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Abstract: A model nanosystem is investigated: a sample in the form of a rectangular 

parallelepiped of finite size with volumetric discrete lattice. It is shown that a separate 

nodal plane of a model nanosystem can be in different structural states: stochastic state of 

the deformation field on the whole rectangular lattice; the state with the linear fractal 

dislocation of different orientations; quasi-two-dimensional structures of the type of 

fractal elliptical, hyperbolic dislocations and fractal quantum dot. Using the numerical 

modelling method, the behaviour of the deformation field and a possibility of the 

alteration of these structures is investigated. The analysis of the behavior of the averaged 

functions allows to determine the critical values of the governing parameters. 

Keywords: fractal quasi-two-dimensional structures, nanosystem, stochastic deformation 
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1. Introduction 
Investigation of fundamental properties of nanosystems and nanomaterials of a 

new generation [1, 2] is actual for modern areas of science and nanotechnology. 

Among the real nanomaterials the active nanostructural elements are clusters, 

porous, quantum dots, wells, corrals, surface superlattices. The physical 

properties of these elements can demonstrate chaotic behavior [3]. The active 

nanostructural elements can find their application in the quantum 

nanoelectronics, quantum informations [4], quantum optics. Previously in paper 

[5] fractons – vibrational excitations on fractals – were introduced. Fractal 

dislocation [6, 7] is one of the non-classical active nanostructural objects. For 

the theoretical descriptions of fractal objects it has been proposed [6, 7] to use 

the theory of fractional calculations [8] and the concept of fractals [9]. The new 

structural states [10-13] of fractal dislocation were investigated on the basis of 

fractional calculation theory and Hamilton operators. The purpose of the paper 

is to research a possibility of governing the alteration of the deformation field of 

fractal quasi-two-dimensional structures in model nanosystems. 

2. Basic nonlinear equations 
A model nanosystem is investigated: a sample in the form of a rectangular 

parallelepiped of a finite size with volumetric discrete lattice 1 2 3N N N× × , 
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whose nodes are given integers , ,n m j ( 11,n N= ; 21,m N= ; 31,j N= ). In 

papers [11] the dimensionless variable displacement u  of the lattice nodes is 

described by function 

( )( )2
01 1 2 ( , )u sn u u k Qα= − − − ,   01 1 2 3Q p p n p m p j= − − − .   (1) 

Here α  is the fractal dimension of the deformation field u  along the Oz -axis 

( [0,1]α∈ ); 0u  is the constant (critical) displacement; k  is the modulus of the 

elliptic sine; governing parameters 01 1 2 3, , ,p p p p  do not depend on the 

integers , ,n m j . This paper takes into account the parameters 

01 1 2 3, , ,p p p p depending on the integers , ,n m j . While modeling deformation 

fields of stochastic fractal quasi-two-dimensional structures, this allowed to 

obtain the basic non-linear equations that take into account the interaction of 

nodes in the plane of the discrete rectangular lattice 1 2N N× . The structure of 

these equations is similar to the expression (1), but with a different value of the 

function Q . For a linear fractal dislocation the function Q  has the form 

( ) ( )0 1 0 2 0( ) / ( ) /c cQ p b n n n b m m m= − − − − ;                  (2) 

1 cos( / 2 ( ))b jπ ϕ= + ;    2 cos ( )b jϕ= .                         (3) 

For other fractal quasi-two-dimensional structures the function Q  has the form 

( ) ( )
2 2

0 1 0 2 0( ) / ( ) /c cQ p b n n n b m m m= − − − − ,               (4) 

where for the elliptic dislocation and fractal quantum dot 

1 2 cos ( )b b jϕ= =                                               (5) 

and in the case of fractal hyperbolic dislocation 

1 cos ( )b jϕ= ;    2 cos( ( ))b jπ ϕ= + .                        (6) 

