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Abstract: A model sample of a finite nanosize with the volumetric lattice in the form of 

a rectangular parallelepiped is considered. On the basis of the previously proposed one-

point model, a two-point model is constructed, which uses the theory of fractional 

calculus and the concept of fractal. The features of the behavior of the deformation field 

of fractal dislocation and possible correlation connections are investigated. It is shown 

that complex correlation connections have negative, positive and sign changing 

correlation coefficients. The strongly pronounced stochastic behaviour of amplitudes and 

phases of average functions is established. The change of the statistics from Fermi-Dirac 

type to the statistics of Boze-Einstein type for separate internal nodal planes is shown by 

the method of numerical modeling. 
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1. Introduction 
For experimental studies of the physical properties of individual atoms 

(electrons, photons) and the quantum measurement it is necessary to create 

special traps: nanosystem - trapped particles (or group of particles) in a trap. 
These traps can be useful for realization of optical quantum computation with 

quantum information processing, measurement in quantum optics [1]. In his 

Nobel lecture in Physics in 1989 W. Paul [2] considered electromagnetic traps 

for charged and neutral particles. For the observation of Bose-Einstein 

condensation phenomenon [3] the magnetic traps were used. Serge Haroche and 

David Wineland, 2012 Nobel laureates in Physics, proposed experimental 

methods that made it real to measure individual quantum systems and govern 

them [4, 5]. The experimental studies of the features of the statistical properties 

of individual quantum systems in neutron spin measurements [6], with the 

observation of Bose-Einstein condensation [7] showed the presence of 

correlations in the measured values. Near singular points (Dirac points) Dirac 

fermions in molecular graphene show quantum and statistical features of 

behavior [8]. 
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Fractal dislocation is one of the structural objects in nanostructured materials 

[9, 10]. The core of a linear dislocation is a set of singular points. The 

deformation field of fractal dislocation has unusual quantum and statistical 

properties [11 - 13] and shows the presence of quantum chaos [14]. Earlier a 

one-point model was used to describe the structural states of the deformation 

field of fractal dislocation [10, 12] (fractal dimension was an effective 

coordinate). In this model, the elements of the displacement of the lattice nodes 

are real random functions and were determined without the effect of bifurcation 

of solutions of a nonlinear equation. However, consideration of the effect of 

bifurcation of solutions [11] leads to the four branches of the lattice nodes 

displacement function. Elements of the lattice nodes displacement matrix 

become complex random functions. In order to describe possible correlation 

effects and statistical properties of the deformation field of fractal dislocation of 

pure structural states a two-point model was proposed [15] in which the theory 

of fractional calculus [16] and the concept of fractal [17] are used. It is 

necessary to investigate the mixed states, the description of which requires 

introducing the density of states and accounting for the distribution of this 

density of states on nodes of the volumetric lattice. 

The purpose of this paper is to generalize the two-point model to the case of 

mixed state and investigate correlation connections and the statistical properties 

of the deformation field of fractal dislocation in the model nanosystem. 

2. Description of mixed states in the two-point model 
A model nanosystem [15] is considered: a sample in the form of a rectangular 

parallelepiped of finite size with volumetric discrete lattice 1 2 3N N N× × . 

Deviations of the lattice nodes from the state of equilibrium in a separate plane 

1 2N N×  for two different points of 1( )z j  and 2 ( )z j  are described by non-

hermitian displacements operators
 1ˆ( )u z  and 2ˆ( )u z , corresponding to the 

rectangular matrix with dimensions 1 2N N× , 3[1, ]j N∈ . 

For the description of mixed states the effective composite operators of 

displacements for the states 1,2,...8p =  are introduced, respectively, 

1 12 1ˆˆ ˆ ( )u u zρ += ;  3 12 2ˆˆ ˆ ( )u u zρ += ;  5 1 12ˆˆ ˆ( ) Tu u z ρ= ;  7 2 12ˆˆ ˆ( ) Tu u z ρ= ;     (1) 

2 21 1ˆˆ ˆ( )u u zρ= ;  4 21 2ˆˆ ˆ( )u u zρ= ;  6 1 21ˆˆ ˆ ( ) Tu u z ρ+= ;  8 2 21ˆˆ ˆ ( ) Tu u z ρ+= .   (2) 

