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Abstract. Due to collisional singularities appearing in gravitational few-body prob-
lems, one needs regularisation techniques for their stable approximate solution. We
present an efficient computational approach for numerically integrating a symmetri-
cal five body problem called the Caledonian Symmetric Five Body Problem (CS5BP)
which is a five-body system with a symmetrically reduced phase space. The proposed
global regularisation scheme consists of adapted versions of several known regularisa-
tion transformations such as the Levi-Civita-type coordinate transformations together
with a time transformation which enables the numerical exploration of the systems as
they pass through two-body close encounters. An algebraic optimisation algorithm is
adapted for numerically implementing the regularisation scheme which make use of
the reverse mode algorithmic differentiation. We show that the proposed regularisa-
tion algorithm is numerically and computationally very efficient in handling various
two-body close encounters appearing in the CS5BP.
Keywords: Regularisation, singularity, celestial mechanics, few-body problem, op-
timisation.

1 Introduction

There is a growing interest in studying gravitational few-body problems (with
n > 3) which makes use of the symmetric boundary conditions to reduce the
mathematical complexity of the problem [13],[14], [8], [7].

Several papers in the last decade have studied the the Caledonian Symmet-
ric Four-Body Problem (CSFBP) which is a restricted coplanar four-body sys-
tem with a symmetrically reduced phase space [5], [12]. The model involves two
pairs of non-equal masses moving in coplanar, initially circular orbits, starting
in a collinear arrangement [5]. The authors have shown that the global stability
of the CSFBP system depends on a parameter called the Szebehely constant

C0. The Szebehely constant C0 = − c2E
G2M5 is a dimensionless function of the

total energy (E) and the magnitude of the angular momentum of the system
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(c), where G is the gravitational constant, and M is the total mass. A gener-
alization of the CSFBP named the Caledonian Symmetric Five-Body problem
(CS5BP) was done by introducing a stationary mass to the centre of mass of
the CSFBP with the same analytical stability criteria [8].

Existing numerical integration schemes were inadequate to study orbits with
strong close encounters, as the numerical integration fails due to collision sin-
gularities [15], [16]. In gravitational few-body problems, singularities normally
appear when the distance between objects undergoing orbital motion becomes
very small. As a result, the equations describing the dynamics of the system
tend towards singular and the numerical integration falls apart [3]. Use of regu-
larisation algorithms to numerically integrate gravitational few-body problems
which involve near collisions or close encounters has been widely acknowledged
[3], [1]. Recently a global regularisation scheme for the CSFBP is prsented
in [11]. In this paper, we extend the regularisation scheme to the Caledonian
Symmetric Five-Body problem (CS5BP).

2 Definition of the Caledonian Symmetric Five Body
Problem(CS5BP)

Let us consider five bodies P0,P1,P2,P3,P4 of masses m0,m1, m2,m3,m4 re-
spectively existing in three dimensional Euclidean space [6]. The radius and
velocity vectors of the bodies with respect to the centre of mass of the five
body system are given by ri and ṙi respectively, i = 0, 1, 2, 3, 4. Let the centre
of mass of the system be denoted by O.

The CS5BP involves two types of symmetries; past-future symmetry and
dynamical symmetry [8]. Past future symmetry exists in an n-body system
when the dynamical evolution of the system after t = 0 is a mirror image of
the dynamical evolution of the system before t = 0. It occurs whenever the
system passes through a mirror configuration, i.e. a configuration in which the
velocity vectors of all the bodies are perpendicular to all the position vectors
from the centre of mass of the system [5].

Dynamical symmetry exists when the dynamical evolution of two bodies
on one side of the centre of mass of the system is paralleled by the dynamical
evolution of the two bodies on the other side of the centre of mass of the system.
The resulting configuration is always a parallelogram, but of varying length,
width and orientation [8]. See Figure 1 for the configuration of the CS5BP for
t > 0.

The CS5BP has the following conditions:

1. All five bodies are finite point masses with:

m1 = m3, m2 = m4 (1)

2. P0 is stationary at origin O, the centre of mass of the system. P1 and P3

are moving symmetrically to each other with respect to the centre of mass
of the system. Likewise P2 and P4 are moving symmetrically to each other.
Thus dynamical symmetry is maintained for all time t;
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Fig. 1. The configuration of the coplanar CS5BP for t > 0

r1 = −r3, r2 = −r4, r0 = 0,

V1 = ṙ1 = −ṙ3, V2 = ṙ2 = −ṙ4, V0 = ṙ0 = 0. (2)

3. At time t = 0 the bodies are collinear with their velocity vectors perpendic-
ular to their line of position. This ensures the past-future symmetry and
is described by:

r1 × r2 = 0, r1 · ṙ1 = 0, r2 · ṙ2 = 0. (3)

We define the masses as ratios to the total mass. Let the total mass M of the
system be

M = 2 (m1 +m2) +m0 (4)

Let µi be the mass ratios defined as µi = mi

M for i = 0, 1, 2, 3, 4 and µ = µ1

µ2
.

