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1 Introduction

In this paper we consider the second order multi-point boundary value problem
(BVP) 

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

φ(u′(0)) =

m−2∑
i=1

aiφ(u′(ξi)), u(1) =

m−2∑
i=1

biu(ηi),
(1)

where ξi, ηi ∈ (0, 1)(i = 1, 2, ...,m− 2) with 0 < ξ1 < ξ2 < ... < ξm−2 < 1, 0 <
η1 < η2 < ... < ηm−2 < 1, φ : R → R is an increasing homeomorphism and
homomorphism with φ(0) = 0. A projection φ : R → R is called an increasing
homeomorphism and homomorphism if the following conditions are satisfied:
(i) If x ≤ y, then φ(x) ≤ φ(y), for all x, y ∈ R;
(ii) φ is continuous bijection and its inverse mapping is also continuous;
(iii) φ(xy) = φ(x)φ(y), for all x, y ∈ R, where R = (−∞,∞).

We assume that the following conditions are satisfied:

(A1) f ∈ C([0, 1]× R+,R+), q ∈ C[0, 1] is nonnegative,

(A2) ai ∈ [0,∞), bi ∈ [0,∞), i = 1, 2, ...,m − 2 with 0 <

m−2∑
i=1

ai < 1 and

0 <

m−2∑
i=1

bi < 1.
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The study of multi-point boundary value problems for linear second-order
ordinary differential equations was initiated by Il’in and Moiseev [1]. Since
then, there has been a lot of recent attention focused on the study of nonlinear
multi-point boundary value problems, see [2–5]. We cite some appropriate
references here [6–9].

In [8], Ji et al. studied the existence of multiple positive solutions for one-
dimensional p-Laplacian boundary value problem

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) =

n∑
i=1

αiu(ξi), u(1) =

n∑
i=1

βiu(ξi).
(2)

The authors established the existence of multiple positive solutions (2) by using
fixed point theorem in a cone.

In [9], Ma et al. studied the existence of positive solutions for multi-point
boundary value problem with p-Laplacian operator

(φ(u′(t)))′ + q(t)f(t, u(t)) = 0, t ∈ (0, 1),

u′(0) =

n∑
i=1

αiu
′(ξi), u(1) =

n∑
i=1

βiu(ξi).
(3)

In this paper, motivated by the above research efforts on multi-point bound-
ary value problems, criteria for the existence of at least two positive solutions
of the BVP (1) are established by using the double fixed point theorem. Thus,
our results are new for differential equations.

This paper is organized as follows. In Section 2, we give some preliminary
lemmas which are key tools for our proof. The main result is given in Section
3.

2 Preliminaries

In this section, we give some lemmas which are useful for our main result.
We consider the Banach space B = C1[0, 1] endowed with the norm

‖u‖ = max
0≤t≤1

|u(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : u is a concave, nonnegative and nonincreasing function,

u(1) =
∑m−2
i=1 biu(ηi)}.

Lemma 1. If u ∈ P, then min
0≤t≤1

u(t) ≥M‖u‖, where M =

m−2∑
i=1

bi(1− ηi)

1−

m−2∑
i=1

biηi

.
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Proof. Since u ∈ P, nonnegative and nonincreasing

‖u‖ = u(0), min
0≤t≤1

u(t) = u(1).

On the other hand, u(t) is concave on [0, 1]. So, for every t ∈ [0, 1], we have

u(t)− u(1)

1− t
≥ u(0)− u(1)

1
,

i.e., u(t) ≥ (1− t)u(0) + tu(1). Therefore,

m−2∑
i=1

biu(ηi) ≥
m−2∑
i=1

bi(1− ηi)u(0) +

m−2∑
i=1

biηiu(1).

This together with u(1) =
∑m−2
i=1 biu(ηi), implies that

u(1) ≥

m−2∑
i=1

bi(1− ηi)

1−
m−2∑
i=1

biηi

u(0).

So, the proof of Lemma is completed. �

Lemma 2. Assume that (A1), (A2) hold. Then u ∈ C1[0, 1] is a solution to
problem (1) if and only if u is a solution to the integral equation:

u(t) =

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

+
1

1−
m−2∑
i=1

bi

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds, (4)

where

A =
1

1−
m−2∑
i=1

ai

m−2∑
i=1

ai

∫ ξi

0

q(s)f(s, u(s))ds. (5)

Proof. First, suppose that u ∈ C1[0, 1] is a solution of problem (1). Integrating
the equation (1) from 0 to t, one has

−φ(u′(t)) + φ(u′(0)) =

∫ t

0

f(s, u(s))ds. (6)
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and taking t = ξi in (6), we have

φ(u′(ξ)) = φ(u′(0))−
∫ ξi

0

q(s)f(s, u(s))ds.

