reproduction coefficient of the suggested rhythm can be estimated as the 

ratio of the maximum of the global spectrum during the light time series to the 

maximum of the global spectrum before photostimulation: 

 

kR (∆f) = max EX2 (∆f)/ max EX1 (∆f). 

 

If the frequency value corresponding to the max EX2 (∆f) does not coincide with 

the light time series  frequency  fC   then there is no  reproduction of the rhythm 

in the range ∆f= fC  ± ∆,  where ∆=0.5 Hz. The larger kR (∆f) value, the better the 

reproduction of the suggested rhythm.  

Let us  EX (t) and  EP (t) denote the normalized integral distributions of energies 

of  the EEG  and light time series  in the frequency range  [f1 , f2 ]: 

 

EX (t) =EX  (t) /max EX  (t)  and  EP (t) = EP (t) /max EP (t). 

 

Examples of the normalized integral distributions EX (t) and  EP (t) for fC  =4 Hz 

are given in Fig. 1. 
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Fig. 1. The normalized energy distributions of the EEG time series (solid line) 

and the light time series (dashed line). The lower figure is represented in the 

enhanced scale to see the point (tP , EP) of intersection  of the integrals EX (t) and  

EP (t).  
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The integrals EX (t) and  EP (t) cross each other in two points (tP , EP) and (th , Eh) 

after switching on and  switching off the light time series.   

The value Eh  is taken as the coefficient of holding the suggested rhythm: 

 

kH (∆f) = Eh (∆f). 

 

The smaller the value, the more badly the rhythm of photostimulation is kept by 

the human brain. 

 

6. Estimation of the time of remembering the external rhythm 

and the delay time of the brain response on the rhythm  
If  the EEG response on the light time series reaches the maximal  value at the 

moment   tm , then  the  difference  

 

TR (∆f) = tm (∆f) - tP (∆f)f) 

 

can characterize the time of remembering the rhythm. The smaller the value, the 

faster the brain begins to generate the external frequency. 

The delay time of the EEG response from the moment of switching on the light 

time series can be estimated as  

 

TD (∆f) = tS (∆f) - tC (∆f), 

 

where  tC is the moment when the condition 

 

EC (∆f) = 0.5 (1 - EP (∆f) ) 

is satisfied. 

 

7. Results and discussion 
Examples of global wavelet spectra of EEG for the healthy subject and patients  

with changes in  the stem-cortical or thalamo-cortical links in two functional 

states, namely, before and during the  light stimulation are given in Fig. 2.  

The spectra calculated in the broad frequency range [2, 20] Hz differ by the 

width as well as by the position and value of maximum.  

In the rest state with closed eyes the EEG time series of a healthy person is 

characterized by narrow frequency interval [8, 16] Hz and the large value of the 

global energy, maximum of which is equal to 5* 10
4 µV

2
. The disruptions of 

neuronal links on the brain-stem level are exhibited in the form of  
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Fig.2. Examples of global wavelet spectra of EEG for the healthy subject and 

two groups of patients before and during the light time series of  fC =4 Hz.  

 

 

polymorphous activity of  the smaller amplitude and broaden frequency range 

[0, 12] Hz. The maximal global energy is 10 times less than the value obtained 

for the healthy person. The thalamo-cortical disruptions are manifested by the 

extended spectrum in the frequency  interval [6, 14] Hz and the significant 

increase (almost in 10 times) as compared with the maximum of the global 

spectrum for the healthy brain and in 100 times in comparison with the global 

energy for the stem-cortical disruptions. 

The light stimulus of frequency 4 Hz  leads to the emergence of the detectable 

maximums in all the considered cases. The value of the global energy increases 

in 4 times for the healthy subject and in 1.5 times for the patient with thalamo-

cortical disorders. This value grows in almost 100 times for the patient with 

stem-cortical defects. The occurrence of the visible maximum of the global 

energy at the frequency of the external stimulus means the good reproduction of   

the suggested rhythm.  

Reproduction of the external rhythm is observed for all the subjects and  the 

frequencies 4, 6, 8, 10 and 12 Hz and only for the healthy and persons with 

thalamo-cortical disruptions at 16  and 20 Hz. 

The coefficients of reproduction (kR (∆f)) and holding (kH (∆f)) the rhythm 

estimated by the wavelet spectra are given in the Table 1. 

The time of remembering the rhythm (TR (∆f)) and the delay time of the EEG 

response from the moment of switching on the light time series (TD (∆f)) are 

represented also in the Table 1. 
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fC =4 Hz 

 kR kH TR (s) TD (s) 

healthy 4.2±0.6 0.52±0.06 11.1±1.2 1.9±0.4 

group 1 95±5 0.85±0.07 6.2±0.8 0.9±0.2 

group 2 2.1±0.4 0.49±0.05 12.5±1.7 1.5±0.3 

fC =10 Hz 

healthy 6.1±0.7 0.95±0.09 0.9±0.2 0.3±0.11 

group 1 2.1±1.3 0.41±0.05 13.2±1.3 2.1±0.5 

group 2 5.3±0.6 0.69±0.07 1.5±0.4 0.5±0.1 

fC =16 Hz 

healthy 4.5±0.4 0.81±0.07 5.3±0.4 1.1±0.3 

group 1 there is no reproduction of the rhythm 

group 2 3.7±0.3 0.77±0.06 7.1±0.8 2.1±0.5 

 

Table 1. The comparison of the mean values averaged over 10 healthy subjects 

and 8 persons in each group of patients. The site is Qz. The patients with the 

thalamo – cortical disruptions are denoted as “group 1” and patients with the 

stem – cortical defects are depicted as” group 2”. 

 

    

For each frequency of the light time series (fC) the both coefficients of 

reproduction and holding the rhythm are largest for the subjects who have the 

eigen oscillations at this frequency in the rest state.  

The time of remembering the rhythm  and  delay of the EEG response from the 

moment of switching on the light time series  are smallest in the presence of 

eigen oscillations. These times grow in the non-specific frequency range. 

The spectra of the patients of two groups differ by four considered parameters. 

The stem – cortical defects are characterized by the absence of the external 

rhythm reproduction at frequencies larger than 16 Hz and the fast maintenance 

of the rhythm in the range [2, 6] Hz. 

The EEG time series of the patients with the thalamo–cortical disruptions have 

the large eigen oscillations in the interval [6, 14] Hz and  larger values of both 

coefficients  kR  and kH  and smaller times TR  and TD  comparing with the EEG 

of the first group. 

 

 

8. Conclusion 
The work supports that the human brain is a rather stable dynamic system and 

rearranges slowly on external rhythm of non-specified frequency range. The 

parameters found from the wavelet spectra give an opportunity to evaluate 

quantitatively the brain lability of perception of the light time series.  

 



O. E. Dick 

 

394 

These parameters can help to estimate the nerve excitability level of a subject 

for the purpose of the appropriate drug treatment, that is, to exclude the drug 

administration hyperactivating the nervous system for patients with the 

enhanced personal excitability in the rest state. 
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Abstract. We review novel results and investigate actions and transformations of
(quantum) groups and semigroups on (quantum) spaces, present dynamical systems
and zeta functions arising from these spaces, actions and transformations, discuss
their stochastic properties.
Keywords: Dynamical System, Ergodic Transformation, Group Action, Equidistri-
bution, Zeta function, Arithmetic Surface.

1 Introduction

A history of a semigroup and a group action on tori and projective spaces can
be found among other in the book by A.G. Postnikov [1], in the paper by I.Ya.
Gol’dsheid, G.A. Margulis [2] and in the supplement by B.M. Gurevich, Ya.
G. Sinai [3] to the Russian translation of the English edition of the book by P.
Billingsley [4].

Here we review novel results and investigate actions and transformations
of (quantum) groups and semigroups on (quantum) spaces, present dynamical
systems and zeta functions arising from these spaces, actions and transforma-
tions, discuss their stochastic properties.

2 Dynamical systems from spaces

It is well known that one-dimensional projective space P1(Q) parametrize
the set of dynamical systems in such a way that for any rational point Q ∈
P1(Q), Q = (ab , 1), a, b ∈ Z, (a, b) = 1 we naturally assiciate dynamical system
(T, TQ). Here T = R/Z,TZ = (..., x−1, x0, x1, ...), xi ∈ T, X = {x = (xk) :
bxk+1 = axk for all k ∈ Z}, TQ : X → X. More generally, for any primitive
polynomial g(x) ∈ Z[x] of degree d ≥ 1 it is possible to construct its Frobe-
nius and companion matrices and define a homeomorphism TF of a compact
d−dimensional subgroup of Td. These considerations can be extended to ellip-
tic curves [5] and to abelian varieties. For elliptic curves authors of the paper
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[5] implement these by the following way. Let q ∈ Qp and log+ x denotes
max{log x, 0}. For a generic element x of Zp authors define q-transformation
Tq(x) (a p-adic analogue of the β-transformation). Then the topological entropy
of the p-adic β-transformation is given by h(Tq) = log+ |q|p ([5], Theorem 4.1).
If |q|p ≥ 1 then the map Tq is ergodic with respect to Haar measure for |q|p > 1
and is not ergodic for |q|p = 1 ([5], Theorem 4.2). Let Pern(Tq) denotes the
subgroup of Zp consisting of elements of period n under Tq. Let U be the set
of unit roots of Qp and q ∈ Qp \ U . Then

log |Pern(Tq)| = n log+ |q|p.

([5], Theorem 4.3). The authors use the topological entropy and measure the-
oretical arguments based on volume growth rate and arithmetic of Zp.

Let Q be a rational point of an elliptic curve over Q and let ĥ(Q) be the
global canonical height on rational points of the elliptic curve. Then with the
definitions and assumptions of the paper [5] and q = a/b = x(Q), (i) the en-

tropy of TQ is given by h(TQ) = 2ĥ(Q), and (ii) the asymptotic growth rate of
the periodic points is given by the division polynomial νn(x): log |Pern(TQ| ∼
log |bnνn(q)| as n → ∞. ([5], Theorem 5.2). In the case authors use also the
elliptic analogue of Baker’s theorem, which described in paper [6] and in paper
[7] .

3 Dynamical systems on probability spaces

Let (X,B, µ, T ) be a dynamical system on standard probability space with
T : X → X is measurable, almost surely one to one, preserves µ, for which
it is an ergodic transformation. Random dynamical systems relate a partial
case of bundle dynamical systems by I. Cornfeld, S. Fomin, and Ya. Sinai [8].
Measurable partition of the space X transforms the initial random dynamical
system into a symbolic dynamical system. We will present novel symbolic
dynamical systems and their applications.

4 Rigid and weakly mixing ergodic transformations

In papers [9] and [10] authors present resent results on genericity of rigid and
multiply recurrent infinite measure preserving and nonsingular transformations
and on measurable sensitivity. In the paper [11] authors investigate properties
of uniformly rigid transformations and analyze the compatibility of uniform
rigidity and measurable weak mixing along with some of their asymptotic con-
vergence properties. All spaces of the paper under review are considered si-
multaneously as topological spaces and as measure spaces. Presented results
concern either the measurable dynamics on the spaces or the interplay between
the measurable and topological dynamics. The notion of uniform rigidity was
introduced as a topological version of rigidity by S. Glasner and D. Maon [12].
Authors of the paper [11] consider functional analytic properties of uniform
rigidity that is similar to the properties of rigidity. Theorem 1 ([11]). Every
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totally ergodic finite measure-preserving transformation on a Lebesgue space
has a representation that is not uniformly rigid, except in the case where the
space consists of a single atom.

The proof of the theorem connects with results of authors of the theorem
that uniform rigidity and weak mixing are mutually exclusive notions on a
Cantor set, and follows from the Jewett-Krieger Theorem by K. Peterson [13].

5 Superrigidity for groups

The concept of superrigidity was introduced by G. D. Mostow [14] and by G.
A. Margulis [15] in the context of studying the structure of lattices in rank
one and higher rank Lie groups respectively. The notion of property (T) for
locally compact groups was defined by D. Kazhdan [16] and the notion of
relative property (T) for inclusion of countable groups Γ0 ⊂ Γ was defined by
G. Margulis [17]. Now consider the orbit equivalence (OE) superrigidity. One
of the first result of this type of superrigidity was obtained by A. Furman [18],
who combined the cocycle superrigidity by R. Zimmer [19] with ideas from
geometric group theory to show that the actions SLn(Z) on Tn(n ≥ 3) are
OE superrigid. The deformable actions of rigid groups are OE superrigid by
S. Popa [20]. The main result of the paper by A. Ioana [21] is the Theorem A
on orbit equivalence (OE) superrigidity. As a consequence of Theorem A the
author of the paper [21] can constructs uncountable many non-OE profinite
actions for the arithmetic groups SLn(Z)(n ≥ 3), as well as for their finite
subgroups, and for the groups SLm(Z) × Zm(m ≥ 2). The author deduces
Theorem A as a consequence of the Theorem B on cocycle superrigidity.

Let the action of Γ on X be a free ergodic measure-preserving profinite
action (i.e., an inverse limit of actions Γ on Xn with Xn finite) of a countable
property (T ) group Γ (more generally, of a group Γ which admits an infinite
normal subgroup Γ0 such that the inclusion Γ0 ⊂ Γ has relative property (T )
and Γ/Γ0 is finitely generated) on a standard probability space X. The author
prove that if ω : Γ ×X → Λ is a measurable cocycle with values in a countable
group Λ, then ω is a cohomologous to a cocycle ω

′
which factors through the

map Γ × X → Γ × Xn, for some n. As a corollary, he shows that any free
ergodic measure-preserving action Λ on Y comes from a (virtual) conjugancy
of actions.

6 Equidistribution for orbits of nonabelian semigroups
on the torus

Furstenberg [22] and Berent [23] have investigated the action of abelian semi-
groups on the torus Td for d = 1 and d > 1 respectively. Their results answer
problems raising by H. Furstenberg [24]. Authors of the paper [25] extend to
the noncommutative case some results of Furstenberg and Berent
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7 Zeta functions from spaces and dynamical systems

Recall that Dedekind has defined zeta function for polynomials over prime
finite field. The zeta function is trivial and equal to 1

1−pz . However, combin-
ing the zeta function with Chebyshev-Mobius inversion formula we obtain the
number of monic irreducible over Fp polynomials of natural degree m. Rie-
mann and Dedekind zeta functions are first examples of motivic zeta functions.
The authors of the paper [26] investigate sufficient conditions for (i) the exis-
tence of trace formulae for the Reidemeister number of a group endomorphism;
(ii) the rationality of the Reidemeister zeta function and the convergence of
the Nielsen zeta function; (iii) the equality of Reidemeister torsion of a group
endomorphism to a special value of the Reidemeister zeta. This interesting sur-
vey[26] includes recent results on trace formulae, rationality and convergence of
zeta functions and relations between special values of zeta functions and some
simply homotopy invariants. The general setting of the paper [27] is braided
zeta functions in q-deformed geometry. In the framework authors define a zeta
function for any rigid object in a ribbon braided category. In the ribbon case
they define braided Hilbert series for objects in an Abelian braided category.
We will present some other types of zeta-functions.