Equation (4) then becomes

2 (µ1 + µ2) + µ0 = 1, (5)

and
0 ≤ µ0 ≤ 1, 0 ≤ µ1 ≤ 0.5, 0 ≤ µ2 ≤ 0.5. (6)

3 The regularisation scheme

The proposed regularisation scheme consists of a combination of several known
regularisation techniques: a Levi-Civita type coordinate transformation, a time
transformation function similar to that of [1] and the global formulation of [3].
In general, the proposed scheme follows the transformations described in [4].
We extend the regularisation procedure of the CSFBP [11] into the case of the
CS5BP.
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Let the position coordinates of the four bodies in cartesian coordinates
be r1 = (x1, x2), r2 = (x3, x4), r3 = (−x1,−x2), r4 = (−x3,−x4), with corre-
sponding momenta (ω1, ω2) = µ1M(ẋ1, ẋ2), (ω3, ω4) = µ2M(ẋ3, ẋ4), (−ω1,−ω2),
(−ω3,−ω4).

For simplicity, we set the gravitational constant G and total mass M to
be equal to unity. According to the symmetrical restrictions, the Hamiltonian
function can be written as

H =
1

µ1M
(ω2

1 + ω2
2) +

1

µ2M
(ω2

3 + ω2
4)− 2Gµ1µ2M

2

(
1

r12
+

1

r14

)
(7)

− Gµ2
1M

2

r13
− Gµ2

2M
2

r24
− 4Gµ0M

(
µ1M

2r13
+
µ2M

2r24

)
,

where the corresponding inter-body distances are given by

r12 =
(
(x1 − x3)2 + (x2 − x4)2

)1/2
= r34,

r14 =
(
(x1 + x3)2 + (x2 + x4)2

)1/2
= r23,

r13 =
(
(2x1)2 + (2x2)2

)1/2
,

r24 =
(
(2x3)2 + (2x4)2

)1/2
. (8)

These four inter-body distances result in collision singularities which is charac-
terised by the following four types of two-body close encounters [10].

1. “12”-type double binary collision: collisions occurring in the binary formed
between P1 and P2 and the symmetrical binary formed between P3 and P4.

2. “14”-type double binary collision: collisions occurring in the binary formed
between P1 and P4 and the symmetrical binary formed between P2 and P3.

3. “13”-type single binary collision: collision occurring in the binary formed
between P1 and P3.

4. “24”-type single binary collision: collision occurring in the binary formed
between P2 and P4.

Note that P0 is stationary at O, the centre of mass of the system and thus P0

has no influence in deciding the kinetic energy of the system and the collisions.
In order to regularise these singularities first we will map the (xi, ωi) phys-

ical plane into the (Qi, Pi) parametric plane using a series of transformation
equations so that the new Hamiltonian function will have no singularities as it
passes through a two-body close encounter. There are three important steps
in the regularisation scheme [9].

Step 1: Coordinate transformation
We first transform the coordinate system to inter-body coordinates.

q1 = x1 − x3, q2 = x2 − x4, (9)

q3 = x3 + x1, q4 = x4 + x2, (10)

q5 = 2x1, q6 = 2x2, (11)

q7 = 2x3, q8 = 2x4. (12)
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This will make sure that all the possible two-body close encounters in the
CS5BP system are regularised [11].

We introduce a generating function F1(pk, qk) to obtain conjugate momenta
pk of the corresponding qk

F1(pk, qk) = pkqk = (x1 − x3)p1 + (x2 − x4)p2 + (x3 + x1)p3 + (x4 + x2)p4

+ 2x1p5 + 2x2p6 + 2x3p7 + 2x4p8, (13)

which will give

ωi =
∂F1

∂xi
, (14)

where i=1 to 4 and k=1 to 8.
Next we find an expression for new momenta, pk’s, in terms of old momenta,

ωi, using an arbitrary relation which is similar to that for the q’ s (i.e. q5 −
q7 − 2q1 = 0, q5 + q7 − 2q3 = 0, q6 + q8 − 2q4 = 0, q6 − q8 − 2q2 = 0), we set

p5 − p7 − 2p1 = 0,

p5 + p7 − 2p3 = 0,

p6 + p8 − 2p4 = 0, (15)

p6 − p8 − 2p2 = 0.

