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Abstract: Two new mathematical models of cross-waves generation in fluid free surface 

between two cylindrical shells when the inner wall vibrates radially and parametric 

oscillations of a cantilever bar with low bending rigidity are worked out. In the cases of 

internal resonances parametric oscillations of continuous systems are approximated by 

two eigenmodes with different eigen frequencies. Those two eigen modes are dominant 

and they are resonant. On the basis of analysis of the largest Lyapunov exponents for a 

complex system three types of steady-state regimes are found: periodic, quasi-periodic 

and chaotic regimes. Phase portraits and power spectra are constructed and studied. 

Attention is concentrated mainly on the properties of chaotic attractors.  

Keywords: Waves in fluid free surface, Cross-waves, Cantilever bar, Bending rigidity, 

Eigenmodes.  

 
1    Introduction 

The phenomenon of deterioration of fluid free-surface waves between two 

cylindrical shells when the inner wall vibrates radially, is rather known, 

Faraday, 1831, [3]. The waves may be excited by harmonic axisymmetric 

deformations of the inner shell and depending on the vibration frequency both 

axisymmetric and non-symmetric wave patterns may arise. Experimental 

observations have revealed that waves are excited in two different resonance 

regimes. The first type of waves corresponds to forced resonance, in which 

axisymmetric patterns are realized with eigenfrequencies equal to the frequency 

of excitation. The second kind of waves is parametric resonance waves and in 

this case the waves are "transverse", with their crests and troughs aligned 
perpendicular to the vibrating wall. These so-called cross-waves have 

frequencies equal to half of that of the wavemaker, Krasnopolskaya, 1996, [4]. 

To obtain a lucid picture of energy transmission from the wavemaker motion 

(inner shell vibrations) to the fluid free-surface motion the method of 

superposition has been used.  
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As the second task oscillation regimes of a cantilever bar with low bending 

rigidity are studied in the present paper. In the case of internal resonance 

parametric oscillations of cantilever bar with low bending rigidity are 

approximated by two eigenmodes with different eigen frequencies, 

Krasnopolskaya, 2012, [5].  

 

2    Two Mode Model of Cross-waves  

Let us theoretically consider the nonlinear problems of fluid free-surface waves 

which are excited by inner shell vibrations in a volume between two cylinders of 

finite length. It is useful to relate the fluid motion to the cylindrical coordinate 

system ( , , )r xθ . The fluid has an average depth d ; the average position of the 

free surface is taken as 0x = , so that the solid tank bottom is at x d= − . The 

fluid is confined between a solid outer cylinder at 2r R=  and a deformable 

inner cylinder (which acts as the wavemaker)  at average radius 
01

1 1 0 1 0( ) cos( ) 2 /
d

R r a d x dx r aη π−
−

= + = +∫ . This inner cylinder vibrates 

harmonically in such a way that the position of the wall of the inner cylinder is 

1 1 1 0 1 0( , ) ( cos )cos 2 /r R x t R a a t x aχ ω η π= + = − + − ,where / (2 )dη π= . 

Assuming that the fluid is inviscid and incompressible, and that the induced 

motion is irrotational, the velocity field can be written as φ= ∇v , with 

( , , , )r x tφ θ  the velocity potential. The governing equation is  

 
2

1 1 20 on ( ,0 2 , )R r R d xφ χ θ π ζ∇ = + ≤ ≤ ≤ ≤ − ≤ ≤  

  (1) 

where ( , , )r tζ θ  is free surface displacement. 

The dynamic and kinematic free-surface boundary conditions are: 

 

          21 / 2( ) ( )t g F tφ φ ζ+ + =∇                                                

 

· at ( , , )x t x r tφ φ ζ ζ ζ θ= ∇ ∇ + =    (2) 

 

with g  the gravitational acceleration, ρ  the fluid density, ( )F t  is an arbitrary 

function of time. Here and later the subscripts , , ,x r tθ  signify partial 

differentiation.  

The kinematic condition at the vibrating inner cylinder is: 

 

1 1 1· at ( , ).r t r R x tφ χ φ χ χ= + ∇ = +∇           (3) 

    

 

From the experimental observations we may conclude that the pattern formation 

has a resonance character, every pattern having its "own" frequency. Assuming 
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that patterns can be described in terms of normal modes with characteristic 

eigenfrequencies, we expand the potential φ  and the free-surface displacement 

ζ  in a complete set of eigenfunctions, which are determined by linear theory. 