8 Dynamical Systems from Arithmetic Surfaces

8.1 Sato-Tate case

Let y2 = f(x), f(x) = x3 + cx + d be a cubic polynomial in prime finite field
Fp. For the number #Cp of points of the curve C : y2 = f(x) in Fp the well
known formula

#Cp =

p−1∑
x=0

(
1 +

(
f(x)

p

))
,

take place, where
(
f(x0)
p

)
is the Legendre symbol with a numerator which is

equal to the value of the polynomial f(x0) in point x0 ∈ Fp. It is ease to see
that #Cp = p− ap, where

ap = −
p−1∑
x=0

(
f(x)

p

)
If C is the elliptic curve , then the number of points #C(Fp) of the projective
model of the curve in Fp is represented by the formula #Ep = 1 + p − ap,
where ap = 2

√
p cosϕp, If C is not the elliptic curve, then the value ap is equal

1, −1 or 0 and ease to compute. In both cases compute: ϕp = arccos(ap/2
√
p)

and reduce it to the interval [0, π].
Let E be an elliptic curve over rational numbers Q which does not ad-

mit complex multiplication. Sato and Tate [28] have given computational and
theoretical evidences suggesting the distribution of angles ϕp.

Recently L. Clozel, M. Harris, N. Shepherd-Barron, R. Taylor and their
colleagues have proved the Sato-Tate conjecture for all elliptic curves E over
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Q (and over some its extensions) satisfying the mild condition of having mul-
tiplicative reduction at some prime.

Langlands conjectured that some symmetric power L−functions extend to
an entire function and coincide with certain automorphic L−functions.

Theorem (Clozel, Harris, Shepherd-Barron, Taylor). Suppose E is an ellip-
tic curve overQ with non-integral j−invariant. Then for all n > 0, L(s, E, Symn)
extends to a meromorphic function which is holomorphic and non-vanishing for
Re(s) ≥ 1 + n/2.

These conditions suffice to prove the Sato-Tate conjecture.
Theoretical considerations give
Proposition EC. It is possible the arithmetic modeling of the Brownian

motion by quantity ap.

8.2 Kloosterman sums

Let

Tp(c, d) =

p−1∑
x=1

e2πi(
cx+ d

x
p )

1 ≤ c, d ≤ p− 1; x, c, d ∈ F∗
p

be a Kloosterman sum.
By A. Weil estimate

Tp(c, d) = 2
√
p cos θp(c, d)

There are possible two distributions of angles θp(c, d) on semiinterval [0, π) :

a) p is fixed and c and d varies over F∗
p; what is the distribution of angles

θp(c, d) as p→∞ ;

b) c and d are fixed and p varies over all primes not dividing c and d.

For the case a) N. Katz [29] and A. Adolphson [30] proved that θ are dis-
tributed on [0, π) with density 2

π sin2 t.
Let

cd 6≡ 0 mod p, Tp(c, d) =

p−1∑
x=1

e2πi(
cx+ d

x
p )

the Kloosterman sum. By A. Weil, Tp(c, d) = 2
√
p cos θp(c, d). Compute

Tp, cos θp, θp and reduce θp to the interval [0, π]. Experiments demonstrate ran-
dom behavior of angles of Kloosterman sums.

Theoretical considerations give
Proposition KS. It is possible the arithmetic modeling of the Brownian

motion by Kloosterman sums.
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Conclusions
We have presented a review of new results on actions and transformations

of (quantum) groups and semigroups on (quantum) spaces, have presented
dynamical systems and zeta functions arising from these spaces, actions and
transformations, discussed their stochastic properties.
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Abstract. This study addresses problems: what determines coherent structures in
mixing patterns and what are main elements of the coherent structures. We restrict
our consideration to finite times and are mainly interested in how to organize steady
or periodic flow and where to put the blob (or blobs) in order to achieve the best
result in that finite time. Knowing types and positions of periodic points coherent
structures in distributive mixing patterns could be classified. These structures are
connected with hyperbolic and elliptic periodic points and lines for three-dimensional
mixing flows.
Keywords: Distributive mixing, Periodic points and lines, Coherent structures.

1 Introduction

We consider the laminar mixing process in a two-dimensional annular wedge-
shaped cavity and in a three-dimensional creeping flow of a viscous incompress-
ible fluid contained in a finite circular cylinder, induced by a prescribed periodic
motion of the end walls. Here we apply a method to locate periodic structures
and manifolds. In contrast to two-dimensional flow of an incompressible fluid,
for which the equations of motion of an individual passive particle can always be
written in Hamiltonian form and for which well-developed methods of Hamil-
tonian mechanics can be applied, the study of three-dimensional mixing flows
encounters considerable difficulties. An important characteristic of both two-
dimensional and three-dimensional flows, that is closely related to the problem
of determination of the regions of regular behaviour being barriers for the mix-
ing process (Aref[1]), is the location of periodic points (or fixed points in the
hyperplane of the Poincaré map). The determination and classification of peri-
odic points in three-dimensional flows is a complicated problem. Furthermore,
in three-dimensional flows these points can form one-dimensional periodic lines.
A complete classification of the periodic points can be performed in accordance
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with three eigenvalues of the linearized matrix of the Poincaré map, and spe-
cific behaviour of the map near such a point can be associated with its type [4].
Generally, the periodic points of three-dimensional flows could be character-
ized by a much richer variety, compared to the points of two-dimensional flows,
in which only three possible types exist. However, if in a three-dimensional
flow the point lies on a periodic line it is not significantly different from peri-
odic points in two-dimensional flows. In the three-dimensional case, the flow
near a periodic line is topologically similar to the flow near a periodic point in
two-dimensional case.

2 Stirring of a viscous incompressible fluid

2.1 Mixing in a two-dimensional annular wedge-shaped cavity

As a first example of mixing, we consider a two-dimensional creeping flow of
an incompressible viscous fluid in an annular wedge cavity, a ≤ r ≤ b, |θ| ≤ θ0,
driven by periodically time-dependent tangential velocities Vbot(t) and Vtop(t)
at the curved bottom and top boundaries, when a radius r is r = a and r = b,
respectively. The side walls, a ≤ r ≤ b, |θ| = θ0 are fixed. We consider
a discontinuous mixing protocol with the bottom and top walls alternatingly
rotating over an angle Θ in clockwise and counterclockwise directions, respec-
tively. More specifically, we consider the case

Vbot(t) =
2aΘ

T
, Vtop(t) = 0, for kT < t ≤

(
k +

1

2

)
T,

Vbot(t) = 0, Vtop(t) = −2bΘ

T
,

for

(
k +

1

2

)
T < t ≤ (k + 1)T, (1)

where k = 0, 1, 2, .... Θ is the angle of wall rotation and T is the period of the
walls motion. The radial and azimuthal velocity components ur and uθ can be
expressed by means of the stream function Ψ(r, θ, t) as

ur =
1

r

∂Ψ

∂θ
, uθ = −∂Ψ

∂r
. (2)

For a quasi-stationary creeping flow in the Stokes approximation the stream
function Ψ satisfies the biharmonic equation

∇2∇2Ψ = 0, (3)

with the Laplace operator ∇2 and the boundary conditions

Ψ = 0,
∂Ψ

∂r
= −Vbot, at r = a, |θ| ≤ θ0, (4)

Ψ = 0,
∂Ψ

∂r
= −Vtop, at r = b, |θ| ≤ θ0, (5)
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Ψ = 0,
∂Ψ

∂θ
= 0, at a ≤ r ≤ b, |θ| = θ0. (6)

Therefore, we have the classical biharmonic problem for the stream function
Ψ with prescribed values of this function and its outward normal derivative at
the boundary.

The system of ordinary differential equations

dr

dt
=

1

r

∂Ψ

∂θ
, r

dθ

dt
= −∂Ψ

∂r
(7)

with the initial conditions r = rin, θ = θin at t = 0 describes the motion of
an individual (Lagrangian) particle occupying the position (r, θ) at time t. In
fact, we have steady motion of the particle within time intervals (kT, kT +
T/2), (kT + T/2, kT + T ), with velocities that instantaneously change at tk =
kT/2, (k = 0, 1, 2, ...).

It is easy to check that, within these intervals, when the stream function
does not explicitly depend on time, system (11) has the first integral Ψ(r, θ) =
const. Therefore, this system is integrable and a particle initially at (rin, θin)
moves along a steady streamline during the first half period (0, T/2). At the
instant t = T/2 when the forcing is switched, the topology of streamlines is
changed, and the particle instantaneously moves along a new streamline during
the second half of period (T/2, T ), and so on. The spatial position of the
particle is continuous, but its velocity experiences a discontinuity at each half
period.

It is because of these abrupt periodical changes in the velocity field that the
question of stability and instability of the solution of system (11) and possibility
of chaotic advection (Aref[1]) naturally arises.

The problem of mixing of a certain amount of dyed passive material (the
blob), as considered here, consists of tracking in time the positions of particles
initially occupying the contour of the blob, say, the circle of radius R with
the center at (rc, θc). We assume that the flow provides only a continuous
transformation of the initially simply connected blob. Therefore, the deformed
contour of the blob gives the whole picture of the mixing.

This wedge-cavity flow problem has been solved analytically by Krasnopol-
skaya et al.[2]. Their analytical solution was used for the numerical evolution
of the interface line between the marker fluid and the ambient fluid, which was
carried out by the dynamical contour tracking algorithm.

2.2 Statement of mixing problem in a cylinder

Consider the three-dimensional Stokes flow in a finite cylinder that occupies
the domain 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ H in the cylindrical coordinates
(r, θ, z). In terms of the velocity vector u and the pressure p, the Stokes flow
of an incompressible viscous fluid (inertia terms being negligible) is governed
by

µ∇ 2 u = ∇ p, ∇ · u = 0, (8)

where ∇, ∇·, and ∇ 2 stand for standard differential operations of gradient,
divergence, and the Laplacian operator, respectively, and µ is the coefficient
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of shear viscosity of the fluid. The flow is generated by periodic motion of the
cylinder end wall at z = H, while the cylinder wall r = a remains fixed. In
terms of Cartesian components, with the positive x-axis coinciding with the
direction θ = 0, the velocity vector u = u ex + v ey + w ez takes the following
form at the domain boundaries:

u = utop(t) ex + vtop(t) ey, z = H, 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π , (9)

In what follows we consider one typical protocol of the wall motions with a con-
stant velocity V and with period T (only the non-zero velocities are presented
below). Protocol consists of two ‘zigzag’ steps of the top wall only:

utop = V, 0 ≤ t ≤ 1

2
T, vtop = V,

1

2
T ≤ t ≤ T. (10)

Note that the protocol is discontinuous, although the motion of the fluid
inside the cylinder is steady at any time within the whole period. Since the
inertia forces are neglected in the governing equations (8), these steady motions
are established instantaneously. Because of the linearity of system (8) and the
absence of time dependent terms, the velocity field in the cylinder is periodic
with period T .

Important for further analysis is the dimensionless kinematic parameter
D = V T/a, which represents the ratio of two typical time scales of any given
protocol: the forcing period T and the advection time a/V (for a wall travelling
over a typical distance a with a velocity V ).

The mixing process taking place is due to advection of passive material
tracers by the velocity field u and is hence governed by the three-dimensional
system of ordinary differential equations

dx

dt
= u (x, y, z, t),

dy

dt
= v (x, y, z, t),

dz

dt
= w (x, y, z, t), (11)

with initial conditions x = x0, y = y0, z = z0 at t = 0.
A full analytical solution for the linear vector boundary problem for the

velocity field has been constructed by Meleshko et al.[5]. by the method of
superposition. The principal idea of the method consists in representing the
velocity field in the finite cylinder as the sum of two velocity fields: one for an
infinite layer with thickness equal to the finite cylinder height, and another for
an infinite cylinder with a radius equal to that of the original cylinder. Veloc-
ities in these simple domains are represented in the form of ordinary Fourier
series with sets of arbitrary coefficients on the complete systems of Bessel and
trigonometric functions, respectively. These series both identically satisfy the
governing equation inside the domain and have sufficient functional arbitrari-
ness for fulfilling any boundary conditions on the top and bottom walls and
on the lateral surface of the cylinder, respectively. Because of the interdepen-
dency, the expression for a coefficient of a term in one series will depend on all
the coefficients of the other series and vice versa. The final solution involves
solving an infinite system of linear algebraic equations, providing the relations
between applied velocities and the coefficients in two ordinary Fourier series
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on the complete systems of Bessel and trigonometric functions in radial and
axial directions, respectively. The general theory of such infinite systems pro-
vides leading terms in the asymptotic behaviour of coefficients. An established
technique was used to considerably improve the convergence of the series on
the whole boundary, including the rims. The numerical results presented in
Meleshko et al.[5] reveal that the boundary conditions for the case of a lid-
driven cavity are satisfied within the accuracy O(10−3) in comparison with the
prescribed velocity, even at the corner point.

The problem of accurate determination of the interface is obviously very
complicated, as it moves and deforms with the flow. There exist many tech-
niques to deal with flows containing sharp fronts, which can be divided into two
basic strategies – front-capturing and front-tracking. Detailed reviews of the
front-tracking methods are provided by Krasnopolskaya et al.[3] and Malyuga
et al.[4].

2.3 Periodic points and lines

A periodic point P of period n can be classified as an elliptic, hyperbolic, or
parabolic point depending upon the structure of the surrounding flow field.
This classification is based on the behaviour (in the course of time) of an
infinitesimally close neighbouring point P + dx0. After n periods, the latter
arrives at P+dxn = Φn

T (P+dx0), upon linearization about the periodic point
P = Φn

T (P), adding up to
dxn = F · dx0 (12)

with F = ∂Φn
T /∂x|P the real Jacobian matrix. According to (12), stable and

unstable structures may emerge, depending on the properties of the matrix F .
In order to analyse the nature of the map near P, the relation (12) is rewritten
in the canonical (or Jordan) form

ηn = S · η0 S = R−1 · F ·R η = R−1 · dx (13)

with R the transformation matrix relating the local Cartesian (dx, dy, dz) to
the canonical (η(1), η(2), η(3)) frame of reference.

In two-dimensional systems, elliptic points are surrounded by islands, seal-
ing off the elliptic region from the remainder of the flow domain and in conse-
quence acting as transport barriers. The hyperbolic points xh are accompanied
by stable manifolds W s(xh) and unstable manifolds Wu(xh) that merge either
into closed orbits or display transversal intersection. The former phenomenon
is reminiscent of the aforementioned elliptic islands by obstructing communi-
cation between flow regions, whereas the latter brings about excessive stretch-
ing and folding of material elements, indicative of chaotic advection [1]. In
the three-dimensional domain of interest the islands and manifolds, associated
with periodic points on the elliptic and hyperbolic segments of the periodic line,
readily merge into tubular objects and intricate surfaces, although possessing
essentially two-dimensional characteristics.

The periodic lines of period-2 of the flow generated in a cylinder are shown
in figure 1
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Fig. 1. The periodic lines of period-2 in the flow in the cylinder for D = 5. Thick
and thin lines represent the elliptic and hyperbolic segments, respectively [4].

Such lines were found to exist only for D > 2. It is worth noting that each
of the two lines returns into itself after two periods. Although any periodic
point of second order exists always in combination with another one, they can
belong to the same periodic line of the second order.

3 Coherent structures

The results presented correspond to one typical wedge cavity with θ0 = π/4
and b/a = 2. Using the dimensionless parameter H = Θ/θ0 and a fixed value
for the period T , the discontinuous mixing protocol (1) is completely defined.
We restrict our consideration to the case H = 4. The accurate Lagrangian
description of the contour line provides the possibility to construct an Eule-
rian representation of the mixture. Figure 2(a) shows the mixed state with
the positions of the initially circular blob (green area) after six periods (red)
and after twelve periods (blue). There are two main components of the coher-
ent structure in the mixed state: one component formed by the thin filaments
with their striation decreasing in time and the other one by the small ‘rub-
bery’ region, representing the unmixed part of the blob. What creates this
structure? First of all, the invariant unstable manifold corresponding to the
hyperbolic point of period-1 which is located in the centre of the original green
blob (indicated by a black square in the middle in figure 2b). This manifold,
presented in the figure 3(a), serves as a skeleton which forms the first main
coherent structures of the deforming blob. The origin of the ‘rubbery’ coherent
structure can be explained in terms of the existence of elliptic periodic points of
period-6, period-2 and period-6, respectively, which are shown as white boxes
in figure 2(b). In the upper part of the green circular blob (figure 2b), a small
black box indicates the position of the hyperbolic fixed point of period-6 and
therefore, the ‘rubbery’ region nearby this point will be destroyed completely
in course of time.
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Fig. 2. Mixing patterns: (a) in the whole cavity; (b) in the region of the initial blob
position.