Here the symbols «+» and «T » mean the operation of hermitian conjugation 

and transposition. The square matrices with sizes 1 1N N×  for 1,3,5,7p =
 
and 

2 2N N×  for 2,4,6,8p =  correspond to the introduced operators ˆpu ; so that 

5 1ˆ ˆu u+= , 7 3ˆ ˆu u+= , 6 2ˆ ˆu u+= , 8 4ˆ ˆu u+= . The density state operators 12 12ˆ ˆ, ,Tρ ρ
 

21 21ˆ ˆ, Tρ ρ
 
are represented by 

12 1 2 1 2
ˆ ˆˆ /T
N N N Nρ ξ ξ= ; 12 2 1 1 2

ˆ ˆˆ /T T
N N N Nρ ξ ξ= ; 21 12ˆ ˆTρ ρ= ; 21 12ˆ ˆTρ ρ= ,   (3) 
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where 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors of dimensions 11 N× , 21 N× , with elements 

equal to one. The rectangular matrices 12ρ̂ , 21ρ̂  have dimensions
 1 2N N× , 

2 1N N× . For the operators in (3) the normalization conditions are fulfilled 

1 12 2
ˆ ˆˆ 1T
N Nξ ρ ξ = ;      2 21 1

ˆ ˆˆ 1T
N Nξ ρ ξ = .                            (4) 

Having performed an averaging over the index nodes ,n m  by calculating trace 

Sp  of square matrices (1), (2), the averaged functions pu , | |pu , ptgϕ
 
for 

states with 1,2,...8p =  are obtained 

ˆ | | exp( )p p p p p pu Spu u iu u iϕ′ ′′= = + = ;  
* ˆp pu Spu+= ;  /p p ptg u uϕ ′′ ′= ,  (5) 

where Rep pu u′ = , Imp pu u′′ = ; the symbol «∗» means the operation of 

complex conjugation; | |pu , pϕ  are a module, a phase of the complex averaged 

functions pu . Here the averaging across an index j  is not made. 

Then we find the correlation function of the first order. For , 1,3,5,7p q =  we 

obtain 

| | exp( )pq pq pq pq pq pq pqK S H K iK K iθ′ ′′= − = + = ; 

ˆ | | exp( )pq pq pq pq pq pqS SpS S iS S iψ′ ′′= = + = ;  ˆ ˆ ˆpq p qS u u+= ;  ˆ ˆ
pq pqS S+ ≠ ; 

*ˆ ˆ( )( ) | | exp( )pq p q p q pq pq pq pqH Spu Spu u u H iH H iδ+ ′ ′′= = = + = ; 

| | | | | |pq p qH u u= ⋅ ;   pq p qδ ϕ ϕ= − .                              (6) 

In the case , 2,4,6,8p q =  we obtain 

| | exp( )pq pq pq pq pq pq pqC A B C iC C iβ′ ′′= − = + = ; 

ˆ | | exp( )pq pq pq pq pq pqA SpA A iA A iχ′ ′′= = + = ; ˆ ˆ ˆpq p qA u u+= ; ˆ ˆ
pq pqA A+ ≠ ; 

ˆ ˆ( )( ) | | exp( )pq p q pq pq pq pqB Spu Spu B iB B iγ+ ′ ′′= = + = ; 

| | | | | |pq p qB u u= ⋅ ;   pq p qγ ϕ ϕ= − .                        (7) 

From (6) at p q=  we have 0ppδ = , 
2| | | |pp pp pH H u= = ; operators 

ˆ ˆ
pp ppS S +=  are hermitian, 0ppS ′′ = , pp ppS S ′=  and 

| | | | exp( )pp pp pp pp ppK S H K iθ′= − = .                            (8) 

From (8) it follows that pp kθ π= , where 0, 1, 2,..k = ± ±  and autocorrelation 

function can be either positive ( 0, 2, 4,..k = ± ± ) or negative ( 1, 3,..k = ± ± ). 

From (7) at p q=  we obtain 0ppγ = , 
2| | | |pp pp pB B u= = ; then operators 
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ˆ ˆ
pp ppA A+=  are hermitian, 0ppA′′ = , pp ppA A′=  and 

| | | | exp( )pp pp pp pp ppC A B C iβ′= − = .                            (9) 

From (9) it follows that pp lβ π= , where 0, 1, 2,..l = ± ±  and autocorrelation 

function can be either positive ( 0, 2, 4,..l = ± ± ) or negative ( 1, 3,..l = ± ± ). 