The amplitudes of these eigenfunctions are governed by the nonlinear problem 

(2) - (3). The potential φ  can be written as the sum of three harmonic functions 

0 1 2φ φ φ φ= + + , Lamé, 1852, [7]. The solution of the linear problem for 1φ  can 

be written in the form 

 

, ,
1

0 1

cosh ( )
( ) ( , ),

cosh

i jc s c s
i j i j

i j i j i j

k x d
t r

N k d
φ φ ψ θ

∞ ∞

= =

+
=∑∑    (4) 

 

on the complete systems of azimuthal ( cosiθ , sin iθ ), and radial 

eigenfunctions 
1

1

( )
( ) ( ) ( )

( )

i i j
i j i j i i j i i j

i i j

J k R
k r J k r Y k r

Y k R
χ ′

′

= − , with some 

arbitrary amplitudes 
,

( )
c s
i j tφ . In the solution (4) the notations 

,
( , ) ( )(cos ,sin )

c s
i j i j i jr k r i iψ θ χ θ θ=  are used, where iJ  and iY  are the i -th 

order Bessel functions of the first and the second kind, respectively, and i jN  is 

a normalization constant, where the index c  (or s ) indicates that the 

eigenfunction cos iθ  (or sin iθ ) is chosen as the circumferential component; 

i jk  represents eigen wave numbers. The system of functions ( , )i j rψ θ , with 

0,1,2,...i =  and 1,2,3,...j = , is a complete orthogonal system, so any 

function of the variables r  and θ  can be represented using the usual procedure 

of Fourier series expansion. Thus, the free surface displacement 

0( , , ) ( )r t tζ θ ζ−  can be written as ( 0 ( )tζ is the mean level of fluid free 

surface oscillations) 

 
,

,
0

0 1

( , )
( , , ) ( ) ( ) .

c s
i jc s

i j
i j i j

r
r t t t

N

ψ θ
ζ θ ζ ζ

∞ ∞

= =
− = ∑∑    (5) 

 

The velocity potential 2 ( , , , )r x tφ θ  can be formulated in terms of an ordinary 

Fourier series in cos l xα  with /l l dα π=  and in ( cosiθ , sin iθ ), so that the 

general solution reads, Krasnopolskaya, 1996, [4] 

 

,
2

0 1

ˆ( )cos ( )(cos ,sin )c s
i l l i l l

i l

t x r i iφ α χ α θ θ
∞ ∞

= =
= Φ∑∑    (6) 
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with 
2

2

' ( )
ˆ ( ) ( ) ( )

' ( )

i j
i l l i l i l

i j

I R
r I r K r

K R

α
χ α α α

α
= − , where iI  and iK  the i -th 

order modified Bessel functions of the first and second kind, respectively. 

Under a parametric resonance, when the excitation frequency is twice as large as 

one of the eigenfrequencies, i.e. 2 nmω ω≈ , and according the experimental 

observations we may assume that the free-surface displacement can be 

approximated by two resonant modes. So that we may write 

0 0 0
0

1 1
( , ) ( )c

nm nm l l
nm l

r r
N N

ζ ζ ψ θ ζ ψ ζ≈ + +                                          (7) 

 

where 0lψ is the axisymmetric mode which has the eigenfrequency by a value 

very close to ω , i.e. 0lω ω≈ . From the experimental observations follows 

that cross-waves has ampliteds much bigger than the amplitudes of the forced 

waves with the frequency ω  of the wavemaker vibrations. So that we can seek 

the unknown functions in the form 

[ ]

1/2

1 1 1 1 1 1

0 1 0 2 1 2 1

( ) ( )cos ( )sin ;
2 2

( ) ( )cos ( )sin ,

nm

l

t t
t p q

t p t q t

ω ω
ε λ τ τ

ζ ε λ τ ω τ ω

ζ  = +  
= +                                 (8)    

where 
1

1 th( )nm nmk k hλ −= , 

2

1
g

nmaω
ε =  is a small parameter, 1 1

1

4
tτ ε ω=  

 is a dimensionless slow time, 0 0

1

0th( )l lk k hλ −= . By substitution of the 

expressions (8) into boundary conditions (2)-(3), using (4)-(7) and averaging 

over the fast time tω , Krasnopolskaya, 1996, [4], we finally obtain 

 