So, we get

m−2∑
i=1

aiφ(u′(ξi)) =

m−2∑
i=1

aiφ(u′(0))−
m−2∑
i=1

ai

∫ ξi

0

q(s)f(s, u(s))ds.

Since φ(u′(0)) =
∑m−2
i=1 αiφ(u′(ξi)), we have

φ(u′(0)) = − 1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

q(s)f(s, u(s))ds = −A. (7)

Substituting (7) into (6), we get

u′(t) = −φ−1
(∫ t

0

q(s)f(s, u(s))ds+A

)
. (8)

Integrating the equation (8) from t to 1, one has

u(t) = u(1) +

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
, (9)

and taking t = ηj in (9), we get

u(ηj) = u(1) +

∫ 1

ηj

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds.

So,

m−2∑
i=1

biu(ηi) = u(1)

m−2∑
i=1

bi +

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds.

Since u(1) =
∑m−2
i=1 biu(ηi),

u(1) =
1

1−
∑m−2
i=1 bi

[

m−2∑
i=1

bi

∫ 1

ηi

φ−1

(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds. (10)

Substituting (10) into (9), we get (4), which completes the proof of sufficiency.
Conversely, if u ∈ C1[0, 1] is a solution to (4), apparently

u′(t) = −φ−1
(∫ t

0

q(s)f(s, u(s))ds+A

)
,

(φ(u′(t)))′ = −q(t)f(t, u(t)),

φ(u′(0)) =

m−2∑
i=1

aiφp(u
′(ξi)), u(1) =

m−2∑
i=1

biu(ηi).

The proof is complete. �
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Now define an operator T : P −→ B by

Tu(t) =

∫ 1

t

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

+
1

1−
m−2∑
i=1

bi

m−2∑
i=1

bi

∫ 1

ηi

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds. (11)

Lemma 3. Assume that (A1) − (A2) hold. Then T : P → P is a completely
continuous operator.

Proof. It is clear that TP ⊂ P and T : P → P is a completely continuous
operator by a standard application of the Arzela-Ascoli theorem.

3 Main Results

In this section we state and prove our main result. The following fixed point
theorem is fundamental and important to the proof of main result.

For a nonnegative continuous functional γ on a cone P in a real Banach
space B, and each d > 0, we set

P(γ, d) = {x ∈ P| γ(x) < d}.

Lemma 4. (Double Fixed Point Theorem) [10] Let P be a cone in a real Ba-
nach space B. Let α and γ be increasing, nonnegative, continuous functionals
on P, and let θ be a nonnegative, continuous functional on P with θ(0) = 0
such that, for some c > 0 and M > 0,

γ(u) ≤ θ(u) ≤ α(u) and ‖u‖ ≤Mγ(u)

for all u ∈ P(γ, c). Suppose that there exist positive numbers a and b with
a < b < c such that

θ(λu) ≤ λθ(u), for 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, b)

and

T : P(γ, c)→ P

is a completely continuous operator such that:

(i) γ(Tu) > c, for all u ∈ ∂P(γ, c);
(ii) θ(Tu) < b, for all x ∈ ∂P(θ, b);

(iii) P(α, a) 6= ∅, and α(Tu) > a, for all u ∈ ∂P(α, a).
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Then T has at least two fixed points, u1 and u2 belonging to P(γ, c) such that

a < α(u1), with θ(u1) < b,

and

b < θ(u2), with γ(u2) < c.

Let us define the increasing, nonnegative, continuous functionals γ, β, and
α on P by

γ(u) = min
0≤t≤ξ1

u(t) = u(ξ1),

β(u) = max
ξ1≤t≤ξn−2

u(t) = u(ξ1),

α(u) = max
0≤t≤ξn−2

u(t) = u(0).

It is obvious that for each u ∈ P,

γ(u) ≤ β(u) ≤ α(u).

In addition, from by Lemma 1, for each u ∈ P,

‖u‖ ≤ 1

M
min
0≤t≤1

u(t) ≤ 1

M
min

0≤t≤ξ1
u(t) =

1

M
γ(u).

Thus,

‖u‖ ≤ 1

M
γ(u), ∀u ∈ P.

For the convenience, we denote

K = (1− ξ1)φ−1

(∫ ξ1

0

q(τ)dτ

)
,

L =
1

1−
m−2∑
i=1

bi

φ−1

(
1

1−
∑m−2
i=1 ai

∫ ξ1

0

q(τ)dτ

)
.