The resulting deformation after twelve periods of small circular domains
surrounding these higher order periodic points are shown in figure 3(b). The
small circular blob surrounding the hyperbolic point transforms after twelve
periods into a thin red line, while the three circular bolbs surrounding the
elliptic points only slightly deform (the so-called ‘rubbery’ regions).

4 Conclusions

Coherent structures in distributive mixing patterns are classified. These struc-
tures are connected with hyperbolic and elliptic periodic points (and lines) of
order-1 or higher.
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Fig. 3. The elements of coherent structures: (a) part of unstable manifold of the
hyperbolic point of period-1 in the centre of the initial blob; (b) deformation patterns
of small circular blobs surrounding periodic points of higher order.
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Abstract: Two new mathematical models of cross-waves generation in fluid free surface 

between two cylindrical shells when the inner wall vibrates radially and parametric 

oscillations of a cantilever bar with low bending rigidity are worked out. In the cases of 

internal resonances parametric oscillations of continuous systems are approximated by 

two eigenmodes with different eigen frequencies. Those two eigen modes are dominant 

and they are resonant. On the basis of analysis of the largest Lyapunov exponents for a 

complex system three types of steady-state regimes are found: periodic, quasi-periodic 

and chaotic regimes. Phase portraits and power spectra are constructed and studied. 

Attention is concentrated mainly on the properties of chaotic attractors.  

Keywords: Waves in fluid free surface, Cross-waves, Cantilever bar, Bending rigidity, 

Eigenmodes.  

 
1    Introduction 

The phenomenon of deterioration of fluid free-surface waves between two 

cylindrical shells when the inner wall vibrates radially, is rather known, 

Faraday, 1831, [3]. The waves may be excited by harmonic axisymmetric 

deformations of the inner shell and depending on the vibration frequency both 

axisymmetric and non-symmetric wave patterns may arise. Experimental 

observations have revealed that waves are excited in two different resonance 

regimes. The first type of waves corresponds to forced resonance, in which 

axisymmetric patterns are realized with eigenfrequencies equal to the frequency 

of excitation. The second kind of waves is parametric resonance waves and in 

this case the waves are "transverse", with their crests and troughs aligned 
perpendicular to the vibrating wall. These so-called cross-waves have 

frequencies equal to half of that of the wavemaker, Krasnopolskaya, 1996, [4]. 

To obtain a lucid picture of energy transmission from the wavemaker motion 

(inner shell vibrations) to the fluid free-surface motion the method of 

superposition has been used.  
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As the second task oscillation regimes of a cantilever bar with low bending 

rigidity are studied in the present paper. In the case of internal resonance 

parametric oscillations of cantilever bar with low bending rigidity are 

approximated by two eigenmodes with different eigen frequencies, 

Krasnopolskaya, 2012, [5].  

 

2    Two Mode Model of Cross-waves  

Let us theoretically consider the nonlinear problems of fluid free-surface waves 

which are excited by inner shell vibrations in a volume between two cylinders of 

finite length. It is useful to relate the fluid motion to the cylindrical coordinate 

system ( , , )r xθ . The fluid has an average depth d ; the average position of the 

free surface is taken as 0x = , so that the solid tank bottom is at x d= − . The 

fluid is confined between a solid outer cylinder at 2r R=  and a deformable 

inner cylinder (which acts as the wavemaker)  at average radius 
01

1 1 0 1 0( ) cos( ) 2 /
d

R r a d x dx r aη π−
−

= + = +∫ . This inner cylinder vibrates 

harmonically in such a way that the position of the wall of the inner cylinder is 

1 1 1 0 1 0( , ) ( cos )cos 2 /r R x t R a a t x aχ ω η π= + = − + − ,where / (2 )dη π= . 

Assuming that the fluid is inviscid and incompressible, and that the induced 

motion is irrotational, the velocity field can be written as φ= ∇v , with 

( , , , )r x tφ θ  the velocity potential. The governing equation is  

 
2

1 1 20 on ( ,0 2 , )R r R d xφ χ θ π ζ∇ = + ≤ ≤ ≤ ≤ − ≤ ≤  

  (1) 

where ( , , )r tζ θ  is free surface displacement. 

The dynamic and kinematic free-surface boundary conditions are: 

 

          21 / 2( ) ( )t g F tφ φ ζ+ + =∇                                                

 

· at ( , , )x t x r tφ φ ζ ζ ζ θ= ∇ ∇ + =    (2) 

 

with g  the gravitational acceleration, ρ  the fluid density, ( )F t  is an arbitrary 

function of time. Here and later the subscripts , , ,x r tθ  signify partial 

differentiation.  

The kinematic condition at the vibrating inner cylinder is: 

 

1 1 1· at ( , ).r t r R x tφ χ φ χ χ= + ∇ = +∇           (3) 

    

 

From the experimental observations we may conclude that the pattern formation 

has a resonance character, every pattern having its "own" frequency. Assuming 
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that patterns can be described in terms of normal modes with characteristic 

eigenfrequencies, we expand the potential φ  and the free-surface displacement 

ζ  in a complete set of eigenfunctions, which are determined by linear theory. 

The amplitudes of these eigenfunctions are governed by the nonlinear problem 

(2) - (3). The potential φ  can be written as the sum of three harmonic functions 

0 1 2φ φ φ φ= + + , Lamé, 1852, [7]. The solution of the linear problem for 1φ  can 

be written in the form 

 

, ,
1

0 1

cosh ( )
( ) ( , ),

cosh

i jc s c s
i j i j

i j i j i j

k x d
t r

N k d
φ φ ψ θ

∞ ∞

= =

+
=∑∑    (4) 

 

on the complete systems of azimuthal ( cosiθ , sin iθ ), and radial 

eigenfunctions 
1

1

( )
( ) ( ) ( )

( )

i i j
i j i j i i j i i j

i i j

J k R
k r J k r Y k r

Y k R
χ ′

′

= − , with some 

arbitrary amplitudes 
,

( )
c s
i j tφ . In the solution (4) the notations 

,
( , ) ( )(cos ,sin )

c s
i j i j i jr k r i iψ θ χ θ θ=  are used, where iJ  and iY  are the i -th 

order Bessel functions of the first and the second kind, respectively, and i jN  is 

a normalization constant, where the index c  (or s ) indicates that the 

eigenfunction cos iθ  (or sin iθ ) is chosen as the circumferential component; 

i jk  represents eigen wave numbers. The system of functions ( , )i j rψ θ , with 

0,1,2,...i =  and 1,2,3,...j = , is a complete orthogonal system, so any 

function of the variables r  and θ  can be represented using the usual procedure 

of Fourier series expansion. Thus, the free surface displacement 

0( , , ) ( )r t tζ θ ζ−  can be written as ( 0 ( )tζ is the mean level of fluid free 

surface oscillations) 

 
,

,
0

0 1

( , )
( , , ) ( ) ( ) .

c s
i jc s

i j
i j i j

r
r t t t

N

ψ θ
ζ θ ζ ζ

∞ ∞

= =
− = ∑∑    (5) 

 

The velocity potential 2 ( , , , )r x tφ θ  can be formulated in terms of an ordinary 

Fourier series in cos l xα  with /l l dα π=  and in ( cosiθ , sin iθ ), so that the 

general solution reads, Krasnopolskaya, 1996, [4] 

 

,
2

0 1

ˆ( )cos ( )(cos ,sin )c s
i l l i l l

i l

t x r i iφ α χ α θ θ
∞ ∞

= =
= Φ∑∑    (6) 
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with 
2

2

' ( )
ˆ ( ) ( ) ( )

' ( )

i j
i l l i l i l

i j

I R
r I r K r

K R

α
χ α α α

α
= − , where iI  and iK  the i -th 

order modified Bessel functions of the first and second kind, respectively. 

Under a parametric resonance, when the excitation frequency is twice as large as 

one of the eigenfrequencies, i.e. 2 nmω ω≈ , and according the experimental 

observations we may assume that the free-surface displacement can be 

approximated by two resonant modes. So that we may write 

0 0 0
0

1 1
( , ) ( )c

nm nm l l
nm l

r r
N N

ζ ζ ψ θ ζ ψ ζ≈ + +                                          (7) 

 

where 0lψ is the axisymmetric mode which has the eigenfrequency by a value 

very close to ω , i.e. 0lω ω≈ . From the experimental observations follows 

that cross-waves has ampliteds much bigger than the amplitudes of the forced 

waves with the frequency ω  of the wavemaker vibrations. So that we can seek 

the unknown functions in the form 

[ ]

1/2

1 1 1 1 1 1

0 1 0 2 1 2 1

( ) ( )cos ( )sin ;
2 2

( ) ( )cos ( )sin ,

nm

l

t t
t p q

t p t q t

ω ω
ε λ τ τ

ζ ε λ τ ω τ ω

ζ  = +  
= +                                 (8)    

where 
1

1 th( )nm nmk k hλ −= , 

2

1
g

nmaω
ε =  is a small parameter, 1 1

1

4
tτ ε ω=  

 is a dimensionless slow time, 0 0

1

0th( )l lk k hλ −= . By substitution of the 

expressions (8) into boundary conditions (2)-(3), using (4)-(7) and averaging 

over the fast time tω , Krasnopolskaya, 1996, [4], we finally obtain 

 

1
1 1 3 1 1 2 1 2

1

1
1 1 3 1 1 2 1 2

1

2
2 2 2 4 1 1

1

2 22
2 2 2 4 1 1 5

1

( );

( );

2 ;

( ) ,

dp
p q q q p p q

d

dq
q p p p p q q

d

dp
p q p q

d

dq
q p p q

d

α ϑ β β
τ

α ϑ β β
τ

α β β
τ

α β β β
τ

= − − + + −

= − + + + +

= − − −

= − + + − +

                                        (9) 
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where 
2

1
6 2

1 1( )
2

p q
β

ϑ β + +
= 

, 

nm

α
δ

ω
= , δ is the ratio of actual to 

critical damping of the mode, iβ (i=1,2,…6) are constant coefficients. The 

dynamical system (9) is nonlinear, so numerical solutions were obtained. We 

used the following coefficients (Krasnopolskaya, 1996, [4] – Becker, 1991, [1]) 

and data: 

α = 0.01; 1β =0.1; 2β =0.1; 3β =1.3k; 4β =-1.2; 5β =0.235k; 

6β =1.12; β =-1.531; 1 1 2 2(0) (0) (0) (0)p q p q= = = = 0.5. 

For these parameters and for different values of k (which is dimensionless 

amplitude of the wavemaker vibrations) extensive numerical calculations were 

carried out in order to find all steady state regimes. In Figure 1 dependence of 

the maximum Lyapunov exponent on value k is shown. 

 
 

Fig. 1. The dependence of the maximum Lyapunov exponent on value k.  
 

 
a) 0.5k =  

 
b) 0.8k =  
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c) 1k =  

 
d) 3k =  

Fig.2. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d). 

 

 
a) 0.5k =  b) 0.8k =  

 
c) 1k =  

 
d) 3k =  

Fig. 3. Power spectra computed for 1p  data  (cases a, b, c and d). 
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As we may conclude from numerical data and graphs in Figures 1-3 the 

dynamical system (9) has both regular (k=0.5; k=0.8) and chaotic regimes (k=1; 

k=3). The chaotic regimes could be realized when 1k ≥ . For such values of 

corresponding amplitudes of wavemaker oscillations the largest Lyapunov 

exponents are positive, phase portraits have complicated structures  of trajectory 

sets and power spectra are continuous ones. 

 

3    Two Mode Approximation of Vibrations of Cantilever Bar with 

Low Bending Rigidity  

It has been known that it is possible to stabilize a rigid pendulum and a flexible 

cantilever bar with very low bending rigidity vertically upwards under harmonic 

oscillations, Champneys, 2000, [2].  The nonlinear equation for flexible 

vibrations ( , )x tη  of  the cantilever bar can be written in the following form, 

Krasnopolskaya, 2013, [6]: 

( ) ( )
4 2

0 4 2

2
4 2 3 2 2

3

3 2 4 2 3 2 2

cos

3 2 0.

a
EJ Fg l x l x t

x x t g x

E J F
x x x x t

η η
ρ ω

η η η η η
α ρ

   ∂ ∂ ∂ ∂
+ − + − −    ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂ ∂
− + + =  ∂ ∂ ∂ ∂ ∂   

                  (10) 

In this equation 0EJ is bending rigidity, ρ is the bar density, F is cross section 

area, a is an amplitude (ω  is a frequency) of a clamped base oscillations, l is a 

bar length, 
3

3 2E Jα  is a constant coefficient due to nonlinear stiffness of the 

bar. Our experiments revealed that oscillations of the bar can be approximated 

by two eigenmode oscillations, namely, by the second and the third eigen 

modes, Krasnopolskaya, 2012, [5] when the second eigen frequency is close to a 

half of ω  and in three times smaller than the third eigenfrequency. In this case 

we may write 

2 2 2

3 3 3

( ) cos ( )sin ( )
2 2

3 3
cos sin ( )

2 2

t t
A B x

t t
A B x

ω ω
η ε τ τ ϕ

ω ω
ε ϕ

 = + +  

 +  

                                      (11)  

Here ε is the small parameter, 2 ( )xϕ  is the second eigenmode, 3( )xϕ  is the 

third eigenmode, Krasnopolskaya, 2012, [5]. 

By substitution of the expressions (11) into the equation (10) and averaging over 

the fast time we get 
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( )2 22 2 1 2
2 2 3 2 3 0 5 2 2 22

1 3
( ) 2

2 2 2 8

dA
A B B B I B A B

d

ξ γ γ
ξ ω γ α

τ ω ω
 = − + − − − + 

               

( ) ]})(
4

2
8

2

3

2

32
7

3223

2

23

2

2
6 BABABABBBA +++−+

αα
; 

   

( )2 22 2 1 2
2 2 3 2 3 0 5 2 2 22

1 3
( ) 2

2 2 2 8

dB
B A A A I A A B

d

ξ γ γ
ξ ω γ α

τ ω ω
 = − + + + + + 

 

             ( ) ]})(
4

2
8

2

3

2

32
7

3223

2

23

2

2
6 BAABBAABAA +++−+

αα
; 

( )2 33 3 92
3 2 3 3 3 0 2 2 22

1 2
( ) 3

2 6 3 8

dA
A B B I A B B

d

γ αξ
ξ ω γ

τ ω ω
 

= − + − − − − + 
 

               ( ) ]})(
8

3

8

2

3

2

33
122

2

2

23
10 BABBAB ++++

αα
; 

( )2 23 3 92
3 2 3 3 3 0 2 2 22

1 2
( ) 3

2 6 3 8

dB
B A A I A A B

d

γ αξ
ξ ω γ

τ ω ω
 =− + + + + − + 

 

               ( ) ]})(
8

3

8

2

3

2

33
122

2

2

23
10 BAABAA ++++

αα
; 

In our calculations the following parameters have been used 

ρ = 1.7*10-3 kg/см3; g = 980 см/seс2; a = 0.9см; B =0.055; l = 26.7см;    

r = 0.15 см;  G = 0.1398*109 kg/(см gseс2 );  g2 = 0.0547 g106;  

λ2 = 18.031; λ3 = 184.32; E=1.4227*10
5kg/(см gseс2 ),       

5
1

2

8.0 10
0.17 sec

Fl
ξ

ρ

−
−⋅

= = ,     
l

g
=0γ ,  

3

2*

3
27

2

G

Eg
=α ,   

* 2 5
3 35 10I B Eα −= ⋅ ,     

l

g

A

g

A

g 2

2
)(

λ
ω

ωξ −= ,     

l

g

A

g

A

g 3
3

2

3
)(

λ
ω

ωξ −= . 