1
1 1 3 1 1 2 1 2

1

1
1 1 3 1 1 2 1 2

1

2
2 2 2 4 1 1

1

2 22
2 2 2 4 1 1 5

1

( );

( );

2 ;

( ) ,

dp
p q q q p p q

d

dq
q p p p p q q

d

dp
p q p q

d

dq
q p p q

d

α ϑ β β
τ

α ϑ β β
τ

α β β
τ

α β β β
τ

= − − + + −

= − + + + +

= − − −

= − + + − +

                                        (9) 

 



Chaotic Modeling and Simulation (CMSIM)  3: 413-422, 2013 417 

 

where 
2

1
6 2

1 1( )
2

p q
β

ϑ β + +
= 

, 

nm

α
δ

ω
= , δ is the ratio of actual to 

critical damping of the mode, iβ (i=1,2,…6) are constant coefficients. The 

dynamical system (9) is nonlinear, so numerical solutions were obtained. We 

used the following coefficients (Krasnopolskaya, 1996, [4] – Becker, 1991, [1]) 

and data: 

α = 0.01; 1β =0.1; 2β =0.1; 3β =1.3k; 4β =-1.2; 5β =0.235k; 

6β =1.12; β =-1.531; 1 1 2 2(0) (0) (0) (0)p q p q= = = = 0.5. 

For these parameters and for different values of k (which is dimensionless 

amplitude of the wavemaker vibrations) extensive numerical calculations were 

carried out in order to find all steady state regimes. In Figure 1 dependence of 

the maximum Lyapunov exponent on value k is shown. 

 
 

Fig. 1. The dependence of the maximum Lyapunov exponent on value k.  
 

 
a) 0.5k =  

 
b) 0.8k =  
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c) 1k =  

 
d) 3k =  

Fig.2. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d). 

 

 
a) 0.5k =  b) 0.8k =  

 
c) 1k =  

 
d) 3k =  

Fig. 3. Power spectra computed for 1p  data  (cases a, b, c and d). 
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As we may conclude from numerical data and graphs in Figures 1-3 the 

dynamical system (9) has both regular (k=0.5; k=0.8) and chaotic regimes (k=1; 

k=3). The chaotic regimes could be realized when 1k ≥ . For such values of 

corresponding amplitudes of wavemaker oscillations the largest Lyapunov 

exponents are positive, phase portraits have complicated structures  of trajectory 

sets and power spectra are continuous ones. 

 

3    Two Mode Approximation of Vibrations of Cantilever Bar with 

Low Bending Rigidity  

It has been known that it is possible to stabilize a rigid pendulum and a flexible 

cantilever bar with very low bending rigidity vertically upwards under harmonic 

oscillations, Champneys, 2000, [2].  The nonlinear equation for flexible 

vibrations ( , )x tη  of  the cantilever bar can be written in the following form, 

Krasnopolskaya, 2013, [6]: 

( ) ( )
4 2

0 4 2

2
4 2 3 2 2

3

3 2 4 2 3 2 2

cos

3 2 0.

a
EJ Fg l x l x t

x x t g x

E J F
x x x x t

η η
ρ ω

η η η η η
α ρ

   ∂ ∂ ∂ ∂
+ − + − −    ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂ ∂
− + + =  ∂ ∂ ∂ ∂ ∂   

                  (10) 

In this equation 0EJ is bending rigidity, ρ is the bar density, F is cross section 

area, a is an amplitude (ω  is a frequency) of a clamped base oscillations, l is a 

bar length, 
3

3 2E Jα  is a constant coefficient due to nonlinear stiffness of the 

bar. Our experiments revealed that oscillations of the bar can be approximated 

by two eigenmode oscillations, namely, by the second and the third eigen 

modes, Krasnopolskaya, 2012, [5] when the second eigen frequency is close to a 

half of ω  and in three times smaller than the third eigenfrequency. In this case 

we may write 

2 2 2

3 3 3

( ) cos ( )sin ( )
2 2

3 3
cos sin ( )

2 2

t t
A B x

t t
A B x

ω ω
η ε τ τ ϕ

ω ω
ε ϕ

 = + +  

 +  

                                      (11)  

Here ε is the small parameter, 2 ( )xϕ  is the second eigenmode, 3( )xϕ  is the 

third eigenmode, Krasnopolskaya, 2012, [5]. 