Having done the normalization of the above functions, we obtain the 

distribution function of mixed states of Bose-Einstein type and Fermi-Dirac type 

for 1,3,5,7p =  in form 

1pp ppf f′ − = ;   /pp pp ppf S H′ = ;   /pp pp ppf K H= ;                (10) 

1pp ppF F′ + = ;   /pp pp ppF H S= ;   /pp pp ppF K S′ = ,                (11) 

and for 2,4,6,8p =  in form 

1pp ppf f′ − = ;   /pp pp ppf A B′ = ;   /pp pp ppf C B= ;                (12) 

1pp ppF F′ + = ;   /pp pp ppF B A= ;   /pp pp ppF C A′ = .                (13) 

By numerical simulation it will be shown that for mixed states all 

autocorrelation functions ( ), ( )pp ppK j C j  are positive in the interval 

3[1; ]j N∈ . Earlier in [15] it was shown that for pure states similar 

autocorrelation functions are negative. 

At p q≠  from (6), (7) it follows that the functions ,pq pqK C  are complex. For 

some values ,p q  these functions have a sense of cross-correlated functions (for 

a pair of different points 1 2,z z ). In this case, to investigate the correlations it is 

necessary to introduce second-order correlation functions. For , 1,3,5,7p q =  

we have 

pq pq pqG V W= − ;   ˆ
pq pqV SpV= ;   ˆ ˆˆ

pq pq pqV S S += ;   ˆ ˆ
pq pqV V+ = ; 

* 2ˆ ˆ( )( ) | |pq pq pq pq pq pqW SpS SpS S S S+= = = .                  (14) 

Using (6), we find a representation for
 

2 2| | (| | | | | |) 2 | | | | | | (1 cos )pq pq p q p q pq pqS K u u u u K= − ⋅ + ⋅ ⋅ + Φ ,   (15) 

where pq pq pqδ θΦ = − . For , 2,4,6,8p q =  we obtain 

pq pq pqg v w= − ;   ˆpq pqv Spv= ;   ˆ ˆˆpq pq pqv A A+= ;   ˆ ˆpq pqv v+ = ; 

* 2ˆ ˆ( )( ) | |pq pq pq pq pq pqw SpA SpA A A A+= = = .                  (16) 

Using (7), we find a representation for 

2 2| | (| | | | | |) 2 | | | | | | (1 cos )pq pq p q p q pq pqA C u u u u C= − ⋅ + ⋅ ⋅ + Ψ ,   (17) 
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where pq pq pqγ βΨ = − . At some points 3[1; ]j N∈  changes sign at second 

order correlation functions ( ), ( )pq pqG j g j  from the expressions (14) - (17) 

which confirms the presence of a mixed statistics. 

When describing pure states [15] of the deformation field of fractal dislocation 

in the two-point model, the following operators and functions were introduced 

7 2 1
ˆ ˆ ˆ( ) ( )M u z u z+= ;   8 1 2

ˆ ˆ ˆ( ) ( )M u z u z+= ;   ˆ ˆ ˆ
r r rS M M += ; 

ˆ
r rS SpS= ;       ˆ ˆ( )( )r r rH SpM SpM += ;       r r rK S H= − ; 

1r rf f′ − = ;   /r r rf K S= − ;   /r r rf H S′ = ;     7,8r = .            (18) 

Correlation functions rK  are sign changing within the interval 3[1; ]j N∈  and 

describe the states with mixed statistics. 

3. Numerical simulation and the analysis of results 

The original rectangular matrix displacement 1ˆ( )u z  and 2ˆ( )u z  with elements 

1 1 1( ) ( )nmu z u zε= , 2 1 2( ) ( )nmu z u zε=  in bulk lattice 1 2 3N N N× × =  

30 40 67= × ×  were obtained by the method of iterations on an index m  for 

the first branch of the dimensionless complex function displacement
 

1( ) ( )u z u zε=  by the formulas in [15] under the same input parameters and 

initial conditions. In the calculations it should be: 

1 0.053 0.1( 1)z j= + − ; 2 6.653 0.1( 1)z j= − − , which corresponds to the 

forward and backward waves of displacements 1( )nmu z , 2( )nmu z ; 1,30n = ; 

1,40m = ; 1,67j = . The choice of the model parameters determines the state 

of a discrete rectangular sublattice 1 2N N×  with fractal dislocation, localized 

within this region parallel to the axis Om . 