Chaotic Modeling and Simulation (CMSIM)  3: 413-422, 2013 421 

 

Only regular regimes were found for different initial conditions as steady state 

regimes. The maximum Lyapunov exponents were not positive for all of them. 

In Figure 4 phase portrait projections are shown for quasi-periodic (ω =40 

rad/sec) and periodic (ω =60 rad/sec) regimes. Power spectra for these regimes 

are presented in Figure 5, where only several spikes are visible. Quasi-periodic 

and periodic regimes are typical for the above-mentioned dynamic system 

which has a symmetry relatively unknown variables. 

 

 
a) 40ω =  b) 60ω =  

 

Fig. 4. Phase portraits for different excitation frequencies. 
 

 
a) 40ω =  b) 60ω =  

 

Fig. 5. Power spectra computed for 2A  time realization for different frequencies 

of clamped base oscillations.   
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4    Conclusions 

Two new models expressing interaction of two eigenmodes at the condition of 

internal resonances and parametric oscillations of continuous systems are 

developed.  Models are simulated. The existence of chaotic attractors was 

established for the dynamical system presenting cross-waves and forced waves 

interaction at fluid free-surface in a volume between two cylinders of finite 

length. For averaged symmetric systems describing two parametric eigen modes 

of a flexible cantilever bar with very low bending rigidity no chaotic regimes 

were found. 
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Abstract. In this paper we present a comparison between a nonlinear measure (the
Nonlinear Interdependence, S) and a linear measure (the Cross Correlation coeffi-
cient, CC) for analyzing nonlinear dynamical systems. To do this, we consider a
biologically-realistic neural network (NN) model of the piriform cortex. Our previous
work studied the EEGs obtained from two components of this network. In this cur-
rent work, we increase the system’s granularity and replicate the exploration using
the membrane potentials of our neurons to study the measures S and CC. To be more
specific, even though the properties of a nonlinear dynamical system are best analyzed
in the natural framework described by its state space, they may be undetectable in
the time domain of the system’s output, e.g., in the EEG tracing. Rather, a phase
space representation may reveal the salient features of the nonlinear structure which
are hidden or occluded to standard linear approaches. Nonlinear Interdependence,
(S), proposed by Quiroga, is said to occur when the trajectories reconstructed in
the phase-space of one time series, experimentally predict the evolution of the phase
space trajectories of the second time series. This measure of predictability has the
advantage over linear measures, of being sensitive to interdependence between dis-
similar types of activity. In many cases where one analyzes nonlinear signals, CC is
a measures that well describes the synchronization or the desynchronization between
two signals. In other cases, S is introduced in addition to CC in order to describe
the nonlinear signals. We thus investigate here the synchronization of these types of
signals using the membrane potentials using both linear measures (i.e., CC) and non-
linear measures (i.e., S). Our results clearly prove that utilizing both these measures
is effective in analyzing and understanding real-life chaotic systems.
Keywords: Chaotic Behavior, Large-scale Neuro-Models, Nonlinear Interdepen-
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1 Introduction

From the theory of nonlinear dynamics [7], we understand that nonlinear dy-
namical systems can be aptly and best described and quantified by a state
space. This is also the natural framework to characterize its underlying phe-
nomena. However, while their properties may be undetectable in the system’s
time domain output (e.g., in the EEG tracing), they can be studied in the phase
space. A phase space representation may reveal the salient features of the non-
linear structure which are hidden or occluded to standard linear approaches
[11]. In this context, Nonlinear Interdependence is said to occur when the
trajectories reconstructed in the phase-space of one time series experimentally
predict the evolution of the phase space trajectories of the second time series
[10]. This measure of predictability has the advantage over linear measures, of
being sensitive to the interdependence between dissimilar types of activity [3].

Often, in the analysis of nonlinear signals, a linear measure (the Cross Cor-
relation coefficient, CC) is a measure that aptly describes the synchronization
or the desynchronization between two signals. In other cases, the Nonlinear
Interdependence, S, is introduced in addition to CC in order to describe the
nonlinear signals. In this paper we present a comparison between S and CC.
We shall demonstrate that whenever we are dealing with signals with a “dom-
inant” nonlinear behavior and with a very small linear component, neither S
nor CC, by themselves, can provide the same information as the pair 〈S, CC 〉.

To demonstrate this hypothesis, we shall investigate a biologically realistic
Neural Network (NN) model of the piriform cortex. In our previous work
[4], we studied the EEGs obtained from two components of this network. In
this current work, we increase the granularity of our approach and replicate
the exploration using some previously unexplored criteria, i.e., the membrane
potentials of our neurons. We thus investigate here the synchronization of
these types of signals using the membrane potentials, wherein we utilize both
a typical linear measure (i.e., CC) and a typical nonlinear measure (i.e., S).
We also compare the synchronization identified between the potentials in this
manner, with the one identified between the EEGs.

The issue of neuro-modeling is not merely theoretical. Indeed, is has been
motivated by a desire to better understand specific neural circuits, particu-
larly those whose failures could possibly trigger human illnesses. Depression,
Anxiety, Schizophrenia, Alzheimer’s disease, memory impairment, paralysis,
Epilepsy, Multiple Sclerosis, Parkinson’s disease, etc. are areas in which in-
tense research efforts have been (and are being) made to better understand and
treat these conditions. In this respect, from a modeling perspective, the analy-
sis of the connections between the neurons is fundamental to understanding and
treating these illnesses. Such an analysis also leads to a better understanding
of the development and function of the normal brain.

1.1 The Platform: GENESIS and the Computational Model

The platform for our research is the so-called GENESIS (GEneral NEural SImu-
lation System) framework [2] proposed by Bower et al. This simulation software

The GENESIS simulation software is free and can be downloaded from
http://www.genesis-sim.org/GENESIS/.
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was initially developed in a CALTECH (California Institute of Technology) lab-
oratory by Wilson [13] as an extension of efforts to model the olfactory cortex.
It was designed to allow for the multi-scale modelling of a single simulation sys-
tem and, until now, is the only simulator possessing this capacity. Indeed, in
this context, the Wilson model of the piriform cortex is generally accepted as a
realistic model, since it is based on the anatomical structure, apart from which
it also contains physiological characteristics of actual biological networks. The
model has been cited in more than 100 refereed papers, and a review of large
scale brain simulations is found in [5].
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10 mm

6 mm
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THE PIRIFORM CORTEX

CAUDAL

Fig. 1. The model of the piriform cortex.

One of the ultimate objectives of Wilson’s model was to understand the role
of the piriform cortex in olfactory object recognition. Further, one motivation
of the research due to Wilson and Bower was the assumption that this cortex
computationally represents a type of associative memory. The model has been
used to explore a wide range of cortical behaviors [13], including associative
memory functions [12].

The computational model which we present can be viewed as a nonlinear
system. Simulation of the piriform cortex requires the numerical solutions of
systems of differential equations that describe the states of the neurons as a
function of time and space. These numerical techniques describe how the sys-
tem advances the state variables of the simulation (e.g., the potential of the
membrane ) from time i to time i+1, through numerical integration of the dif-
ferential equations that appropriately describe the system. The computational
model of the piriform cortex is treated as a loosely-coupled system of ordinary
differential equations. The evaluation of a state of any neuron in the system
requires only the information of the previous states from other neurons, and it
can be solved for each neuron at every time step. It is well known that such
equations can be solved using straightforward numerical integration techniques.

The initial architecture consists of three 15 × 9 arrays of 135 nodes. Each
array has only a single type of neuron, being either of the pyramidal cells, of
the feedforward inhibitory cells (K+ mediated inhibition), or of the feedback
inhibitory cells (Cl− mediated inhibition). The array is proposed to represent
the whole piriform cortex, which falls within an area of approximately 10 mm
× 6 mm. The pyramidal cells consist of five compartments, with each com-
partment receiving a distinct kind of synaptic input. The inhibitory cells are
modelled using the differences between the exponential functions. The model
also contains 10 cells representing the excitatory input from the olfactory bulb
to the cortex.

Numerous models of brain circuitry have focused on simulating the macro-
scopic functionality of systems containing simplified neuronal units. The in-
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crease in computational power in the last decade has permitted simulations
to include models with considerable complexity, namely those comprising of
realistic large scale NNs. The goal of a modeling phase is to generate patterns
that are similar to EEGs, and to explore their possible physiological basis.

2 Problem of Connectivity

The Problem of Connectivity is motivated from the following clinical con-
siderations. In spite of intensive research conducted over the last decades and
the discovery of effective medication, the cause and the mechanisms leading to
Schizophrenia are still unclear. It is widely agreed that Schizophrenia is most
likely based on fundamental neuronal changes of the brain. Unfortunately,
physiological methodologies have not been able to contrive reliable tests beside
the current assessments. Perhaps the high complexity of the human brain is
what renders it vulnerable to diseases such as Schizophrenia, because animals
do not develop the same types of diseases [6].

This problem involves investigating the modification of local connectivity
within the piriform cortex. More specifically, we analyze the dependence of
the level of chaos as a function of the density of the synapses (i.e, the number
of synapses generated between the neurons). In addition, we investigate the
variation of the maximum Nonlinear Interdependence, S, of two sub-systems
embedded in a larger system. Thus, we consider how the coupling of two
interconnected sub-systems of the same underlying system would change as a
function of the connectivity of the synapses. We believe that the levels of local
connections between the neurons can be used as a hypothesis for the mechanism
to explain underlying illnesses such as Schizophrenia.

Prior Work on the Problem of Connectivity: In our prior research
[4], we have performed modifications to the number of connections between the
pyramidal neurons. By changing the connectivity, we proposed to simulate the
level of pruning to be excessive or insufficient. We chose to describe the effect of
pruning on the level of chaos and the degree of synchronization between the two
sub-systems embedded in the piriform cortex model, using three measures: the
LLE, S, and CC. These three measures were chosen based on two hypotheses.
First of all, schizophrenic symptoms, like thought disorder, hallucinations and
delusions, are assumed to be dependent on the level of chaos in the brain.
Secondly, the symptoms are triggered by the existence of false attractors near
“good” attractors, which suggests that areas from the brain could be highly
correlated in an unhealthy manner. To our knowledge, the investigation of the
two theories, namely excessive and insufficient pruning, based on these three
measures, is new.

The uniqueness of our research is strengthened by the fact that the pairs
of signals being compared belong to the same system. Other authors [8–10],
have considered two initially independent systems and partially coupled them;
subsequently, they have analyzed the synchronization of the signals obtained
from the two systems. In contrast to previous models that evaluate relation-
ships between two different systems (or rather, two partially coupled systems),
we have proposed a new approach where the investigation is conducted using
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two sub-systems which are embedded within the context of a larger system,
namely, two coupled sub-systems of the same system.

2.1 Current Work: Problem of Connectivity

To present our current work in the right perspective, it is appropriate for us to
mention how the readings and measurements are taken and recorded. Record-
ings from the array are averaged to produce the EEGs as below:

EEG(t+ 1) =
1

m

m∑
i=1

[Φi(t)], (1)

where m is the number of electrodes, and Φi(t) is the field potential depending
of the output of the pyramidal neurons, Xp(t) for p = 1 · · ·N . We assume that
the influence of the inhibitory neurons is marginal in the process of the EEG
computation, and that it can thus be omitted.

The relation between the field potential, Φi(t), recorded from the electrode
i and the output of the pyramidal neurons Xp(t) is:

Φi(t) =
1

4Π

N∑
p=1

Xp(t)

dpi
, (2)

where N is number of pyramidal neurons, and dpi is the distance of the pth

pyramidal neuron from the recording site (the electrode i).
By examining the above equations, the reader can see that the synchro-

nization of the EEGs implies the evaluation of the aggregated signals, which
is achieved by computing the averages of a certain number of fields (in our
setting the number is 8). These fields are, in turn, obtained by weighting the
membrane potentials with the inverses of the distances between the electrodes
and each neuron, which is considered as a contributor in the EEG. However,
prior to the averaging phase, one observes that the computational model of the
piriform cortex yielded access to the raw data in and of itself, namely the origi-
nal membrane potential of each neuron. From the perspective of understanding
the efficiency of the CC and S measures, in our current work we disaggregate
the signals and explore the behavior of the raw data (i.e., the membrane poten-
tials) itself. To accomplish this for a prima facie study, we perform a careful
selection of only four neurons as follows:
i. Two of them (V1-V2) were involved in the previous EEG1 computation;
ii. One of them (V135) was involved in the computation of the EEG2;
iii. The last (V15) was not involved in the previous computations.
Using these selection criteria, we now investigate all the possible synchroniza-
tion scenarios (i.e., the intra-EEG and the inter-EEG electrode readings).

2.2 The Settings

In our research, we considered two zones of the piriform cortex as depicted in
Figure 1. For each zone, which was treated as a sub-system, we analyzed the
artificially generated EEGs, each of them being computed with a fixed number
of electrodes, and at a suitable frequency.
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Zone 1

Zone 2

PYRAMIDAL EXCITATORY LAYER (30x50 neurons)PYRAMIDAL EXCITATORY LAYER (30x50 neurons)

ELECTRODES ARRAY (5x10 electrodes)ELECTRODES ARRAY (5x10 electrodes)

Fig. 2. The distribution of the electrodes in Zone1 and Zone2.

We considered the density of the synapses corresponding to the pyramidal
neurons as a control parameter, and explored the effect of modifying the initial
values suggested by the Wilson model [13]. This, in turn, involved:

1. The computation of the EEGs as function of the number of electrodes for
each sub-system.

2. The determination of the optimum value for the embedding dimension for
the phase space reconstruction using the FNN method for the density of
the synapses.

3. The computation of the CC and S measures between the EEGs and for the
membrane potentials.

2.3 Results for this Problem

We conducted numerous simulations over an ensemble of settings. However,
we merely report here some representative results.

First of all, we mention that the time series used to describe the systems
are the EEGs and membrane potentials. To obtain these, we used an array of
n evenly spaced electrodes on the surface of the simulated cortex. Recordings
from the array were then averaged to produce the EEGs. In our experiments,
we set n = 50.

We investigated the level of chaos and the synchronization between these
two zones of the piriform cortex, when the efficiency of the pruning was higher
or smaller than 50%, implying that we decreased, and also increased the con-
nectivity between the pyramidal cells. The level of connectivity was described
by the maximum number of possible connections between the pyramidal neu-
rons, where the possible values were p = 0.1, 0.2, 0.5, 1, 2, and 10. The case
of the healthy brain, when the efficiency of pruning is 50%, corresponds to the
setting when p = 1.

For each sub-system we analyzed the artificially generated EEGs, each of
them computed with 8 electrodes. We also analyzed the membrane potentials
for four neurons: V1 and V2 involved in the computation of EEG1 for Zone1,
V135 involved in the computation for the EEG2 for Zone2, and V15 not involved
in the computation of EEG1 or EEG2. The EEGs and the membrane potentials
were recorded at 5,000 samples/sec for a duration of half of a second.