Using equation (14) and (15), we can deduce a set of new conjugate momenta
p’s as

p1 =
1

6
(ω1 − ω3) , p2 =

1

6
(ω2 − ω4) ,

p3 =
1

6
(ω1 + ω3) , p4 =

1

6
(ω2 + ω4) ,

p5 =
1

3
ω1, p6 =

1

3
ω2, (16)

p7 =
1

3
ω3, p8 =

1

3
ω4.

Now we perform the Levi-Civita type coordinate transformation on each
inter-body coordinate. We introduce the regularising function using the Levi-
Civita transformation, in a complex form

qj + iqj+1 = (Qj + iQj+1)
2
, (17)

where j= 1,3,5,7. Here note that (qj , qj+1) refers to a physical plane and
(Qj , Qj+1) refers to a parametric plane. Their corresponding conjugate mo-
menta Pk’s are given by

Pk =
∂F2(pk, Qk)

∂Qk
(18)

where k= 1 to 8 and F2(pk, Qk) is the generating function of the form

F2(pk, Qk) = pjf(Qj , Qj+1) + pj+1g(Qj , Qj+1)
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Using these relations, we can write

Pj = 2pjQj + 2pj+1Qj+1,

Pj+1 = −2pjQj+1 + 2pj+1Qj , (19)

Step 2: Time transformation
In the next step, we introduce a fictitious time τ , which is a key factor for the
regularising effect. The basic principle of regularisation theory is to transform
physical coordinates to a parametric plane and physical time to an artificial
time by a differential time transformation, which consequently smooths collision
effects in the Hamiltonian system. In the literature, we can find a variety of
choices for the time transformation function which has a general form

dt = gdτ = Rndτ,

where R is the separation between the colliding binaries, g is the time re-scaling
factor and n has various choices according to the application. We had tried a
few arbitrary values for g and we found that, to preserve conservation of energy,
it is advantageous to choose a time re-scaling factor of the form

dt

dτ
= g =

r12r13r14r24

(r12 + r13 + r14 + r24)
5/2

(20)

=
(Q2

1 +Q2
2)(Q2

3 +Q2
4)(Q2

5 +Q2
6)(Q2

7 +Q2
8)

(Q2
1 +Q2

2 +Q2
3 +Q2

4 +Q2
5 +Q2

6 +Q2
7 +Q2

8)
5/2

.

Step 3: Fixing the energy
With the introduction of the time rescaling factor, the new Hamiltonian H̃(Qi, Pi)
takes the following form in the extended phase space

Γ (Qi, Pi) = g(H̃ − h0), (21)

where Γ is the transformed Hamiltonian H̃(Qi, Pi) in the extended phase space
and h0 is the total energy or the initial value of H̃. For any particular orbit,
H̃(τ) = h0, a constant and Γ (τ) = 0. We have not shown the transformed
Hamiltonian Γ (Qi, Pi) in this paper, as the right hand side of the expression
is very lengthy due to a large number of multiplicative terms. The numerator
terms in the time rescaling factor g cancel out the singular terms in the de-
nominator of the Hamiltonian function and prevent the increase of the velocity
to infinity at the collision stages.

We can derive the Hamilton equations of motion with respect to the ficti-
tious time, using this transformed Hamiltonian in the new set of parametric
coordinates:

dQi
dτ

=
∂Γ

∂Pi
, (22)

dPi
dτ

= − ∂Γ

∂Qi
.

Equation (22) is the final regularised equation of motion, which is a set of
ordinary differential equations whose solution is a function of the fictitious time
τ and these equations are regular, for any qi → 0.
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There can be singularities when all qi → 0, where i= 1 to 8. This situa-
tion is only possible for a CS5BP system with C0 = 0. This corresponds to a
singularity at the origin in the physical plane. For C0 6= 0; regions of forbid-
den motion appear very close to the origin and a total central collision is not
theoretically possible.

4 Optimisation of the regularised Hamiltonian

An optimisation strategy is not generally required for restricted few-body prob-
lems for n < 4, since the equations of motion derived using standard regulari-
sation schemes usually contain algebraic terms which can be easily handled by
most of the standard numerical integrators. However, the transformed Hamilto-
nian Γ (Qi, Pi) in Equation (21) is determined using a large number of algebraic
multiplications. It is evident that the symbolic differentiation to derive the gra-
dient of Γ (Qi, Pi) will produce a large number of additive and multiplicative
terms, leading to an inefficient evaluation of the right hand side of the Equa-
tion (22). The direct numerical integration of the regularised Equation (22)
(i.e. without using any optimisation techniques) required an excessive amount
of computational time even for a very small time period of 10 due to the large
number function evaluations involved.

