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Abstract. We provide new conditions for the presence of generalized synchronization
in unidirectionally coupled systems. One of the main results in the paper is the
preservation of the chaos type of the drive system. The analysis is based on the
Devaney definition of chaos. Appropriate simulations which illustrate the generalized
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1 Introduction

The most general ideas about the synchronization of different chaotic systems
with an unrestricted form of coupling can be found in paper [1]. Rulkov et
al. [2] realized this proposal by introducing the concept of generalized synchro-
nization (GS) for unidirectionally coupled systems. The concept of GS [2]-[5]
characterizes the dynamics of a response system that is driven by the output
of a chaotic driving one.

In the present paper, the drive system will be considered in the following
form

' = F(x), (1)

where F': R™ — R™ is a continuous function, and the response is assumed to
have the form

Y = Ay +g(z,y), (2)

where g : R™ x R™ — R" is a continuous function in all its arguments and the
constant n x n real valued matrix A has real parts of eigenvalues all negative.
We assume that system (1) admits a chaotic attractor.
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GS is said to occur if there exist sets I;, I, of initial conditions and a trans-
formation ¢ : R™ — R", defined on the chaotic attractor of the drive system,
such that for all z(0) € I, y(0) € I, the relation lim;_,« ||y(t) — @(x(t))]| =0
holds. In this case, a motion which starts on I, x I, collapses onto a manifold
M C I x I, of synchronized motions. The transformation ¢ is not required to
exist for the transient trajectories [2,3].

According to the results of [3], GS occurs if and only if for all zg € I,
Y10, Y20 € Iy, the following criterion holds:

(A) lim |Jy(t, zo,y10) — y(t, zo,y20)|| = 0,
t—o0

where y(t, o, y10), y(t, Zo, y20) denote the solutions of (2) corresponding to the
initial data y(0, zo, y10) = Y10, ¥(0, Zo, Y20) = Yoo with the same z(t), 2(0) = xo.

A consequence of GS is the ability to predict the behavior of y(t), based
on the knowledge of x(t) and ¢ only. If ¢ is invertible x(¢) is also predictable
from y(t). The usage of statistical estimations of predictability [2], analysis of
conditional Lyapunov exponents [3] and the auxiliary system approach [4] are
the main approaches to the observation of GS.

Let us introduce the ingredients of Devaney chaos [6] for continuous time
dynamics. Denote by

B ={¢(t) | ¥:R— K is continuous}

a collection of functions, where K C R? is a bounded region.

We say that & is sensitive if there exist positive numbers € and A such that
for every 9 (t) € % and for arbitrary § > 0 there exist 1 (t) € %, to € R and an
interval J C [to, 00), with length not less than A, such that ||¢(to) — ¥(to)|| < 0
and |1(t) — ¥ (t)|| > €, for all t € J.

On the other hand, the collection & is said to possess a dense function
P*(t) € A if for every (t) € B, arbitrary small ¢ > 0 and arbitrary large
E > 0, there exist a number £ > 0 and an interval J C R, with length F,
such that ||¢(t) — ¥*(t + &)| <€, for all t € J. We say that £ is transitive if it
possesses a dense function.

Furthermore, 4 admits a dense collection ¢ C £ of periodic functions
if for every function (t) € %, arbitrary small e > 0 and arbitrary large
E > 0, there exist @(t) € ¢4 and an interval J C R, with length E, such that

Hw@) - qZ(t)H <e forallte

The collection £ is called a Devaney chaotic set if: (i) # is sensitive; (ii)
2 is transitive; (iii) # admits a dense collection of periodic functions.

We present two main results in the paper. The first one is the the occurrence
of GS in system (1)+(2), and the second one is the preservation of the chaos
type of the drive system. The GS is verified in the next section by means of the
criterion (A). The third section is devoted for the presence of Devaney chaos
in the response system. Moreover, an example that supports our theoretical
discussions is presented in the last section.
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2 Preliminaries

Throughout the paper, the uniform norm [[I']| = supyj,= [[I"v for matrices
will be used.

Since the matrix A, which is aforementioned in system (2), is supposed to
admit eigenvalues all with negative real parts, there exist positive real numbers
N and w such that HeAtH < Ne~¢t t > 0. These numbers will be used in the
last condition below.