By substitution of the expressions (11) into the equation (10) and averaging over 

the fast time we get 
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( )2 22 2 1 2
2 2 3 2 3 0 5 2 2 22

1 3
( ) 2

2 2 2 8

dA
A B B B I B A B

d

ξ γ γ
ξ ω γ α

τ ω ω
 = − + − − − + 

               

( ) ]})(
4

2
8

2

3

2

32
7

3223

2

23

2

2
6 BABABABBBA +++−+

αα
; 

   

( )2 22 2 1 2
2 2 3 2 3 0 5 2 2 22

1 3
( ) 2

2 2 2 8

dB
B A A A I A A B

d

ξ γ γ
ξ ω γ α

τ ω ω
 = − + + + + + 

 

             ( ) ]})(
4

2
8

2

3

2

32
7

3223

2

23

2

2
6 BAABBAABAA +++−+

αα
; 

( )2 33 3 92
3 2 3 3 3 0 2 2 22

1 2
( ) 3

2 6 3 8

dA
A B B I A B B

d

γ αξ
ξ ω γ

τ ω ω
 

= − + − − − − + 
 

               ( ) ]})(
8

3

8

2

3

2

33
122

2

2

23
10 BABBAB ++++

αα
; 

( )2 23 3 92
3 2 3 3 3 0 2 2 22

1 2
( ) 3

2 6 3 8

dB
B A A I A A B

d

γ αξ
ξ ω γ

τ ω ω
 =− + + + + − + 

 

               ( ) ]})(
8

3

8

2

3

2

33
122

2

2

23
10 BAABAA ++++

αα
; 

In our calculations the following parameters have been used 

ρ = 1.7*10-3 kg/см3; g = 980 см/seс2; a = 0.9см; B =0.055; l = 26.7см;    

r = 0.15 см;  G = 0.1398*109 kg/(см gseс2 );  g2 = 0.0547 g106;  

λ2 = 18.031; λ3 = 184.32; E=1.4227*10
5kg/(см gseс2 ),       

5
1

2

8.0 10
0.17 sec

Fl
ξ

ρ

−
−⋅

= = ,     
l

g
=0γ ,  

3

2*

3
27

2

G

Eg
=α ,   

* 2 5
3 35 10I B Eα −= ⋅ ,     

l

g

A

g

A

g 2

2
)(

λ
ω

ωξ −= ,     

l

g

A

g

A

g 3
3

2

3
)(

λ
ω

ωξ −= . 
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Only regular regimes were found for different initial conditions as steady state 

regimes. The maximum Lyapunov exponents were not positive for all of them. 

In Figure 4 phase portrait projections are shown for quasi-periodic (ω =40 

rad/sec) and periodic (ω =60 rad/sec) regimes. Power spectra for these regimes 

are presented in Figure 5, where only several spikes are visible. Quasi-periodic 

and periodic regimes are typical for the above-mentioned dynamic system 

which has a symmetry relatively unknown variables. 

 

 
a) 40ω =  b) 60ω =  

 

Fig. 4. Phase portraits for different excitation frequencies. 
 

 
a) 40ω =  b) 60ω =  

 

Fig. 5. Power spectra computed for 2A  time realization for different frequencies 

of clamped base oscillations.   
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4    Conclusions 

Two new models expressing interaction of two eigenmodes at the condition of 

internal resonances and parametric oscillations of continuous systems are 

developed.  Models are simulated. The existence of chaotic attractors was 

established for the dynamical system presenting cross-waves and forced waves 

interaction at fluid free-surface in a volume between two cylinders of finite 

length. For averaged symmetric systems describing two parametric eigen modes 

of a flexible cantilever bar with very low bending rigidity no chaotic regimes 

were found. 
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