The analysis of the results of the numerical simulation for the mixed states 

(Fig. 1) shows that all of the first-order correlation functions ppK  are positively 

defined on the whole interval [1,67]j∈ . This means that for states pp  there 

are correlation relations with positive correlation coefficients. The distribution 

function of the Fermi-Dirac type 55 ( )F j  with increasing j  (Fig. 1, a) varies 

randomly around the value of 0.1, goes to the stochastic peak at 26j =
 
with the 

value 55 (26) 0.3315F =  and then again randomly changed by another law near 

the value of 0.1. The distribution function of the 77 ( )F j  with increasing j  

(Fig. 1,c) also varies randomly near the value of 0.1, comes to a peak at the 

other stochastic value of 42j =  with the same value of 77 (42) 0.3315F =  and 

then again changes randomly by another law near the value of 0.1. In this case 

the values of the functions of 55 ( )F j , 77 ( )F j  in the peaks do not exceed the 

value of 0.5, which is typical for the ground state Fermi-system. The 



Valeriy S. Abramov 

 

362 

distribution functions of Bose-Einstein type 55 ( )f j , 77 ( )f j  (Fig. 1,b,d) 

randomly change with increasing j  near the population number equal to 10, in 

separate planes the peaks with large population numbers are observed. Such a 

behavior of functions 55 ( )f j , 77 ( )f j  indicates that the ground state of a Bose-

system is populated (the population number greater than 1). The global minima 

with the values 55 77(26) (42) 2.0162f f= = are observed in the points at 

which the main peaks of the functions 55 ( )F j , 77 ( )F j
 
are observed. The 

above values of the functions in global minima and main peaks indicate that the 

correlations in both ground and excited states of both Bose- and Fermi-systems 

are taken into account. 

 

 
a b 

 
c d 

  

e f 
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Fig. 1. Dependencies of the distribution functions of the Fermi-Dirac type 

(a, c, e, g) and Bose-Einstein type (b, d, f, h) on j  for mixed states pp 

In this case, the autocorrelation function 55K  describes a forward wave, and 

the autocorrelation function 77K  describes a backward wave. The distribution 

functions of the Fermi-Dirac type 66 88( ), ( )F j F j  with increasing j  

(Fig. 1,e,g) vary randomly around 0.5. The values of the functions in individual 

peaks are higher than 0.5, which is typical for inverted states of Fermi-systems. 

The distribution functions of Bose-Einstein type 66 ( )f j , 88 ( )f j  (Fig. 1,f,h) 

randomly change with increasing j  near the occupation numbers from 0 to 10, 

in separate planes the peaks with large population numbers are observed. 

Accounting ordering pair operators in (1), (2) (the displacement and density of 

states of the lattice nodes) in the correlation function (6) - (9) leads to different 

distribution functions (10) - (13), as confirmed by numerical simulations  
(Fig. 1). 

The dependencies of the distribution functions with mixed statistics (18) on an 

integer index j  of a nodal plane for pure states at 7,8r =  are shown in Fig. 2. 

 

  
a b 

Fig. 2. Dependencies of the distribution functions with mixed statistics 

on j
 
for pure states 

 

At some points j  changes sign at functions 7 8,f f , which confirms the 

presence of a mixed statistics. In this case functions rf  and rf ′  
may be 
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interpreted as Fermi-Dirac type distribution functions for those areas of changes 

for j , where 0rK > , and at 0rK <  as Bose-Einstein type distribution 

functions in the main and excited states, respectively. Note the pronounced 

stochastic behavior of the amplitudes | |rM  and phases rµ  have of averaged 

functions ˆ
r rM SpM= = | | exp( )r rM iµ= . 

The possibility of changing the sign of real parts of the first order complex 

correlation functions ( ), ( )pq pqK j C j  (6), (7) and second order correlation 

functions ( ), ( )pq pqG j g j  (14), (16) is also confirmed by the results of the 

numerical simulations. 

4. Conclusions 
The numerical simulation has confirmed the theoretical conclusion of the 

presence of a mixed statistics: the change of the statistics from Fermi-Dirac type 

to the statistics of Boze-Einstein type for separate internal nodal planes of the 

bulk lattice. The analysis of the distribution functions of the occupation numbers 

for mixed states shows that particular nodal planes may be in inverse structural 

states. 

Based on the analysis of the correlation functions of the first and second order a 

possibility of changing the sign of real parts of the correlation functions is 

shown. This indicates a possible change in the nature of the interaction 

(attraction or repulsion) between lattice nodes within a single nodal plane as 

well as between different planes. 

Accounting ordering pair operators (displacement and density of states the 

lattice nodes) in the correlation function has the effect of deviations of the initial 

distribution function. 
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