We adapt an algebraic optimisation algorithm of [2] to simplify the Equation
22. The first step in the optimisation process is to rewrite the regularised
Hamiltonian Γ (Qi, Pi) in terms of the most frequently appearing terms as a
MAPLE procedure [9]. Then we split up the product terms in the MAPLE
procedure in calculating the regularised Hamiltonian to avoid the generation
of common subexpressions while computing its partial derivatives [2].

We also make use of the reverse-mode algorithmic differentiation to reduce
the total number of multiplicative operations (multiplication and addition) to
derive the partial derivatives of the regularised Hamiltonian Γ (Qi, Pi). The
reverse-mode of automatic differentiation allows computation of gradients at a
small cost of computing functions by decomposing the function into a sequence
of elementary assignments. The forward-mode differentiation of Γ (Qi, Pi) will
generate more than 2100 multiplicative terms, whereas the reverse mode algo-
rithmic differentiation leads to a procedure with only about 320 multiplications.
Then we convert repeating symbolic expressions into computation sequences
needed for the algorithmic differentiation using the built-in MAPLE functions.
In general, this algebraic optimisation procedure can be extended to majority
of the global regularisation schemes used in gravitational few-body problems
(with n ≥ 3) and fast numerical realization can be achieved.

5 Numerical experiments

We show some preliminary numerical results using the non-regularised and
regularised integration schemes for a regular quasi-periodic orbit. The initial
conditions for integrating equation (20) and (22) were fixed using the energy
and angular momentum equations of the CS5BP. Numerical experiments were
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Fig. 2. A quasi-periodic orbit over the time [0, 20] (µ = 1, µ0 = 0, E = −7, C0 = 60
initial r1 = 0.80 and r2 = 0.06); with a) non-regularised; b) regularised equations. I.
Trajectories of P1(green) and P2 (blue) in the xy-plane of motion; II. Energy error
over the time period [0, 20]
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Fig. 3. Time step variations over the time [0, 20] with a) non-regularised; b) regu-
larised equations.

conducted using the standard MATLAB multi-step integrator ode113 which
is a variable order Adams-Bashforth-Moulton PECE solver. The orbital tra-
jectories in the xy-plane of motion are shown in Figure 2.1.A central binary
is formed (with P2 and P4) and the other symmetrical pair P1 and P3 orbit
around the binary’s centre of mass. Only the positions of masses m1 (x1, x2)
(green) and m2 (x3, x4)(blue) are shown. The orbits are well separated and
remained bounded for some reasonable amount of integration time.

Figure 2.II shows the numerical energy error versus time over a 20 time
unit period. Although the orbital trajectories appear to be identical, the regu-
larised integration scheme exhibits a better energy error profile by a factor of
100. Figure 3 shows the corresponding time step variations for the above inte-
grations. The regularised integration scheme has improved the CPU workload
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by a factor of 1.4 by allowing the integrator to choose bigger step-sizes resulting
in decreased number of time steps. Figure 4 shows a comparison between the
CPU time and the maximum observed energy error for the given simulation
time. It is clear that the regularised scheme allows better accuracy with im-
proved CPU run time. Despite the regularity of the orbit and the absence of
extreme close encounters, our numerical tests indicate that the overall CPU
workload has been improved. The computational cost involved in each time
step differs for both the non-regularised and regularised integrations, since the
regularised scheme has twice as many equations in the non-regularised scheme
and it involved a large number of algebraic multiplications and additions due
to several coordinate transformations forward and backwards. The regularised
treatment combined with the algebraic optimisation scheme outperforms the
non-regularised approach in terms of computational efficiency and numerical
accuracy.

6 Conclusions

We developed a global regularisation scheme that consists of adapted versions
of several known regularisation transformations such as the Levi-Civita-type
coordinate transformations; that together with a time transformation, removes
all the singularities due to colliding pairs of masses in the CS5BP. An al-
gebraic optimisation algorithm is proposed for numerically implementing the
regularisation scheme. Regardless of the nature of the orbits, it was found that
the regularised integration scheme outperformed the standard non-regularised
integration schemes in terms of computational performance and improved nu-
merical accuracy characterized by stable energy profiles.
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15.A. Széll and B. A. Steves and B. Érdi. The hierarchical stability of quadruple stellar
and planetary systems using the Caledonian Symmetric Four-Body Problem.
Astronomy and Astrophysics, 427:1145-1154, 2004.
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