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Abstract. In this paper we present a comparison between a nonlinear measure (the
Nonlinear Interdependence, S) and a linear measure (the Cross Correlation coeffi-
cient, CC) for analyzing nonlinear dynamical systems. To do this, we consider a
biologically-realistic neural network (NN) model of the piriform cortex. Our previous
work studied the EEGs obtained from two components of this network. In this cur-
rent work, we increase the system’s granularity and replicate the exploration using
the membrane potentials of our neurons to study the measures S and CC. To be more
specific, even though the properties of a nonlinear dynamical system are best analyzed
in the natural framework described by its state space, they may be undetectable in
the time domain of the system’s output, e.g., in the EEG tracing. Rather, a phase
space representation may reveal the salient features of the nonlinear structure which
are hidden or occluded to standard linear approaches. Nonlinear Interdependence,
(S), proposed by Quiroga, is said to occur when the trajectories reconstructed in
the phase-space of one time series, experimentally predict the evolution of the phase
space trajectories of the second time series. This measure of predictability has the
advantage over linear measures, of being sensitive to interdependence between dis-
similar types of activity. In many cases where one analyzes nonlinear signals, CC is
a measures that well describes the synchronization or the desynchronization between
two signals. In other cases, S is introduced in addition to CC in order to describe
the nonlinear signals. We thus investigate here the synchronization of these types of
signals using the membrane potentials using both linear measures (i.e., CC) and non-
linear measures (i.e., S). Our results clearly prove that utilizing both these measures
is effective in analyzing and understanding real-life chaotic systems.
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1 Introduction

From the theory of nonlinear dynamics [7], we understand that nonlinear dy-
namical systems can be aptly and best described and quantified by a state
space. This is also the natural framework to characterize its underlying phe-
nomena. However, while their properties may be undetectable in the system’s
time domain output (e.g., in the EEG tracing), they can be studied in the phase
space. A phase space representation may reveal the salient features of the non-
linear structure which are hidden or occluded to standard linear approaches
[11]. In this context, Nonlinear Interdependence is said to occur when the
trajectories reconstructed in the phase-space of one time series experimentally
predict the evolution of the phase space trajectories of the second time series
[10]. This measure of predictability has the advantage over linear measures, of
being sensitive to the interdependence between dissimilar types of activity [3].

Often, in the analysis of nonlinear signals, a linear measure (the Cross Cor-
relation coefficient, CC) is a measure that aptly describes the synchronization
or the desynchronization between two signals. In other cases, the Nonlinear
Interdependence, S, is introduced in addition to CC in order to describe the
nonlinear signals. In this paper we present a comparison between S and CC.
We shall demonstrate that whenever we are dealing with signals with a “dom-
inant” nonlinear behavior and with a very small linear component, neither S
nor CC, by themselves, can provide the same information as the pair 〈S, CC 〉.

To demonstrate this hypothesis, we shall investigate a biologically realistic
Neural Network (NN) model of the piriform cortex. In our previous work
[4], we studied the EEGs obtained from two components of this network. In
this current work, we increase the granularity of our approach and replicate
the exploration using some previously unexplored criteria, i.e., the membrane
potentials of our neurons. We thus investigate here the synchronization of
these types of signals using the membrane potentials, wherein we utilize both
a typical linear measure (i.e., CC) and a typical nonlinear measure (i.e., S).
We also compare the synchronization identified between the potentials in this
manner, with the one identified between the EEGs.

The issue of neuro-modeling is not merely theoretical. Indeed, is has been
motivated by a desire to better understand specific neural circuits, particu-
larly those whose failures could possibly trigger human illnesses. Depression,
Anxiety, Schizophrenia, Alzheimer’s disease, memory impairment, paralysis,
Epilepsy, Multiple Sclerosis, Parkinson’s disease, etc. are areas in which in-
tense research efforts have been (and are being) made to better understand and
treat these conditions. In this respect, from a modeling perspective, the analy-
sis of the connections between the neurons is fundamental to understanding and
treating these illnesses. Such an analysis also leads to a better understanding
of the development and function of the normal brain.

1.1 The Platform: GENESIS and the Computational Model

The platform for our research is the so-called GENESIS (GEneral NEural SImu-
lation System) framework [2] proposed by Bower et al. This simulation software

The GENESIS simulation software is free and can be downloaded from
http://www.genesis-sim.org/GENESIS/.
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was initially developed in a CALTECH (California Institute of Technology) lab-
oratory by Wilson [13] as an extension of efforts to model the olfactory cortex.
It was designed to allow for the multi-scale modelling of a single simulation sys-
tem and, until now, is the only simulator possessing this capacity. Indeed, in
this context, the Wilson model of the piriform cortex is generally accepted as a
realistic model, since it is based on the anatomical structure, apart from which
it also contains physiological characteristics of actual biological networks. The
model has been cited in more than 100 refereed papers, and a review of large
scale brain simulations is found in [5].
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Fig. 1. The model of the piriform cortex.