The first experimental step was to compute the optimum embedding di-
mension for each zone, using The False Nearest Neighbor (FNN) Statistics. In
the interest of brevity, we will not present these results here.
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To evaluate the interdependence between the artificially generated EEGs
and between the membrane potentials, as mentioned earlier, we used two met-
rics, namely S and CC. For computing CC we used a lag which ranged between
-100 and +100. The absolute value is reported. The evolution of S and CC
function of connectivity between pyramidal cells are presented in Table 1, in
which we report the averages for 20 experiments, each of them conducted with
a different model.

V1 V15 V2 V15 V1 V135 V2 V135 EEG1 vs EEG2

Weights CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X, Y )

0.1 0.9678 0.2341 0.9668 0.2366 0.9680 0.2439 0.9692 0.246 0.5005 0.2396

0.5 0.6600 0.1094 0.6539 0.1117 0.7300 0.212 0.8032 0.2170 0.6204 0.2870

1 0.1386 0.0797 0.2111 0.0671 0.1380 0.0823 0.1872 0.0680 0.2227 0.1112

1.5 0.1439 0.0234 0.1419 0.0215 0.2526 0.0390 0.2158 0.0330 0.2524 0.2607

Table 1. Nonlinear Interdependence (S) and maximum Cross Correlation Coefficient
(CCmax) for membrane potentials (V1 V15, V2 V15, V1 V135, and V2 V135) and for
EEG1 and EEG2 function of the value of the connectivity between the pyramidal
cells.

Fig. 3. The evolution of S(X|Y ) and CC as a function of the level of connectivity
between the neurons (see Table 1.)

2.4 Discussion of Results

Table 1 and Figure 2 are used for analyzing the two behaviors, namely that
of increasing and decreasing the connectivity levels. Table 1 contains the av-
erages of the CC and S measures computed with membrane potentials (the
first 8 columns) and the averages computed with the EEG signals (reported
earlier in [4]). The reader can see that the computation used to obtain the
EEG affects the ranges of the CC and S measures, namely it decreases the
ranges, compared to the ranges of the CC and S measures computed with the
membrane potentials. To be more specific, the CC ranges are 0.8306 for the
membrane potentials and 0.3977 for the EEGs , while the S measure ranges
are 0.2245 for the membrane potentials and 0.1758 for the EEGs. With regard
to the degree of synchronization represented by the Nonlinear Interdependence
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S, only a decrease in the connectivity leads to a consistent modification, again
as displayed in Figure 2.

3 Conclusions

The analysis of the two behaviors, namely that of increasing and decreasing
the connectivity levels, reveals that both of them determine a decrease in the
level of chaos in the system, as seen in Figure 2.

From these observations, we can conclude that whenever we are dealing
with signals with a “dominant” nonlinear behavior and with a very small linear
component, neither S nor CC, by themselves, can provide the same information
as the pair 〈S, CC 〉.
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Abstract. A central configuration q = (q1, q2, ..., qn) is a particular configuration of
the n-bodies where the acceleration vector of each body is proportional to its po-
sition vector and the constant of proportionality is the same for n-bodies. In the
three-body problem, it is always possible to find three positive masses for any given
three collinear positions given that they are central. This is not possible for more than
four-body problems in general. In this paper we model a symmetric five-body prob-
lem with with position coordinates for the five bodies as (−x, 0), (0, y), (x, 0), (0,−y)
and (c1, c2). (c1, c2) is the centre of mass of the system. Regions of central configura-
tions, where it is possible to choose positive masses, are derived using both analytical
and numerical tools. We also identify regions in the phase space where no central
configurations are possible. A certain relationship exists between the mass placed at
the center of mass of the systems i.e (c1, c2) and the remaining four masses. This
relationship is investigated both numerically and analytically. Similarly restrictions
on the geometry and restrictions on the inter-body distances are investigated.
Keywords: Central Configurations, n-body problem, five-body problem, inverse
problem of central configurations.

1 Introduction

The classical equation of motion for the n-body problem has the form

mi
d2qi
dt2

=
∂U

∂qi
=
∑
j 6=i

mimj (qj − qi)

|qi − qj |3
i = 1, 2, ..., n, (1)

where the units are chosen so that the gravitational constant is equal to one,
qi is a vector in three space,

U =
∑

1�i<j�n

mimj

|qi − qj |
(2)
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is the self-potential, qi is the location vector of the ith body and mi is the mass
of the ith body.

A central configuration q = (q1, q2, · · · , qn) is a particular configuration of
the n-bodies where the acceleration vector of each body is proportional to its
position vector, and the constant of proportionality is the same for the n-bodies,
therefore

n∑
j=1,j 6=i

mj(qj − qk)

|qj − qk|3
= −λ(qk − c) k = 1, 2, ..., n, (3)

where

λ =
U

2I
, I =

n∑
i=1

mi||qi||2, and c =

∑n
i=1miqi∑n
i=1mi

. (4)

So far, in the non-collinear general four and five-body problems the main fo-
cus has been on the common question: For a given set of masses and a fixed
arrangement of bodies does there exist a unique central configuration ([7],[6]).
In this paper, we ask the inverse of the question i.e. given a four or five-body
configuration, if possible, find positive masses for which it is a central config-
uration. Similar question has been answered by Ouyang and Xie (2005) for
a collinear four body problem and by Mello and Fernades (2011) for a rhom-
boidal four and five-body problem. For other recent studies on the rhomboidal
problem see [1],[2],[4], and [5]. In this paper we state and prove the following
theorems.

Theorem 1. Consider five bodies of masses (m1,m2,m3,m4,m0) located at
(−x, 0), (y, 0), (x, 0), (0,−y) and (0, 0) respectively. The mass m0 is taken to be
stationary at the centre of mass of the system. Let m1 = m3 = 1,m2 = m4 =
m.

1. In this particular set up, using polar coordinates, of the rhomboidal five
body problem where m(θ) > 0, m0(θ) > 0 and r = 1 will form central
configuration when θ ∈ (−1.94,−1.04)∪ (0.74, 1.04). For all other values of
θ at least one of the masses will become negative.

2. For r 6= 1, the central configuration region is given in figure (1).

Theorem 2. Let five bodies of masses m1 = m3 = M,m2 = m4 = m be
placed at the vertices m1(−1, 0),m2(y, 0),m3(1, 0),m4(0,−y) and m0(0, 0) of a
rhombus. The mass m0 is taken to be stationary at the centre of mass of the
system. There exist a region

R1 = (R1m ∪R∗1m) ∩ (R1M ∪R∗1M ). (5)

in the ym0−plane where it is possible to choose positive masses which will make
the configuration central, where

R1m = {(y,m0)|m0 >
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)}, (6)
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R∗1m = {(y,m0)|m0 <
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)},(7)

R1M = {(y,m0)|m0 >
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
(8)

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)},

R∗1M = {(y,m0)|m0 <
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)}. (9)

In the complement of this region no central configurations exist for m,m0 >
0.

Theorem 3. Consider five bodies of masses (m1,m2,m3,m4,m0) located at
(−x, 0), (y, 0), (x, 0), (0,−y) and (0, 0) respectively. The mass m0 is taken to be
stationary at the centre of mass of the system. Let m1 = m3 = M,m2 = m4 =
m. There exist a region

R3 = ((Rd ∩R3m) ∪ (Rcd ∩Rc3m)) ∩ (Rd ∩R3M ) ∪ (Rcd ∩Rc3M ), (10)

in the xy−plane where it is possible to choose positive masses which will make
the configuration central. Here

R3m = {(x, y)|r(x, y) > 2y 3

√
m0 + x3

m0 + y3
, x > 0, y > 0,m0 > 0}, (11)

R3M = {(x, y)|r(x, y) > 2x 3

√
m0 + y3

m0 + x3
, x > 0, y > 0,m0 > 0}. (12)

In the complement of this region no central configurations exist for M,m,m0 >
0.

Let’s consider five bodies of masses mi, i = 0, 1, 2, 3, 4. Four of the masses
are placed at the vertices of a rhombus and the fifth mass m0 is stationary at
the centre of mass of the system. The coordinates for the five bodies are chosen
as below:

q0 = (c1, c2),q1 = (−x, 0),q2 = (0, y), (13)

q3 = (x, 0),q4 = (0,−y), (14)

Using (3) and (13) we obtain the following equation for central configura-
tions.

m0q1

x3
+

m2q12(√
x2 + y2

)3 +
m3q13

8x3
+

m4q14(√
x2 + y2

)
3

= −λ(q1 − c), (15)

m0q2

y3
+

m1q21(√
x2 + y2

)3 +
m3q23(√
x2 + y2

)3 +
m4q24

8y3
= −λ(q2 − c), (16)
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m0q3

x3
+
m1q31

8x3
+

m2q32(√
x2 + y2

)3 +
m4r34(√
x2 + y2

)3 = −λ(q3 − c), (17)

m0q4

y3
+

m1q41(√
x2 + y2

)3 +
m2q42

8y3
+

m3q43(√
x2 + y2

)3 = −λ(q4 − c). (18)

2 Proof of Theorem 1.

Let m1 = m3 = 1,m2 = m4 = m . As CC’s are invariant up to translation
and re-scaling therefore we assume that the centre of mass is at the origin.
This assumption leads to some simplifications in the CC equations. Therefore
from the four CC equations ((15 to 18) the following two linearly independent
equations are obtained.

− 1

4x2
+
m0

x2
− 2mx

(x2 + y2)
3/2

= −xλ, (19)

m

4y2
− m0

y2
+

2y

(x2 + y2)
3/2

= yλ. (20)

Let λ = 1. Equations (19 and 20) are solved to obtain m and m0 as
functions of x > 0 and y > 0.

m(x, y) =
8y3 −

(
x2 + y2

)3/2
(1− 4x3 + 4y3)

8x3 − (x2 + y2)
3/2

(21)

m0(x, y) =
32x3y3(2−

(
x2 + y2

)3/2
)−

(
x2 + y2

)3
(1− 4x3)

4 (x2 + y2)
3/2
(

8x3 − (x2 + y2)
3/2
) . (22)

It is not possible to explicitly solve for x and y therefore we use polar
coordinates to re-write m(x, y) and m0(x, y) as m(r, θ) and m0(r, θ), where
x = r cos θ and y = r sin θ.

m(r, θ) =
1 + 4r3 cos3 θ − 4

(
2 + r3

)
sin3 θ

1− 6 cos θ − 2 cos 3θ
. (23)

m0(r, θ) =

(
1− 6 sin 2θ + 2 sin 6θ − r3(3 cos θ − 3 sin 2θ + cos 3θ + sin 6θ)

)
4 (1− 6 cos θ − 2 cos 3θ)

.

(24)
Let r = 1. The denominator of both m(θ) and m0(θ) becomes zero at θ =
−π3 ,

π
3 . The denominator is negative when θ ∈ (−π3 ,

π
3 ) and is positive else-

where. The numerator of m(θ) when r = 1 is given by 1 + cos3 θ − 12 sin3 θ.
This has real zeros at θ = −2.61 and θ = 0.673. The numerator is positive
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Fig. 1. left: m0(r, θ) > 0. Centre: Region, when m(r, θ) > 0 Right: Region,
when m0(r, θ) > 0 and m(r, θ) > 0

when θ ∈ (−2.61, 0.673). Therefore m(θ) is positive when θ ∈ (−2.61,−1.04)∪
(0.673, 1.04).

The numerator of m0(θ) when r = 1 is given by −1 + 3 cos θ + cos 3θ +
3 sin 2θ − sin 6θ. This has real zeros at θ = −2.541, θ = −1.935, θ = −0.449,
and θ = 1.248. The numerator of m0(θ) is positive when θ ∈ (−π,−2.54) ∪
(−1.935,−0.449)∪(1.248, π). Thereforem0(θ) is positive when θ ∈ (−π,−2.54)∪
(−1.935,−1.04) ∪ (−0.449, 1.04) ∪ (1.248, π).

Hence, this particular set up of the rhomboidal five body problem where
m(θ) > 0, m0(θ) > 0 and r = 1 will form central configuration when θ ∈
(−1.94,−1.04)∪ (0.74, 1.04). For all other values of θ at least one of the masses
will become negative.

In the case when r 6= 1,The central configuration region is given in figure
(1)

3 Proof of Theorem 2.

Let λ = x = 1. Solve equations (19 and 20) to obtain m and M as functions
of m0 and y .

m(y,m0) =
4
(
1 + y2

)3/2
Nm(y,m0)

(1− 4y + y2) (1 + 4y + 18y2 + 4y3 + y4)
, (25)

M(y,m0) =
4
(
1 + y2

)3/2
NM (y,m0)

(1− 4y + y2) (1 + 4y + 18y2 + 4y3 + y4)
, (26)

where

Nm(y,m0) = y3
(
−2 +

√
1 + y2

)(
5 + y2 + 2

√
1 + y2

)
+m0

((
−2y +

√
1 + y2

)(
1 + 5y2 + 2y

√
1 + y2

))
, (27)
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NM (y,m0) =
(
−2y +

√
1 + y2

)(
1 + 5y2 + 2y

√
1 + y2

)
+m0

((
−2 +

√
1 + y2

)(
5 + y2 + 2

√
1 + y2

))
. (28)

The factor 1−4y+y2 of the denominator of m(y,m0) and M(y,m0) is positive
when y ∈ (0, 2 −

√
3) ∪ (2 +

√
3,∞) and is negative when y ∈ (2 −

√
3, 2 +√

3). Therefore to find the sign of m(y,m0) and m(y,m0) we need to analyze
Nm(y,m0) and NM (y,m0). The component of the numerator of m(y,m0),

Nm(y,m0), has two factors i.e. −2 +
√

1 + y2 and −2y +
√

1 + y2 which can
become negative and hence can make Nm(y,m0) negative. The factor −2 +√

1 + y2 > 0 when y ∈ (
√

3,∞) and −2y +
√

1 + y2 > 0 when y ∈ (0, 1√
3
). As

both the intervals have empty intersection therefore we must have the following
bound on m0 for Nm(y,m0) to be positive.

m0 >
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2
. (29)

Hence m(y,m0) will be positive in the following two regions.

R1m = {(y,m0)|m0 >
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)}, (30)

R∗1m = {(y,m0)|m0 <
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (2−
√

3, 2 +
√

3)}. (31)

Similarly M(y,m0) is positive in the following two regions

R1M = {(y,m0)|m0 >
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)}, (32)

R∗1M = {(y,m0)|m0 <
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)}.(33)

Hence, the central configuration region for this particular set up of the rhom-
boidal five body problem where both m(x, y,m0) and M(x, y,m0) are positive
is given by

R1 = (R1m ∪R∗1m) ∩ (R1M ∪R∗1M ). (34)

This completes the proof of theorem 2. This central configuration region is
given in figure (2)
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Fig. 2. left: m(y,m0) > 0. Centre: M(y,m0) > 0 Right: m(y,m0) > 0 and
M(y,m0) > 0

4 Proof of Theorem 3.

Let λ = 1. Solve equations (19 and 20) to obtain m and M as functions of x, y
and m0.

m(x, y,m0) =

4
(
x2 + y2

)3/2 y3
(
−8x3 +

(
x2 + y2

)3/2)
+m0

(
−8y3 +

(
x2 + y2

)3/2)


(x2 − 4xy + y2) (x4 + 4x3y + 18x2y2 + 4xy3 + y4)
(35)

M(x, y,m0) =

4
(
x2 + y2

)3/2 x3
(
−8y3 +

(
x2 + y2

)3/2)
+m0

(
−8x3 +

(
x2 + y2

)3/2)


(x2 − 4xy + y2) (x4 + 4x3y + 18x2y2 + 4xy3 + y4)
(36)

It can be immediately seen that the denominator of both m(x, y,m0) and
M(x, y,m0) becomes singular at y = (2 ±

√
3)x. Therefore y = (2 ±

√
3)x

will form two singular curves for the two masses m and M. Therefore the
denominator will be positive in region Rd given below and will be negative in
its complement.