Theorem 1. Suppose that assumptions (A1), (A2) are satisfied. Let there exist
positive numbers a < b < c such that

0 < a <
K

L
b <

KM

L
c,

and assume that f satisfies the following conditions

(A3) f(t, u) > φ
(
c
K

)
, for all (t, u) ∈ [0, ξ1]× [c, 1

M c],

(A4) f(t, u) < φ
(
b
L

)
, for all (t, u) ∈ [0, 1]× [0, 1

M b],

(A5) f(t, u) > φ
(
a
K

)
, for all (t, u) ∈ [0, 1]× [0, a].
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Then the boundary value problem (1) has at least two positive solutions u1 and
u2 satisfying

a < α(u1) with β(u1) < b, b < β(u2) with γ(u2) < c.

Proof. We define the completely continuous operator T by (11). So, it is easy
to check that T : P(γ, c)→ P. We now show that all the conditions of Lemma
4 are satisfied. In order to show that condition (i) of Lemma 4, we choose
u ∈ ∂P(γ, c). Then γ(u) = min

0≤t≤ξ1
u(t) = u(ξ1) = c, this implies that c ≤ u(t)

for t ∈ [0, ξ1]. Recalling that ‖u‖ ≤ 1
M γ(u) = 1

M c, we get

c ≤ u(t) ≤ 1

M
c, t ∈ [0, ξ1].

Then assumption (A3) implies f(t, u) > φ
(
c
A

)
, for all (t, u) ∈ [0, ξ1] ×

[c, 1
M c]. Therefore,

γ(Tu) = min
t∈[0,ξ1]

(Tu)(t) = (Tu)(ξ1)

≥
∫ 1

ξ1

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ

)
ds

≥
∫ 1

ξ1

φ−1

(∫ ξ1

0

q(τ)f(τ, u(τ))dτ

)
ds

= (1− ξ1)φ−1

(∫ ξ1

0

q(τ)f(τ, u(τ))dτ

)

>
c

K
(1− ξ1)φ−1

(∫ ξ1

0

q(τ)dτ

)
= c.

Hence, condition (i) is satisfied.
Secondly, we show that (ii) of Lemma 4 is satisfied. For this, we select

u ∈ ∂P(β, b). Then, β(u) = max
t∈[ξ1,ξn−2]

u(t) = u(ξ1) = b, this means 0 ≤ u(t) ≤ b,

for all t ∈ [ξ1, 1]. Noticing that ‖u‖ ≤ 1
M γ(u) = 1

M β(u) = 1
M b, we get

0 ≤ u(t) ≤ 1

M
b, for 0 ≤ t ≤ 1.

Then, assumption (A4) implies f(t, u) < φ
(
b
L

)
. Therefore

β(Tu) = max
t∈[ξ1,ξm−2]

(Tu)(t) = (Tu)(ξ1)

≤ 1

1−
m−2∑
i=1

bi

φ−1

 1

1−
m−2∑
i=1

ai

∫ 1

0

q(τ)f(τ, u(τ))dτ
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<
b

L

1

1−
m−2∑
i=1

bi

φ−1

 1

1−
m−2∑
i=1

ai

∫ 1

0

q(τ)dτ


= b.

So, we get β(Tu) < b. Hence, condition (ii) is satisfied.
Finally, we show that the condition (iii) of Lemma 4 is satisfied. We note

that u(t) = a


m−2∑
i=1

bi − 1

1−

m−2∑
i=1

biηi

t+ 1

 , 0 ≤ t ≤ 1 is a member of P(α, a), and so

P(α, a) 6= ∅. Now, let u ∈ ∂P(α, a). Then α(u) = max
t∈[0,ξn−2]

u(t) = u(0) = a.

This implies

0 ≤ u(t) ≤ a, t ∈ [0, 1].

By assumption (A5), f(t, u) > φ
(
a
A

)
. Then,

α(Tu) = max
t∈[0,ξn−2]

(Tu)(t) = (Tu)(0)

≥
∫ 1

0

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ +A

)
ds

≥
∫ 1

ξ1

φ−1
(∫ s

0

q(τ)f(τ, u(τ))dτ

)
ds

≥ (1− ξ1)φ−1

(∫ ξ1

0

q(τ)f(τ, u(τ))dτ

)

> (1− ξ1)
a

A
φ−1

(∫ ξ1

0

q(τ)dτ

)
= a.

So, we get α(Tu) > a. Thus, (iii) of Lemma 4 is satisfied. Hence, the boundary
value problem (1) has at least two positive solutions u1 and u2 satisfying

a < α(u1) with β(u1) < b, and b < β(u2) with γ(u2) < c.

�
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