The following assumptions on systems (1) and (2) are needed throughout
the paper:

(A1) There exists a number Hy > 0 such that sup ||F(z)| < Ho;

TER™
(A2) There exists a number Ly > 0 such that ||F'(z1) — F(z2)| < Lo ||z1 — 22|,

for all zq, x5 € R™;

(A3) There exists a number My > 0 such that  sup  ||g(z,y)| < Mo;
rzeR™ yeR™

(A4) There exist numbers L; > 0 and Ly > 0 such that
Ly |z — a2l < llg(z1,y) — g(w2,9)[| < Lo [lz1 — 22,

for all 1,22 € R™, y € R™;
(A5) There exists a number Lg > 0 such that

lg(z,y1) — g(@, y2)ll < La[lyr — vol|,

for all x € R™, yy,y2 € R™;
(A6) NL; —w < 0.

Using the technique presented in the book [7], for a given solution z(t) of
system (1), one can verify the existence of a unique bounded on R solution
ba(t)(t) of the system y' = Ay +g(x(t),y), which satisfies the following integral
equation

t
ba® = [ A Ig(als), b (5))ds. 3)
Our main assumption is the existence of a nonempty set <7, of all solutions
of system (1), uniformly bounded on R. That is, there exists a positive real
number H such that sup,cp ||(t)|| < H, for all z(t) € 7.
Let us introduce the following set of functions

We note that for all y(t) € o7, one has sup,cp ||y(t)|| < M, where M = NMy/w.
Moreover, if 2(t) € o7, is periodic then ¢, (t) € 7, is periodic with the same
period, and vice versa.

Next, we will reveal that if the set o7, is an attractor with basin %, that
is, for each z(t) € %, there exists T(t) € % such that ||z(t) —Z(t)|| — 0 as
t — oo, then the set .27, is also an attractor in the same sense. In the following
lemma we specify the basin of attraction of &7,.

Suppose that the set %, consists of solutions of the system y = Ay +
g(z(t),y), where z(t) belongs to %,.
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Lemma 1. %, is a basin of <7,.

Proof. Fix an arbitrary € > 0 and let y(t) € %,. There exists Z(t) € <7, such

that ||z(t) —Z(t)|| — 0 as t — oo. Set o = #NL]{UQ and 7(t) = ¢z()(t).

One can find Ry = Ry(e) > 0 such that if ¢t > Ro then lz(t) — Z(t)]] < ae and
N |[y(Ro) — T(Ro)|| eNE3=«)t < qe. Using the equation
y(t) =g(t) = A7) (y(Ro) —H(Ro))

+/ M) [g(a(s), y(s)) — g(2(5),7(s))] ds
Ro

+ [ gla().505)) - gl (). 505))] s,
Ro

we obtain for ¢t > Ry that

N Lsce

! ly(t) = 70| < Ne“ [ly(Ro) —G(Ro)| + (e — ewfio)

t
N /R ¢ lly(s) — (s)|| ds.
0

Applying Gronwall’s inequality we attain that

NLsae a(f—
e y(t) ~ O < 22 4 N [ly(Ro) — F(Ro) | e Es(t— 1o

NL?aeewRoeNLg(t—Ro) N2LyLsae (1 _ e(NL;;fw)(t*Ro))
w w(w — NLj) '

Thus, we have

ly(t) = G < N y(Ro) — G(Ro)|| N o)t o)

For t > 2Ry, one can show that ||y(t) —g(¢)|| < (1 + wﬂfﬁLS) ae = e. Conse-

quently, |ly(¢t) —g(t)|| = 0ast — co. O

One can verify using Lemma 1 that for a fixed z(t) € %,, any two solutions
y(t),7(t) of the system y' = Ay + g(x(t),y) satisfy the criterion (A). Therefore,
we have the following theorem.

Theorem 1. GS occurs in the coupled system (1)+(2).

3 The chaotic dynamics

We will prove that if the drive system (1) is Devaney chaotic then the response
system (2) is also chaotic in the same sense. The three ingredients of Devaney
chaos will be considered individually. We start with sensitivity in the next
lemma.