Rd = {(x, y)|0 < y < (2−
√

3)x or y > (2 +
√

3)x, x > 0}. (37)

It is not possible to explicitly solve the numerator of either m(x, y,m0) or
M(x, y,m0) for x or y therefore we choose the inter body distance x2 + y2 to
find regions of central configuration where both m and M are positive. In the
numerator of m(x, y,m0) the factor

y3
(
−8x3 +

(
x2 + y2

)3/2)
+m0

(
−8y3 +

(
x2 + y2

)3/2)
= N3m



438 Shoaib, Sivasankaran and Abdel-Aziz

can be become negative. By taking r =
√
x2 + y2, the factor N3m is sim-

plified as below.

N3m = y3
(
−8x3 + r3

)
+m0

(
−8y3 + r3

)
(38)

After some algebraic manipulation it can be shown that N3m is positive in the
following region.

R3m = {(x, y)|r(x, y) > 2y 3

√
m0 + x3

m0 + y3
, x > 0, y > 0,m0 > 0}. (39)

N3m is negative in the complement of R3m. Therefore, in this particular set
up, the central configuration region where m is positive is given by

(Rd ∩R3m) ∪ (Rcd ∩Rc3m). (40)

SimilarlyN3M = x3
(
−8y3 +

(
x2 + y2

)3/2)
+m0

(
−8x3 +

(
x2 + y2

)3/2)
is pos-

itive in the following region.

R3M = {(x, y)|r(x, y) > 2x 3

√
m0 + y3

m0 + x3
, x > 0, y > 0,m0 > 0}. (41)

N3M is negative in the complement of R3M . Therefore, in this particular set
up, the central configuration region where M is positive is given by

(Rd ∩R3M ) ∪ (Rcd ∩Rc3M ). (42)

Hence, the central configuration region for this particular set up of the rhom-
boidal five body problem where both m(x, y,m0) and M(x, y,m0) are positive
is given by

R3 = ((Rd ∩R3m) ∪ (Rcd ∩Rc3m)) ∩ (Rd ∩R3M ) ∪ (Rcd ∩Rc3M ). (43)

In the complement of this region no central configurations are possible as at
least one of the masses will become negative. This completes the proof of
theorem 3.
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Abstract. Due to collisional singularities appearing in gravitational few-body prob-
lems, one needs regularisation techniques for their stable approximate solution. We
present an efficient computational approach for numerically integrating a symmetri-
cal five body problem called the Caledonian Symmetric Five Body Problem (CS5BP)
which is a five-body system with a symmetrically reduced phase space. The proposed
global regularisation scheme consists of adapted versions of several known regularisa-
tion transformations such as the Levi-Civita-type coordinate transformations together
with a time transformation which enables the numerical exploration of the systems as
they pass through two-body close encounters. An algebraic optimisation algorithm is
adapted for numerically implementing the regularisation scheme which make use of
the reverse mode algorithmic differentiation. We show that the proposed regularisa-
tion algorithm is numerically and computationally very efficient in handling various
two-body close encounters appearing in the CS5BP.
Keywords: Regularisation, singularity, celestial mechanics, few-body problem, op-
timisation.

1 Introduction

There is a growing interest in studying gravitational few-body problems (with
n > 3) which makes use of the symmetric boundary conditions to reduce the
mathematical complexity of the problem [13],[14], [8], [7].

Several papers in the last decade have studied the the Caledonian Symmet-
ric Four-Body Problem (CSFBP) which is a restricted coplanar four-body sys-
tem with a symmetrically reduced phase space [5], [12]. The model involves two
pairs of non-equal masses moving in coplanar, initially circular orbits, starting
in a collinear arrangement [5]. The authors have shown that the global stability
of the CSFBP system depends on a parameter called the Szebehely constant

C0. The Szebehely constant C0 = − c2E
G2M5 is a dimensionless function of the

total energy (E) and the magnitude of the angular momentum of the system
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(c), where G is the gravitational constant, and M is the total mass. A gener-
alization of the CSFBP named the Caledonian Symmetric Five-Body problem
(CS5BP) was done by introducing a stationary mass to the centre of mass of
the CSFBP with the same analytical stability criteria [8].

Existing numerical integration schemes were inadequate to study orbits with
strong close encounters, as the numerical integration fails due to collision sin-
gularities [15], [16]. In gravitational few-body problems, singularities normally
appear when the distance between objects undergoing orbital motion becomes
very small. As a result, the equations describing the dynamics of the system
tend towards singular and the numerical integration falls apart [3]. Use of regu-
larisation algorithms to numerically integrate gravitational few-body problems
which involve near collisions or close encounters has been widely acknowledged
[3], [1]. Recently a global regularisation scheme for the CSFBP is prsented
in [11]. In this paper, we extend the regularisation scheme to the Caledonian
Symmetric Five-Body problem (CS5BP).

2 Definition of the Caledonian Symmetric Five Body
Problem(CS5BP)

Let us consider five bodies P0,P1,P2,P3,P4 of masses m0,m1, m2,m3,m4 re-
spectively existing in three dimensional Euclidean space [6]. The radius and
velocity vectors of the bodies with respect to the centre of mass of the five
body system are given by ri and ṙi respectively, i = 0, 1, 2, 3, 4. Let the centre
of mass of the system be denoted by O.

The CS5BP involves two types of symmetries; past-future symmetry and
dynamical symmetry [8]. Past future symmetry exists in an n-body system
when the dynamical evolution of the system after t = 0 is a mirror image of
the dynamical evolution of the system before t = 0. It occurs whenever the
system passes through a mirror configuration, i.e. a configuration in which the
velocity vectors of all the bodies are perpendicular to all the position vectors
from the centre of mass of the system [5].

Dynamical symmetry exists when the dynamical evolution of two bodies
on one side of the centre of mass of the system is paralleled by the dynamical
evolution of the two bodies on the other side of the centre of mass of the system.
The resulting configuration is always a parallelogram, but of varying length,
width and orientation [8]. See Figure 1 for the configuration of the CS5BP for
t > 0.

The CS5BP has the following conditions:

1. All five bodies are finite point masses with:

m1 = m3, m2 = m4 (1)

2. P0 is stationary at origin O, the centre of mass of the system. P1 and P3

are moving symmetrically to each other with respect to the centre of mass
of the system. Likewise P2 and P4 are moving symmetrically to each other.
Thus dynamical symmetry is maintained for all time t;
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Fig. 1. The configuration of the coplanar CS5BP for t > 0

r1 = −r3, r2 = −r4, r0 = 0,

V1 = ṙ1 = −ṙ3, V2 = ṙ2 = −ṙ4, V0 = ṙ0 = 0. (2)

3. At time t = 0 the bodies are collinear with their velocity vectors perpendic-
ular to their line of position. This ensures the past-future symmetry and
is described by:

r1 × r2 = 0, r1 · ṙ1 = 0, r2 · ṙ2 = 0. (3)

We define the masses as ratios to the total mass. Let the total mass M of the
system be

M = 2 (m1 +m2) +m0 (4)

Let µi be the mass ratios defined as µi = mi

M for i = 0, 1, 2, 3, 4 and µ = µ1

µ2
.

Equation (4) then becomes

2 (µ1 + µ2) + µ0 = 1, (5)

and
0 ≤ µ0 ≤ 1, 0 ≤ µ1 ≤ 0.5, 0 ≤ µ2 ≤ 0.5. (6)

3 The regularisation scheme

The proposed regularisation scheme consists of a combination of several known
regularisation techniques: a Levi-Civita type coordinate transformation, a time
transformation function similar to that of [1] and the global formulation of [3].
In general, the proposed scheme follows the transformations described in [4].
We extend the regularisation procedure of the CSFBP [11] into the case of the
CS5BP.
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Let the position coordinates of the four bodies in cartesian coordinates
be r1 = (x1, x2), r2 = (x3, x4), r3 = (−x1,−x2), r4 = (−x3,−x4), with corre-
sponding momenta (ω1, ω2) = µ1M(ẋ1, ẋ2), (ω3, ω4) = µ2M(ẋ3, ẋ4), (−ω1,−ω2),
(−ω3,−ω4).

For simplicity, we set the gravitational constant G and total mass M to
be equal to unity. According to the symmetrical restrictions, the Hamiltonian
function can be written as

H =
1

µ1M
(ω2

1 + ω2
2) +

1

µ2M
(ω2

3 + ω2
4)− 2Gµ1µ2M

2

(
1

r12
+

1

r14

)
(7)

− Gµ2
1M

2

r13
− Gµ2

2M
2

r24
− 4Gµ0M

(
µ1M

2r13
+
µ2M

2r24

)
,

where the corresponding inter-body distances are given by

r12 =
(
(x1 − x3)2 + (x2 − x4)2

)1/2
= r34,

r14 =
(
(x1 + x3)2 + (x2 + x4)2

)1/2
= r23,

r13 =
(
(2x1)2 + (2x2)2

)1/2
,

r24 =
(
(2x3)2 + (2x4)2

)1/2
. (8)

These four inter-body distances result in collision singularities which is charac-
terised by the following four types of two-body close encounters [10].

1. “12”-type double binary collision: collisions occurring in the binary formed
between P1 and P2 and the symmetrical binary formed between P3 and P4.

2. “14”-type double binary collision: collisions occurring in the binary formed
between P1 and P4 and the symmetrical binary formed between P2 and P3.

3. “13”-type single binary collision: collision occurring in the binary formed
between P1 and P3.

4. “24”-type single binary collision: collision occurring in the binary formed
between P2 and P4.

Note that P0 is stationary at O, the centre of mass of the system and thus P0

has no influence in deciding the kinetic energy of the system and the collisions.
In order to regularise these singularities first we will map the (xi, ωi) phys-

ical plane into the (Qi, Pi) parametric plane using a series of transformation
equations so that the new Hamiltonian function will have no singularities as it
passes through a two-body close encounter. There are three important steps
in the regularisation scheme [9].

Step 1: Coordinate transformation
We first transform the coordinate system to inter-body coordinates.

q1 = x1 − x3, q2 = x2 − x4, (9)

q3 = x3 + x1, q4 = x4 + x2, (10)

q5 = 2x1, q6 = 2x2, (11)

q7 = 2x3, q8 = 2x4. (12)
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This will make sure that all the possible two-body close encounters in the
CS5BP system are regularised [11].

We introduce a generating function F1(pk, qk) to obtain conjugate momenta
pk of the corresponding qk

F1(pk, qk) = pkqk = (x1 − x3)p1 + (x2 − x4)p2 + (x3 + x1)p3 + (x4 + x2)p4

+ 2x1p5 + 2x2p6 + 2x3p7 + 2x4p8, (13)

which will give

ωi =
∂F1

∂xi
, (14)

where i=1 to 4 and k=1 to 8.
Next we find an expression for new momenta, pk’s, in terms of old momenta,

ωi, using an arbitrary relation which is similar to that for the q’ s (i.e. q5 −
q7 − 2q1 = 0, q5 + q7 − 2q3 = 0, q6 + q8 − 2q4 = 0, q6 − q8 − 2q2 = 0), we set

p5 − p7 − 2p1 = 0,

p5 + p7 − 2p3 = 0,

p6 + p8 − 2p4 = 0, (15)

p6 − p8 − 2p2 = 0.

Using equation (14) and (15), we can deduce a set of new conjugate momenta
p’s as

p1 =
1

6
(ω1 − ω3) , p2 =

1

6
(ω2 − ω4) ,

p3 =
1

6
(ω1 + ω3) , p4 =

1

6
(ω2 + ω4) ,

p5 =
1

3
ω1, p6 =

1

3
ω2, (16)

p7 =
1

3
ω3, p8 =

1

3
ω4.

Now we perform the Levi-Civita type coordinate transformation on each
inter-body coordinate. We introduce the regularising function using the Levi-
Civita transformation, in a complex form

qj + iqj+1 = (Qj + iQj+1)
2
, (17)

where j= 1,3,5,7. Here note that (qj , qj+1) refers to a physical plane and
(Qj , Qj+1) refers to a parametric plane. Their corresponding conjugate mo-
menta Pk’s are given by

Pk =
∂F2(pk, Qk)

∂Qk
(18)

where k= 1 to 8 and F2(pk, Qk) is the generating function of the form

F2(pk, Qk) = pjf(Qj , Qj+1) + pj+1g(Qj , Qj+1)



446 A. Sivasankaran and M. Shoaib

Using these relations, we can write

Pj = 2pjQj + 2pj+1Qj+1,

Pj+1 = −2pjQj+1 + 2pj+1Qj , (19)

Step 2: Time transformation
In the next step, we introduce a fictitious time τ , which is a key factor for the
regularising effect. The basic principle of regularisation theory is to transform
physical coordinates to a parametric plane and physical time to an artificial
time by a differential time transformation, which consequently smooths collision
effects in the Hamiltonian system. In the literature, we can find a variety of
choices for the time transformation function which has a general form

dt = gdτ = Rndτ,

where R is the separation between the colliding binaries, g is the time re-scaling
factor and n has various choices according to the application. We had tried a
few arbitrary values for g and we found that, to preserve conservation of energy,
it is advantageous to choose a time re-scaling factor of the form

dt

dτ
= g =

r12r13r14r24

(r12 + r13 + r14 + r24)
5/2

(20)

=
(Q2

1 +Q2
2)(Q2

3 +Q2
4)(Q2

5 +Q2
6)(Q2

7 +Q2
8)

(Q2
1 +Q2

2 +Q2
3 +Q2

4 +Q2
5 +Q2

6 +Q2
7 +Q2

8)
5/2

.

Step 3: Fixing the energy
With the introduction of the time rescaling factor, the new Hamiltonian H̃(Qi, Pi)
takes the following form in the extended phase space

Γ (Qi, Pi) = g(H̃ − h0), (21)

where Γ is the transformed Hamiltonian H̃(Qi, Pi) in the extended phase space
and h0 is the total energy or the initial value of H̃. For any particular orbit,
H̃(τ) = h0, a constant and Γ (τ) = 0. We have not shown the transformed
Hamiltonian Γ (Qi, Pi) in this paper, as the right hand side of the expression
is very lengthy due to a large number of multiplicative terms. The numerator
terms in the time rescaling factor g cancel out the singular terms in the de-
nominator of the Hamiltonian function and prevent the increase of the velocity
to infinity at the collision stages.

We can derive the Hamilton equations of motion with respect to the ficti-
tious time, using this transformed Hamiltonian in the new set of parametric
coordinates:

dQi
dτ

=
∂Γ

∂Pi
, (22)

dPi
dτ

= − ∂Γ

∂Qi
.

Equation (22) is the final regularised equation of motion, which is a set of
ordinary differential equations whose solution is a function of the fictitious time
τ and these equations are regular, for any qi → 0.
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There can be singularities when all qi → 0, where i= 1 to 8. This situa-
tion is only possible for a CS5BP system with C0 = 0. This corresponds to a
singularity at the origin in the physical plane. For C0 6= 0; regions of forbid-
den motion appear very close to the origin and a total central collision is not
theoretically possible.