Now here the governing parameters are 0 0 0, , , , ,c cp n n m m ( )jϕ . Varying 

these parameters both a structural state of the self-fractal dislocation and the 

type of dislocation (for example, the transition from fractal elliptical dislocation 

to fractal quantum dot) can be governed. In general case the governing 

parameters can be changed from one node plane to another, which may be 

connected not only with external governance (for example, when a parameter 

0p  is changed), but also with internal governance (the process of self-

organization of structures when ( )jϕ  is changed). To investigate the behavior 

of the stochastic deformation field of fractal quasi-two-dimensional structure in 

terms of the statistical approach, averaged functions are introduced [11]. The 

necessity of averaging is connected with the fact that the elements of the lattice 

nodes displacement matrix are in general case random real functions. The 

average is taken only on nodes in the plane of the discrete rectangular lattice 

1 2N N× . For this the operators fields of displacement û  and density of states 

ρ̂  are introduced. These operators are coincided to the matrix with the elements 
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of nmu ; 2 11 /mn N Nρ = . Rectangular matrices û  and ρ̂  have the dimensions 

of 1 2N N× ; 2 1N N× , respectively. For a homogeneous distribution the 

operator ρ̂  is given by 

2 1 2 1
ˆ ˆˆ /T
N N N Nρ ξ ξ= ,                                            (7) 

where «T » denotes transposition; 1
ˆ
Nξ , 2

ˆ
Nξ  are row-vectors with elements 

equal to one. The averaged function M  has the form [11] 

ˆ ˆ( )M Sp u M i Mρ ′ ′′= = + ;   ReM M′ = ;   ImM M′′ = .        (8) 

Here Sp  is an operation of calculating the trace of a square matrix; Re, Im  

represent an allocation of real and imaginary parts of the complex function M ; 

i  is an imaginary unit. Averaged function M  depends on the governing 

parameters 0 ( )p j , ( )jϕ . In general case ( )M M j=  is a random function, as 

an average over the index j  is not made. This means that there are some critical 

values 0 ( )p j , ( )jϕ , during the transition through which the behavior of 

function M  can vary from regular to stochastic. Therefore there is a problem of 

finding the critical values of these governing parameters. 

3. Numerical simulation and the analysis of results 

Solution of the nonlinear equation (1) with the value of function Q  in the form 

(3) is constructed by the iteration method [11] for fixed values 0,5α = ; 

0,5k = ; 0 29,537u = . The iterative procedure on the index m  simulates a 

stochastic process on a rectangular discrete lattice with a size 

1 2 30 40N N× = × . The initial parameters were the following: 0 14,3267n = ; 

9,4793cn = ; 0 19,1471m = ; 14,7295cm = . In the simulation it was 

assumed that
 

( ) ( 1) /10j jϕ π= − . A separate nodal plane of a model 

nanosystem can be in different structural states: the state with the linear fractal 

dislocation of different orientations (Fig. 1); stochastic state of the deformation 

field on the whole rectangular lattice (Fig. 2. b, Fig. 3. b); quasi-two-

dimensional structures of the type of fractal elliptical (Fig. 2. a), hyperbolic 

dislocations (Fig. 3. a. c) and fractal quantum dot (Fig. 2. c). Governance of 

alteration (Fig. 1-Fig. 3) of the deformation field is achieved by changing the 

internal parameters 1 2,b b . At the same time the external parameter 

0 0.1453p =  has been fixed and is chosen from the field of stochastic behavior 

of the averaged function M  (Fig. 4-Fig. 6). Rotation of a linear dislocation 

(Fig. 1) is achieved by governing the internal parameters 1 2,b b  (3) by changing 

the angle ( )jϕ . At rotation there is a change of the structural state of the 

dislocation and substructures appear, which is related to the influence of the 

stochastic iteration process along the axis Om . If cos ( ) 0jϕ >  the quasi-two-

dimensional structure (4), (5) is a structure of the type of fractal elliptical 



O. P. Abramova, S. V. Abramov 

 

370 

dislocation, for which the location of the singular points is typical for real 

ellipse. If cos ( ) 0jϕ <  the quasi-two-dimensional structure is a structure of the 

type of the fractal quantum dot [12], for which the location of the singular points 

is typical for an imaginary ellipse. Fig. 2 show the transition from the elliptic 

dislocation to the quantum dot through the stochastic state of the whole lattice. 

 
Fig. 1. The behavior of functions u  (a,b,c,g,h,i) and their cuts (d,e,f,j,k,l) at 

[ 0.5,0.5]u∈ −  (top view) depending on the lattice index n  and m  

for linear fractal dislocation 
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This transition is realized when governing the internal parameters of 1 2,b b  (5) 

by changing the angle ( )jϕ . At the same time a reorientation of the peaks, a 

change of the substructure, an expansion (at [1,5]j∈ ) and a restriction (at 

[17,21]j∈  ) of the area of the elliptical dislocation; a restriction (at 

[7,11]j∈  ) and an expansion (at [12,15]j∈ ) of the area of the quantum dot 

are observed. 