Lemma 2. Sensitivity of the set o, implies the same feature for the set o7,.
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Proof. Fix an arbitrary 6 > 0 and y(t) € «,. There exists z(t) € <% such
that y(t) = ¢g(1)(t). Choose a sufficiently small number € = €(0) > 0 such

that (1 + wfﬁig) € < 6, and take R = R(€) < 0 sufficiently large in absolute

value such that WG(W*NLS)R < & Set 6; = 61(¢, R) = eelof. Since 7,
is sensitive, there exist ¢g > 0, A > 0 such that ||x(to) — Z(to)|| < d1 and
lx(t) —Z(t)|| > €o, t € J, for some T(t) € o, top € R and for some interval
J C [to,00) whose length is not less than A.

By means of continuous dependence on initial conditions, one can verify that
lz(t) —Z(t)|| <&t € [to+ R, to]. Denote 7(t) = ¢z (t). Using the relation (3)
for both y(t) and 3(t), we obtain for ¢ € [t + R, to] that

t

e“Hly(t) =70 < NLB/t+R e lly(s) —u(s)ll ds

_’_Nf;QE(ewt _ ewltotR)y 4 2J\§3New(to+R).

Applying Gronwall’s Lemma to the last inequality we attain that

NLse n 2MON6(NL3—UJ
w —NL3 w

ly(t) = g(1)] < Yt=to=R) ¢ ¢ [ty + R, to].

Consequently, we have |ly(to) — y(to)|| < % + 2N p(w=NLs)R g,

Next, we will show the existence of a positive numbers €;, A and an interval
J C J with length A such that the inequality ||y(t) — %(t)|| > €1 holds for all
teJl

Suppose that g(z,y) = (91(z,y), 92(x,y), ..., gn(z,y)), where each g;, 1 <
j < n, is a real valued function.

Since 27, and &7, are both equicontinuous on R, and the function g : R™ x
R™ x R™ — R"™ defined as g(x1,x9,23) = g(x1,23) — g(x2,x3) is uniformly
continuous on the compact region

7 ={(w1, 29, 23) € R™ X R™ X R" | ||| < H, a2 < H, ||zs]| < M},

the set .7 with elements of the form g;(x(t), ¢z (1)) — 9;(Z(1), P2y (t)), 1 <
Jj < n, where x(t),Z(t) € o, is an equicontinuous family on R. Therefore, there
exists a positive number 7 < A, independent of z(t), T(t) € o, y(t),7(t) € o,
such that for any ¢, ¢y € R with [t; — 2| < 7 the inequality
(g5 (x(t1), y(t1)) — g5 (F(t1), y(t1))) — (g5 (x(t2), y(t2)) — g5 (F(t2), y(t2)))]
1€0 (4)
2n
holds, for all 1 < j < n.
Condition (A4) implies that for each ¢ € J, there exists an integer jo = jio(¢),

. _ Ly _
1 < jo < m, such that |g;, (x(t), y(t)) — g5, (Z(2), y(t))| = —=l|l=(t) —z(®)]-
Let sg be the midpoint of the interval J and 6 = sy — 7/2. One can find an
integer jo = jo(s0), 1 < jo < n, such that

9 e (50), (50)) = g5 (Fls0), wls0))| 2 2 (o) = (so)l] > 22 (5)
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According to (4), for all t € [#,0 + 7] we obtain that

_ _ L€
1940 (2(0), 4(50)) = gjo (Z(s0),y(50))| =950 (z(2), y(1)) = gjo ((2), y()] < =
and therefore by means of (5), the following inequality:
_ L€
1950 (@(8), y(8)) = gjo (@(X), y(X)| > ==, t € [0,6 +7]
The last inequality implies that
0+1
_ TL1€g
‘ [ lates)5) - gt (e) s as| > 75
0 n
Therefore, we have
max _|[y(t) =yl = y(0 +7) —5(0 + 7]
te(6,0+7)
TL1€0 _
—[1 L A -
S — L rlLa+ D] mae[lu(®) - 500
and hence, max |y(t) — ()] > Tlaco
nd hence, max - .
setorn 0 Y 202+ 7(Ls + || AlD)]
Now, suppose that at the point n € [6,6 + 7], the function ||y(t) —7(?)||
. . — T TL1€g }
takes its maximum. Define A = min< —,
{ 27 8n(M || Al + Mo)[2 + 7(Ls + | A]))]
v fn ifn<O+7/2 1 1 g1
and 0 _{77—47 iy > 0472 For t € J' = [0',0' + A], we have
t
ly(&) =gl = ly(n) =yl - / Al ly(s) —g(s)l ds
n
t
| [ lata() ) - g(a(s). 7(5)) | ds
n
> TL1€0
Anf2 +7(Ls + || AI]
Consequently, ||y(t) —y(t)|| > e, t € J*, where €; = m and the

length of the interval J' does not depend on the functions y(t),%(t) € . O
Lemma 3. Transitivity of <7, implies the same feature for <7,