4 Optimisation of the regularised Hamiltonian

An optimisation strategy is not generally required for restricted few-body prob-
lems for n < 4, since the equations of motion derived using standard regulari-
sation schemes usually contain algebraic terms which can be easily handled by
most of the standard numerical integrators. However, the transformed Hamilto-
nian Γ (Qi, Pi) in Equation (21) is determined using a large number of algebraic
multiplications. It is evident that the symbolic differentiation to derive the gra-
dient of Γ (Qi, Pi) will produce a large number of additive and multiplicative
terms, leading to an inefficient evaluation of the right hand side of the Equa-
tion (22). The direct numerical integration of the regularised Equation (22)
(i.e. without using any optimisation techniques) required an excessive amount
of computational time even for a very small time period of 10 due to the large
number function evaluations involved.

We adapt an algebraic optimisation algorithm of [2] to simplify the Equation
22. The first step in the optimisation process is to rewrite the regularised
Hamiltonian Γ (Qi, Pi) in terms of the most frequently appearing terms as a
MAPLE procedure [9]. Then we split up the product terms in the MAPLE
procedure in calculating the regularised Hamiltonian to avoid the generation
of common subexpressions while computing its partial derivatives [2].

We also make use of the reverse-mode algorithmic differentiation to reduce
the total number of multiplicative operations (multiplication and addition) to
derive the partial derivatives of the regularised Hamiltonian Γ (Qi, Pi). The
reverse-mode of automatic differentiation allows computation of gradients at a
small cost of computing functions by decomposing the function into a sequence
of elementary assignments. The forward-mode differentiation of Γ (Qi, Pi) will
generate more than 2100 multiplicative terms, whereas the reverse mode algo-
rithmic differentiation leads to a procedure with only about 320 multiplications.
Then we convert repeating symbolic expressions into computation sequences
needed for the algorithmic differentiation using the built-in MAPLE functions.
In general, this algebraic optimisation procedure can be extended to majority
of the global regularisation schemes used in gravitational few-body problems
(with n ≥ 3) and fast numerical realization can be achieved.

5 Numerical experiments

We show some preliminary numerical results using the non-regularised and
regularised integration schemes for a regular quasi-periodic orbit. The initial
conditions for integrating equation (20) and (22) were fixed using the energy
and angular momentum equations of the CS5BP. Numerical experiments were
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Fig. 2. A quasi-periodic orbit over the time [0, 20] (µ = 1, µ0 = 0, E = −7, C0 = 60
initial r1 = 0.80 and r2 = 0.06); with a) non-regularised; b) regularised equations. I.
Trajectories of P1(green) and P2 (blue) in the xy-plane of motion; II. Energy error
over the time period [0, 20]
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Fig. 3. Time step variations over the time [0, 20] with a) non-regularised; b) regu-
larised equations.

conducted using the standard MATLAB multi-step integrator ode113 which
is a variable order Adams-Bashforth-Moulton PECE solver. The orbital tra-
jectories in the xy-plane of motion are shown in Figure 2.1.A central binary
is formed (with P2 and P4) and the other symmetrical pair P1 and P3 orbit
around the binary’s centre of mass. Only the positions of masses m1 (x1, x2)
(green) and m2 (x3, x4)(blue) are shown. The orbits are well separated and
remained bounded for some reasonable amount of integration time.

Figure 2.II shows the numerical energy error versus time over a 20 time
unit period. Although the orbital trajectories appear to be identical, the regu-
larised integration scheme exhibits a better energy error profile by a factor of
100. Figure 3 shows the corresponding time step variations for the above inte-
grations. The regularised integration scheme has improved the CPU workload
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Fig. 4. Comparisons of the errors with variable absolute tolerance error and relative
tolerance error; green (non-regularised) and blue (regularised).

by a factor of 1.4 by allowing the integrator to choose bigger step-sizes resulting
in decreased number of time steps. Figure 4 shows a comparison between the
CPU time and the maximum observed energy error for the given simulation
time. It is clear that the regularised scheme allows better accuracy with im-
proved CPU run time. Despite the regularity of the orbit and the absence of
extreme close encounters, our numerical tests indicate that the overall CPU
workload has been improved. The computational cost involved in each time
step differs for both the non-regularised and regularised integrations, since the
regularised scheme has twice as many equations in the non-regularised scheme
and it involved a large number of algebraic multiplications and additions due
to several coordinate transformations forward and backwards. The regularised
treatment combined with the algebraic optimisation scheme outperforms the
non-regularised approach in terms of computational efficiency and numerical
accuracy.

6 Conclusions

We developed a global regularisation scheme that consists of adapted versions
of several known regularisation transformations such as the Levi-Civita-type
coordinate transformations; that together with a time transformation, removes
all the singularities due to colliding pairs of masses in the CS5BP. An al-
gebraic optimisation algorithm is proposed for numerically implementing the
regularisation scheme. Regardless of the nature of the orbits, it was found that
the regularised integration scheme outperformed the standard non-regularised
integration schemes in terms of computational performance and improved nu-
merical accuracy characterized by stable energy profiles.
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Abstract: Complex reaction-transport dynamics can lead to the formation of ordered 
structures. A constant dissipation of free energy is a requirement for sustaining 
macroscopic order, especially in solution. In the solid phase, the evolved pattern can be 
locked for days, months or even years. Liesegang bands are stratified stripes of 
precipitate that appear and persist, when co-precipitate ions interdiffuse in a gel medium. 
A host of interesting properties characterize such rich dynamical systems: band spacing 
laws (direct and revert), band splitting, rhythmic multiplicity, multiple precipitate 
formation and band redissolution are but a few manifested characteristics, emerging from 
a complex dynamics with a great diversity of scenarios. 
The familiar and well-known band formation in rocks could be the result of a complex 
coupled diffusion-percolation-chemical reaction mechanism. Similarities between 
geochemical self-organization and the Liesegang phenomenon are surveyed and 
analyzed. The simulation of band generation in a rock bed is realized and carried out in-
situ, by injection and infusion of the reactant components into the rock medium. 
Ramified, tree-like structures (dendrites) are obtained during the electrodeposition or 
simple electroless redox deposition of metal systems. A great variety of morphologies 
just resembling tree branches are observed and characterized as fractal structures. 
Keywords: Liesegang, dendrites, reaction-diffusion, rock banding. 

 
 
1. Liesegang Banding 
In 1896, Raphael Eduard Liesegang discovered an intriguing phenomenon [1] 
whereby precipitation in a gel medium takes place in banded form, just like the 
superb display of bands that we commonly observe in rocks [2-4]. Various 
specimens of Liesegang patterns, prepared for different precipitates, are shown 
in Fig. 1.  
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Figure 1: A panorama of colorful Liesegang patterns in gel. 

 
In the laboratory, the Liesegang experiment [5-7] is quite simple: a concentrated 
electrolyte containing a certain co-precipitate ion (say Pb2+) is allowed to diffuse 
into a gel containing its insoluble salt counterpart (such as I− to form PbI2); 
normally one order of magnitude more dilute.  Due to the coupling of diffusion 
to a cycle of supersaturation, nucleation and depletion, known as the Ostwald 
cycle [8], the precipitation takes place in the form of beautifully stratified bands, 
as displayed in Fig. 1. 
We highlight the main features of such a rich dynamical phenomenon, but also 
shed light on abnormalities, curiosities and strange behavior exhibited by such 
systems under certain conditions. The observations common to most Liesegang 
systems are summarized by the four well-known empirical laws [9,10]: 
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where n denotes band number, x is location and w is band width. The spacing 
law formula suggests that the spacing between consecutive bands increases as 
we move away from the electrolytes junction. Although 90% of the Liesegang 
patterns follow this so-called Jablczynski spacing law [11], some systems 
exhibit an opposite trend, known as revert spacing [12,13]. The distinction 
between direct and revert spacing Liesegang patterns is depicted in Fig. 2. 
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a.  b.  

c.  d.  
Figure 2: a. Liesegang pattern of CuCrO4 showing direct (normal) spacing. b. Plot of 
fraction of adsorbed CrO4

2− on the copper chromate precipitate (h) with band number. c. 
Liesegang patterns of PbCrO4 showing revert spacing. d. Plot of fraction of adsorbed 
CrO4

2− on the lead chromate precipitate (f) with band number. We see that h decreases 
while f increases. 
  
In a recent study [13], we showed that the fraction of CrO4

2− adsorbed (f) on the 
lead chromate precipitate increases with band number n (see Fig. 2d); whereas 
the opposite trend was observed for the adsorption on copper chromate (the 
fraction h decreases with band number n; as seen in Fig. 2b). Hence the 
increased extent of adsorption causes the bands to form closer and closer as n 

increases. It seems that more CrO4
2− adsorbed attract the Pb2+ in the gel closer 

than in the preceding band, thus causing the precipitate band to from closer, and 
the spacing to become narrower. The opposite behavior (decreasing extent of 
adsorption with band number as in Fig. 2b) results in a normal Liesegang 
pattern with direct spacing (Figure 2a). 
Liesegang systems exhibit a great diversity of special features. A pattern of 
bands seemingly 'migrates' if redissolution of the bands at the top is 
synchronized with the band formation. Such scenario occurs in systems where 
the precipitate redissolves to form a complex ion. Typical studied examples 
include the Co(OH)2 [14,15], Cr(OH)3 [16] and HgI2 [17] systems. When 
Co(OH)2 is precipitated from Co2+ and NH4OH, the precipitate redissolves in 
excess NH4OH to form the hexaammine cobalt (II) complex ion, Co(NH3)6

2+, 
according to the reaction:  
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Co(OH)2 (s)  + 6 NH4
+ (aq)   →  Co(NH3)6

2+  (aq)  + 4 H+   (aq)  + 2 H2O 
 

a.  b.  

c.  d.  
Figure 3: a. Propagating Co(OH)2 Liesegang pattern via a concerted band formation and band 
redissolution scenario. b. Correlation plot showing the linear correlation between the distance of 
last band (dlb) and distance of first band (dfb). c. Plot of dfb versus time. d. Plot of dlb versus 
time. The two parameters are controlled by diffusion. 

 
 

The precipitation-redissolution-propagation of the Co(OH)2 pattern  of bands is 
illustrated in Fig. 3a.  The distance of the top edge of the propagation zone (dfb) 
and the distance of the last band (dlb) are plotted versus time in days. The plots 
are shown in Figs. 3c and 3d. We see that the propagation at the top and the 
bottom is dominated by diffusion. The correlation between dfb and dlb is almost 
perfectly linear [14], as revealed by the correlation plot in Fig. 3b. 
A host of other diverse features are observed in Liesegang systems. To name but 
a few, we report secondary banding [18], spiral and helicoidal patterns [19] and 
two-precipitate dynamics [20]. 
 
2. Geochemical Banding 
Perhaps the most common and most spread resemblance between Liesegang 
patterns and natural phenomena is the landscape of bands that we observe in 
rocks [21,2,3]. Many studies have emphasized such similarity, presented 
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coherent explanations and proposed  mechanisms. Theoretical modeling studies 
are extensive in the literature [21]. Possible scenarios range from 
cyclicity in large mafic-ultramafic layered  intrusions, to fractional 
crystallization in magmatic processes, to temperature-pressure changes in both 
first and second-order phase transitions,  to nonlinear reaction-diffusion 
dynamics. 
In a recent work, we attempted to simulate geochemical banding (or self-
organization) in-situ, i.e. inside the rock bed [22,23]. 

 
Figure 4: Liesegang bands in a rock bed behind a reaction front. The infiltrating water 
carries a co-precipitate ion that meets its counter ion in the rock medium and thus 
precipitation takes place; but it does so but in banded form, just resembling a Liesegang 
pattern.  

 
 
Consider a porous rock infiltrated from one side by an inlet flow of reactive 
water, that causes the dissolution of certain constituent rock minerals. The water 
flow, acting as a sink of co-precipitate ions for the altered rock, can provoke the 
precipitation and deposition of other insoluble minerals. In many such 
situations, the minerals deposition occurs in banded form, in a way that just 
resembles the Liesegang bands obtained in a lab experiment. Such a plausible 
scenario is illustrated in Fig. 4. 
In the lab, a ferruginous limestone rock with a planar surface (Figure 5) was 
infiltrated through a thin tube inserted at its center by a 4.30 M H2SO4 solution 
by means of a multi-rate infusion pump. The acid causes the dissolution of 
calcite (CaCO3) and the precipitation of the acid-insoluble gypsum (CaSO4) and 
anhydrite (CaSO4.2H2O) according to the reaction: 
 

CaCO3   +   H2SO4   (aq)   →    CaSO4    +   CO2   +   H2O 
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Due to the spatio-temporal flow, the deposition of CaSO4 is anticipated to occur 
in banded form in accordance with the above described Liesegang dynamics 
(Sect. 1). 
The experiment was kept running for about two years (692 days). The 
appearance of the various banded zones at t = 202 days is depicted in Fig. 5a. 
The latter were delineated and labeled by tracing contours defining the inner and 
outer edges of each zone (Figure 5b at 692 days). The gypsum/anhydrite content 
of regions 1 through 7 of Fig. 5b was determined by powder X-ray diffraction. 
The results are shown in Table 1. 
 
 

Table 1: CaSO4 composition over the various zones of Fig. 5 
Region 1 2 3 4 5 6 7 
% CaSO4 100 97.5 98.9 28.4 85.8 17.6 5.4 

 

 
Figure 5: Acidization of a ferruginous limestone rock, by slow injection of H2SO4 at the 
center causing the dissolution of calcite (CaCO3). The front is accompanied by the 
deposition of gypsum (CaSO4) and anhydrite (CaSO4.2H2O). a. At t = 202 days. b. 
'Concentric' deposition zones exhibiting oscillation in the CaSO4 content at t = 692 days. 
 

   
We clearly see that beyond the central region where the deposition of CaSO4 is 
maximal (bands 1-3), the CaSO4 content starts oscillating. 
Very few other simulations of rock banding in-situ were attempted by a number 
of investigators. Rodriguez-Navarro et al. [24] observed Liesegang rings by 
monitoring the slow carbonation of traditional, aged lime mortars. A portlandite 
[Ca(OH)2]/quartz mortar kept for a long time under excess, CO2-rich water 
gives rise to a calcite (CaCO3) deposit, via the reaction: 
 

Ca(OH)2   +   CO2  (aq)    →    CaCO3    +   H2O. 
 

The carbonation process yields 3D Liesgeang patterns consisting of concentric 
ellipsoids of alternating calcite and calcite-free zones. The rings exhibit revert 
spacing instead of direct spacing and obey Jablczynski’s spacing law. The revert 



Chaotic Modeling and Simulation (CMSIM)  3:  451-461, 2013 457 
 

nature of the pattern was attributed to the decrease in CO2 uptake and diffusion 
as the process progresses toward the core.   
 
3. Dendritic Metal Deposits  
 
Another intriguing class of pattern formation in solid structures is the ramified, 
tree-like structures we observe in metal deposits [25,26]. Two routes are known 
for obtaining metal deposits: electrolytic and electroless. In the former, metal 
ions are reduced by standard electrolysis at the cathode. In the latter, a 
spontaneous redox reaction is carried out in the supporting medium. We 
perform such a study on Ag metal deposits, by growing the latter via both 
methods.  
Electroless 

Silver metal was deposited by reduction of Ag+ with metallic copper according 
to the following scheme: 
 

 Oxidation:     Cu  →  Cu
2+

 +  2 e⁻       V34.00

/2 +=+ CuCu
E  

 Reduction:     Ag⁺  +   e⁻   →  Ag      V80.0
/

+=+
AgAg

E  

The overall reaction is: 
Cu   + 2 Ag

+   →  2 Ag   +   Cu
2+   (1) 

 
To that end, a shallow methacrylate glass (plexiglass) dish of 10.5 cm diameter 
was manufactured, mounted with a peripheral ring of 0.3 mm height acting as a 
spacer, on top of which a plexiglass cover can rest. The solution layer thickness 
will thus be 0.3 mm. The cover has a 1.50 cm hole, wherein a well-fitted 
metallic disc (here Cu) can be inserted. 
With the perforated cover on, a solution of silver nitrate of known concentration 
(say 0.10 M), was carefully poured through the cover hole, until it spread evenly 
and without air bubbles throughout the dish area. Once such a thin solution film 
is achieved, the copper disk is placed at the center, marking the start of the 
spontaneous reaction (1). One important variant from other electroless growth 
experiments is the bare solution medium, without soaking in a filter paper to 
lock the pattern. After big experimental challenges, the preliminary appearance 
of the fractal growth (seemingly promising) is displayed in Fig. 6.  
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a. 