 

 

 
 

Fig. 2. The transition from the elliptic dislocation to the quantum dot. The 

behavior of the functions u  (a,b,c) and their cuts (d,e,f) at [ 0.5,0.5]u∈ −  

(top view) depending on the lattice index n  and m  
 

 

The reorientation of the branches of the fractal hyperbolic dislocation through 

the stochastic state of the whole lattice is achieved by governing the internal 

parameters 1 2,b b  from (6) by changing the angle ( )jϕ  (Fig. 3). Strongly 

pronounced stochastic behavior of the deformation field and the substructure 

can be observed for the region between the branches of the hyperbolic 

dislocation. The analysis of the behavior of the averaged functions allows to 
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determine the critical values of the governing parameters. In our case, the 

parameter 0p  is a parameter of the external governance, averaged function M  

is a real random function. The behavior of function M  for the fractal elliptical 

dislocation ( 0 0p > ,
 1 2 1b b= = ) is shown in Fig. 4. In the interval of 

0 [0;5]p ∈  a base peak (Fig. 4. a) and a stochastic behavior with smaller 

amplitudes (Fig. 4. b) are observed. The presence of several features (such as 

local resonance dispersion) allows us to determine the critical values of 0p , 

during the transition through which the stochastic behavior of M  is changed to 

a regular one(Fig. 4. c). These features allow us to study the mechanism of 

alteration of fractal quasi-two-dimensional structures of the type of elliptical 

dislocation. With a further increase in 0p  function M  is regular and 

asymptotically approach to zero from negative values. 

 
 

 

Fig. 3. The reorientation of the branches of the hyperbolic dislocation through 

the stochastic state. The behavior of the functions u  (a,b,c) and their cuts (d,e,f) 

at [ 0.5,0.5]u∈ −
 
(top view) depending on the lattice index n  and m  

 

 

The behavior of M  for the fractal quantum dot ( 0 0p < , 1 2 1b b= = ) is shown 

in Fig. 5. When changing 0p  the regular behavior of function M  (Fig. 5. a) 
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goes into pronounced stochastic (Fig. 5. b). The presence of such features as 

inflection points, local maxima and minima allows to determine the critical 

values of the parameter 0p  (Fig. 5. c). The behavior of the function M  of the 

parameter 0p  at 1 1b = − , 2 1b =  ( 11j = ) for the fractal hyperbolic 

dislocation (4), (6) is shown in Fig. 6. By changing 0p  a base peak and two 

additional peaks (Fig. 6. a) are observed, as well as a pronounced stochastic 

behavior with smaller amplitudes (Fig. 6. b). The features of the function 

behavior are given by a type of local inflection points, maxima and minima (as 

in the quantum dot of Fig. 5. c). This allows to determine the critical value of 

the parameter 0p , across which the regular behavior of the function M  

changes to stochastic (Fig. 6. c). 

 

 

 
Fig. 4. The behavior of M  of 0p  for the elliptic dislocation at 1j =

 
 

 
 

 
Fig. 5. The behavior of M  of 0p  for the fractal quantum dot at 1j =
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Fig. 6. The behavior of M  of 0p  for the hyperbolic dislocation at 11j =  

 

By changing the sign of 0p  (Fig. 6. d) there is a change in the orientation of the 

branches of the fractal hyperbolic dislocation. In this case the features of M  

have the form of a resonance dispersion type (Fig. 6. e) against the background 

of the step (Fig. 6. f). This allows to determine the critical value of the 

parameter 0p , across which the stochastic behavior of M  changes to regular. 

 

4. Conclusions 
In order to describe stochastic deformation fields of fractal quasi-two-

dimensional structures the basic non-linear equations taking into account the 

interaction of nodes in the plane of the discrete rectangular lattice were 

obtained. The alteration of the deformation field of fractal quasi-two-

dimensional structures is achieved by changing internal and external governing 

parameters. It is shown that in this case both the structural state of the self-

structure and the type of structure vary. The behavior of the averaged functions 

when changing the governing parameters correlates with the behavior of the 

deformation field and is related to the mechanisms of alteration of fractal quasi-

two-dimensional structures. 
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