Proof. Fix arbitrary numbers e > 0, E > 0, and y(t) € <, There exists
a function z(t) € o7, such that y(t) = ¢,)(t). Let v = QMON‘&E“_’;VJLL):)_NLM.
Since there exists a dense solution z*(t) € 4%, one can find £ > 0 and an interval
J C R with length E such that ||z(t) — z*(¢t + &)|| < e, for all t € J. Without
loss of generality, assume that J is a closed interval, that is, J = [a,a + E] for

some real number a. Denote y*(t) = ¢g=(1)(t).
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Making use of the integral equation (3) for both y(t) and y*(¢), one can
verify for ¢ € J that

2MON w NLQ’YE
(&
w w

a

eHly(t) —y (t+ )l < (e —e*)

t
ENLy [ e yl) — g7 (54 €)1 ds.
Application of Gronwall’s Lemma to the last inequality implies that

2MyN Y N Lyve )t
o < “MoN (NLz—w)(t—a) 7( _ (NLz—w)(t a>).
ly(®) —y"(t+ Ol < ——e t o N e

Suppose that £ > #N[@ln (%) IfteJ = [a—f—%,a—i—E], then it is

true that eVLs—w)(t—a)

W + wz—vﬁig ~ve = ¢, for t € Jy. Thus, the set &7, is transitive. O

< ~e. Consequently, we have ||y(t) —y*(t+&)| <

In a similar way to Lemma 3 one can prove the following assertion.

Lemma 4. If o/, admits a dense collection of periodic functions, then the same
is true for o7,

The following theorem can be proved using Lemmas 2-4.

Theorem 2. If the set o, is Devaney’s chaotic, then the same is true for the
set a,.

In the next part, we will present an example which supports our theoretical
discussions. The usual Euclidean norm for vectors and the norm induced by
the Euclidean norm for square matrices will be used.

4 An example

We consider the Lorenz equations [8]

) =10 (—z1 + x2)

xh = —xo + 28x1 — w123 (6)
8
xh = —gxg + z129,

as the drive system. It is known that system (6) admits sensitivity and possesses
infinitely many unstable periodic solutions [8]. The equations for the response
system are chosen as

1
y) = —2y1 —ys + 0.003y§ + 29 — 3 COS X
Yy = —y1 — 2y2 + 5x1 + 0.01x] (7)

+ Y2
! — 41 — s — 3ys + 2tan 22 .
Y3 = Y1 — Y2 — Yz + 2tan ( 120
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-2 0 -1
System (7) is in the form of (2), where A = | 1 —1 —3 | . The inequality

0 0 O
HeAtH < Ne™*! is valid, where N = 4.829 and w = 2. One can verify that
conditions (A4) — (A6) are satisfied with constants L; = v/3/180, Ly = 17V/3
and Lz = 16v/3/75.

According to the results of the present study, system (7) exhibits GS, saving
the sensitivity feature of the drive and the existence of infinitely many unstable
periodic solutions. Consider a trajectory of system (6)+(7) with z;(0) = 0.11,
x2(0) = 0.96, z3(0) = 18.98, y1(0) = —0.69, y2(0) = —11.09, y3(0) = 1.96.
Figure 1 shows the projections of this trajectory on the y; — yo — y3 space, and
supports the theoretical results such that the response system (7) possesses
chaotic motions. According to the GS, the attractor shown in Figure 1, (a) is
a nonlinear image of the chaotic attractor of system (6). Figure 1, (b), on the
other hand, depicts the projection on the x5 — yo plane, and reveals that the
systems are not synchronized in the sense of identical synchronization [9].

b

-5 20 10 y 30 -20 -10 0 10 20 30
2

Fig. 1. The projections of the chaotic attractor generated by the coupled system
(6)+(7). (a) Projection on the y1 —y2 —ys3 space; (b) Projection on the x2 — y2 plane.
The pictures represent the synchronized behavior.
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