   

b. 
Figure 6: Silver deposits showing dendritic structure growth. a. Circular disc of reductant 
(Cu). b. Square Cu disc. 
 

    
An interesting observation is that the ramifications display straight, stringy 
branches in the circular core, whereas they exhibit curved branching with the 
square core. Different regions of the Ag deposits were cut, and the images 
transformed into black and white, for good contrast. Samples are depicted in 
Fig. 7. 

 
Figure 7: Selected regions from the deposits in Fig. 6a after transformation of the image 
to black and white. The three regions (a-c) essentially exhibit the same value of the 
fractal dimension. 
 
The dendrites exhibited a fractal dimension of 1.58 ± 0.04.  

 

 

a. 

 
b. 

Figure 8: a. Ag deposits by electrolysis in a circular field with potential difference of 3.09 
V. b. Ag deposits via reduction of Ag+ by Cu in a horizontal magnetic field of 0.50 T. 
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Electrolysis 

Figure 8a shows a 'rosette' obtained by electrodeposition at a graphite electrode 
immersed in the solution at the dish center. The anode is a circular tungsten wire 
electrode of 0.5 mm diameter thickness. 
 
Figure 8b displays electroless Ag deposits from the reduction of Ag+ by metallic 
Cu, in the presence of a horizontal magnetic field of 0.50 T applied across the 
dish. The striking differences in the morphology (compare Figs 6a and 8b) 
reveal the importance, complexity and rich dynamics of metal deposition and 
growth. These observations are under continuing investigation at the present 
time. 
Other dynamical studies of complex fractal structure in metal deposition 
systems include the simultaneous growth  of two metals [27,28] and the effect 
of electric [29] and magnetic fields [30,31] in electroless and electrolytic 
systems.  
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Abstract. By using double fixed point theorem, we study the existence of at least
two positive solutions of a second order multi-point boundary value problem.
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1 Introduction

In this paper we consider the second order multi-point boundary value problem
(BVP) 

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

φ(u′(0)) =

m−2∑
i=1

aiφ(u′(ξi)), u(1) =

m−2∑
i=1

biu(ηi),
(1)

where ξi, ηi ∈ (0, 1)(i = 1, 2, ...,m− 2) with 0 < ξ1 < ξ2 < ... < ξm−2 < 1, 0 <
η1 < η2 < ... < ηm−2 < 1, φ : R → R is an increasing homeomorphism and
homomorphism with φ(0) = 0. A projection φ : R → R is called an increasing
homeomorphism and homomorphism if the following conditions are satisfied:
(i) If x ≤ y, then φ(x) ≤ φ(y), for all x, y ∈ R;
(ii) φ is continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y), for all x, y ∈ R, where R = (−∞,∞).

We assume that the following conditions are satisfied:

(A1) f ∈ C([0, 1]× R+,R+), q ∈ C[0, 1] is nonnegative,

(A2) ai ∈ [0,∞), bi ∈ [0,∞), i = 1, 2, ...,m − 2 with 0 <

m−2∑
i=1

ai < 1 and

0 <

m−2∑
i=1

bi < 1.
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The study of multi-point boundary value problems for linear second-order
ordinary differential equations was initiated by Il’in and Moiseev [1]. Since
then, there has been a lot of recent attention focused on the study of nonlinear
multi-point boundary value problems, see [2–5]. We cite some appropriate
references here [6–9].

In [8], Ji et al. studied the existence of multiple positive solutions for one-
dimensional p-Laplacian boundary value problem

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) =

n∑
i=1

αiu(ξi), u(1) =

n∑
i=1

βiu(ξi).
(2)

The authors established the existence of multiple positive solutions (2) by using
fixed point theorem in a cone.

In [9], Ma et al. studied the existence of positive solutions for multi-point
boundary value problem with p-Laplacian operator

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) =

n∑
i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi).
(3)

In this paper, motivated by the above research efforts on multi-point bound-
ary value problems, criteria for the existence of at least two positive solutions
of the BVP (1) are established by using the double fixed point theorem. Thus,
our results are new for differential equations.

This paper is organized as follows. In Section 2, we give some preliminary
lemmas which are key tools for our proof. The main result is given in Section
3.

2 Preliminaries

In this section, we give some lemmas which are useful for our main result.
We consider the Banach space B = C1[0, 1] endowed with the norm

‖u‖ = max
0≤t≤1

|u(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : u is a concave, nonnegative and nonincreasing function,

u(1) =
∑m−2
i=1 biu(ηi)}.

Lemma 1. If u ∈ P, then min
0≤t≤1

u(t) ≥M‖u‖, where M =

m−2∑
i=1

bi(1− ηi)

1−

m−2∑
i=1

biηi

.
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Proof. Since u ∈ P, nonnegative and nonincreasing

‖u‖ = u(0), min
0≤t≤1

u(t) = u(1).

On the other hand, u(t) is concave on [0, 1]. So, for every t ∈ [0, 1], we have

u(t)− u(1)

1− t
≥ u(0)− u(1)

1
,

i.e., u(t) ≥ (1− t)u(0) + tu(1). Therefore,

m−2∑
i=1

biu(ηi) ≥
m−2∑
i=1

bi(1− ηi)u(0) +

m−2∑
i=1

biηiu(1).

This together with u(1) =
∑m−2
i=1 biu(ηi), implies that

u(1) ≥

m−2∑
i=1

bi(1− ηi)

1−
m−2∑
i=1

biηi

u(0).

So, the proof of Lemma is completed. �

Lemma 2. Assume that (A1), (A2) hold. Then u ∈ C1[0, 1] is a solution to
problem (1) if and only if u is a solution to the integral equation:

u(t) =

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

+
1

1−
m−2∑
i=1

bi

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds, (4)

where

A =
1

1−
m−2∑
i=1

ai

m−2∑
i=1

ai

∫ ξi

0

q(s)f(s, u(s))ds. (5)

Proof. First, suppose that u ∈ C1[0, 1] is a solution of problem (1). Integrating
the equation (1) from 0 to t, one has

−φ(u′(t)) + φ(u′(0)) =

∫ t

0

f(s, u(s))ds. (6)
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and taking t = ξi in (6), we have

φ(u′(ξ)) = φ(u′(0))−
∫ ξi

0

q(s)f(s, u(s))ds.

So, we get

m−2∑
i=1

aiφ(u′(ξi)) =

m−2∑
i=1

aiφ(u′(0))−
m−2∑
i=1

ai

∫ ξi

0

q(s)f(s, u(s))ds.

Since φ(u′(0)) =
∑m−2
i=1 αiφ(u′(ξi)), we have

φ(u′(0)) = − 1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

q(s)f(s, u(s))ds = −A. (7)

Substituting (7) into (6), we get

u′(t) = −φ−1
(∫ t

0

q(s)f(s, u(s))ds+A

)
. (8)

Integrating the equation (8) from t to 1, one has

u(t) = u(1) +

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
, (9)

and taking t = ηj in (9), we get

u(ηj) = u(1) +

∫ 1

ηj

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds.

So,

m−2∑
i=1

biu(ηi) = u(1)

m−2∑
i=1

bi +

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds.

Since u(1) =
∑m−2
i=1 biu(ηi),

u(1) =
1

1−
∑m−2
i=1 bi

[

m−2∑
i=1

bi

∫ 1

ηi

φ−1

(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds. (10)

Substituting (10) into (9), we get (4), which completes the proof of sufficiency.
Conversely, if u ∈ C1[0, 1] is a solution to (4), apparently

u′(t) = −φ−1
(∫ t

0

q(s)f(s, u(s))ds+A

)
,

(φ(u′(t)))′ = −q(t)f(t, u(t)),

φ(u′(0)) =

m−2∑
i=1

aiφp(u
′(ξi)), u(1) =

m−2∑
i=1

biu(ηi).

The proof is complete. �
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Now define an operator T : P −→ B by

Tu(t) =

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

+
1

1−
m−2∑
i=1

bi

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds. (11)

Lemma 3. Assume that (A1) − (A2) hold. Then T : P → P is a completely
continuous operator.

Proof. It is clear that TP ⊂ P and T : P → P is a completely continuous
operator by a standard application of the Arzela-Ascoli theorem.

3 Main Results

In this section we state and prove our main result. The following fixed point
theorem is fundamental and important to the proof of main result.

For a nonnegative continuous functional γ on a cone P in a real Banach
space B, and each d > 0, we set

P(γ, d) = {x ∈ P| γ(x) < d}.

Lemma 4. (Double Fixed Point Theorem) [10] Let P be a cone in a real Ba-
nach space B. Let α and γ be increasing, nonnegative, continuous functionals
on P, and let θ be a nonnegative, continuous functional on P with θ(0) = 0
such that, for some c > 0 and M > 0,

γ(u) ≤ θ(u) ≤ α(u) and ‖u‖ ≤Mγ(u)

for all u ∈ P(γ, c). Suppose that there exist positive numbers a and b with
a < b < c such that

θ(λu) ≤ λθ(u), for 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, b)

and

T : P(γ, c)→ P

is a completely continuous operator such that:

(i) γ(Tu) > c, for all u ∈ ∂P(γ, c);
(ii) θ(Tu) < b, for all x ∈ ∂P(θ, b);

(iii) P(α, a) 6= ∅, and α(Tu) > a, for all u ∈ ∂P(α, a).
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Then T has at least two fixed points, u1 and u2 belonging to P(γ, c) such that

a < α(u1), with θ(u1) < b,

and

b < θ(u2), with γ(u2) < c.

Let us define the increasing, nonnegative, continuous functionals γ, β, and
α on P by

γ(u) = min
0≤t≤ξ1

u(t) = u(ξ1),

β(u) = max
ξ1≤t≤ξn−2

u(t) = u(ξ1),

α(u) = max
0≤t≤ξn−2

u(t) = u(0).

It is obvious that for each u ∈ P,

γ(u) ≤ β(u) ≤ α(u).

In addition, from by Lemma 1, for each u ∈ P,

‖u‖ ≤ 1

M
min
0≤t≤1

u(t) ≤ 1

M
min

0≤t≤ξ1
u(t) =

1

M
γ(u).

Thus,

‖u‖ ≤ 1

M
γ(u), ∀u ∈ P.

For the convenience, we denote

K = (1− ξ1)φ−1

(∫ ξ1

0

q(τ)dτ

)
,

L =
1

1−
m−2∑
i=1

bi

φ−1

(
1

1−
∑m−2
i=1 ai

∫ ξ1

0

q(τ)dτ

)
.

Theorem 1. Suppose that assumptions (A1), (A2) are satisfied. Let there exist
positive numbers a < b < c such that

0 < a <
K

L
b <

KM

L
c,

and assume that f satisfies the following conditions

(A3) f(t, u) > φ
(
c
K

)
, for all (t, u) ∈ [0, ξ1]× [c, 1

M c],

(A4) f(t, u) < φ
(
b
L

)
, for all (t, u) ∈ [0, 1]× [0, 1

M b],

(A5) f(t, u) > φ
(
a
K

)
, for all (t, u) ∈ [0, 1]× [0, a].
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Then the boundary value problem (1) has at least two positive solutions u1 and
u2 satisfying

a < α(u1) with β(u1) < b, b < β(u2) with γ(u2) < c.

Proof. We define the completely continuous operator T by (11). So, it is easy
to check that T : P(γ, c)→ P. We now show that all the conditions of Lemma
4 are satisfied. In order to show that condition (i) of Lemma 4, we choose
u ∈ ∂P(γ, c). Then γ(u) = min

0≤t≤ξ1
u(t) = u(ξ1) = c, this implies that c ≤ u(t)

for t ∈ [0, ξ1]. Recalling that ‖u‖ ≤ 1
M γ(u) = 1

M c, we get

c ≤ u(t) ≤ 1

M
c, t ∈ [0, ξ1].

Then assumption (A3) implies f(t, u) > φ
(
c
A

)
, for all (t, u) ∈ [0, ξ1] ×

[c, 1
M c]. Therefore,

γ(Tu) = min
t∈[0,ξ1]

(Tu)(t) = (Tu)(ξ1)

≥
∫ 1

ξ1

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ

)
ds

≥
∫ 1

ξ1

φ−1

(∫ ξ1

0

q(τ)f(τ, u(τ))dτ

)
ds

= (1− ξ1)φ−1

(∫ ξ1

0

q(τ)f(τ, u(τ))dτ

)

>
c

K
(1− ξ1)φ−1

(∫ ξ1

0

q(τ)dτ

)
= c.

Hence, condition (i) is satisfied.
Secondly, we show that (ii) of Lemma 4 is satisfied. For this, we select

u ∈ ∂P(β, b). Then, β(u) = max
t∈[ξ1,ξn−2]

u(t) = u(ξ1) = b, this means 0 ≤ u(t) ≤ b,

for all t ∈ [ξ1, 1]. Noticing that ‖u‖ ≤ 1
M γ(u) = 1

M β(u) = 1
M b, we get

0 ≤ u(t) ≤ 1

M
b, for 0 ≤ t ≤ 1.

Then, assumption (A4) implies f(t, u) < φ
(
b
L

)
. Therefore

β(Tu) = max
t∈[ξ1,ξm−2]

(Tu)(t) = (Tu)(ξ1)

≤ 1

1−
m−2∑
i=1

bi

φ−1

 1

1−
m−2∑
i=1

ai

∫ 1

0

q(τ)f(τ, u(τ))dτ
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<
b

L

1

1−
m−2∑
i=1

bi

φ−1

 1

1−
m−2∑
i=1

ai

∫ 1

0

q(τ)dτ


= b.

So, we get β(Tu) < b. Hence, condition (ii) is satisfied.
Finally, we show that the condition (iii) of Lemma 4 is satisfied. We note

that u(t) = a


m−2∑
i=1

bi − 1

1−

m−2∑
i=1

biηi

t+ 1

 , 0 ≤ t ≤ 1 is a member of P(α, a), and so

P(α, a) 6= ∅. Now, let u ∈ ∂P(α, a). Then α(u) = max
t∈[0,ξn−2]

u(t) = u(0) = a.

This implies

0 ≤ u(t) ≤ a, t ∈ [0, 1].

By assumption (A5), f(t, u) > φ
(
a
A

)
. Then,

α(Tu) = max
t∈[0,ξn−2]

(Tu)(t) = (Tu)(0)

≥
∫ 1

0

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

≥
∫ 1

ξ1

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ

)
ds

≥ (1− ξ1)φ−1

(∫ ξ1

0

q(τ)f(τ, u(τ))dτ

)

> (1− ξ1)
a

A
φ−1

(∫ ξ1

0

q(τ)dτ

)
= a.

So, we get α(Tu) > a. Thus, (iii) of Lemma 4 is satisfied. Hence, the boundary
value problem (1) has at least two positive solutions u1 and u2 satisfying

a < α(u1) with β(u1) < b, and b < β(u2) with γ(u2) < c.

�
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