One of the ultimate objectives of Wilson’s model was to understand the role
of the piriform cortex in olfactory object recognition. Further, one motivation
of the research due to Wilson and Bower was the assumption that this cortex
computationally represents a type of associative memory. The model has been
used to explore a wide range of cortical behaviors [13], including associative
memory functions [12].

The computational model which we present can be viewed as a nonlinear
system. Simulation of the piriform cortex requires the numerical solutions of
systems of differential equations that describe the states of the neurons as a
function of time and space. These numerical techniques describe how the sys-
tem advances the state variables of the simulation (e.g., the potential of the
membrane ) from time i to time i+1, through numerical integration of the dif-
ferential equations that appropriately describe the system. The computational
model of the piriform cortex is treated as a loosely-coupled system of ordinary
differential equations. The evaluation of a state of any neuron in the system
requires only the information of the previous states from other neurons, and it
can be solved for each neuron at every time step. It is well known that such
equations can be solved using straightforward numerical integration techniques.

The initial architecture consists of three 15 × 9 arrays of 135 nodes. Each
array has only a single type of neuron, being either of the pyramidal cells, of
the feedforward inhibitory cells (K+ mediated inhibition), or of the feedback
inhibitory cells (Cl− mediated inhibition). The array is proposed to represent
the whole piriform cortex, which falls within an area of approximately 10 mm
× 6 mm. The pyramidal cells consist of five compartments, with each com-
partment receiving a distinct kind of synaptic input. The inhibitory cells are
modelled using the differences between the exponential functions. The model
also contains 10 cells representing the excitatory input from the olfactory bulb
to the cortex.

Numerous models of brain circuitry have focused on simulating the macro-
scopic functionality of systems containing simplified neuronal units. The in-
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crease in computational power in the last decade has permitted simulations
to include models with considerable complexity, namely those comprising of
realistic large scale NNs. The goal of a modeling phase is to generate patterns
that are similar to EEGs, and to explore their possible physiological basis.

2 Problem of Connectivity

The Problem of Connectivity is motivated from the following clinical con-
siderations. In spite of intensive research conducted over the last decades and
the discovery of effective medication, the cause and the mechanisms leading to
Schizophrenia are still unclear. It is widely agreed that Schizophrenia is most
likely based on fundamental neuronal changes of the brain. Unfortunately,
physiological methodologies have not been able to contrive reliable tests beside
the current assessments. Perhaps the high complexity of the human brain is
what renders it vulnerable to diseases such as Schizophrenia, because animals
do not develop the same types of diseases [6].

This problem involves investigating the modification of local connectivity
within the piriform cortex. More specifically, we analyze the dependence of
the level of chaos as a function of the density of the synapses (i.e, the number
of synapses generated between the neurons). In addition, we investigate the
variation of the maximum Nonlinear Interdependence, S, of two sub-systems
embedded in a larger system. Thus, we consider how the coupling of two
interconnected sub-systems of the same underlying system would change as a
function of the connectivity of the synapses. We believe that the levels of local
connections between the neurons can be used as a hypothesis for the mechanism
to explain underlying illnesses such as Schizophrenia.

Prior Work on the Problem of Connectivity: In our prior research
[4], we have performed modifications to the number of connections between the
pyramidal neurons. By changing the connectivity, we proposed to simulate the
level of pruning to be excessive or insufficient. We chose to describe the effect of
pruning on the level of chaos and the degree of synchronization between the two
sub-systems embedded in the piriform cortex model, using three measures: the
LLE, S, and CC. These three measures were chosen based on two hypotheses.
First of all, schizophrenic symptoms, like thought disorder, hallucinations and
delusions, are assumed to be dependent on the level of chaos in the brain.
Secondly, the symptoms are triggered by the existence of false attractors near
“good” attractors, which suggests that areas from the brain could be highly
correlated in an unhealthy manner. To our knowledge, the investigation of the
two theories, namely excessive and insufficient pruning, based on these three
measures, is new.

The uniqueness of our research is strengthened by the fact that the pairs
of signals being compared belong to the same system. Other authors [8–10],
have considered two initially independent systems and partially coupled them;
subsequently, they have analyzed the synchronization of the signals obtained
from the two systems. In contrast to previous models that evaluate relation-
ships between two different systems (or rather, two partially coupled systems),
we have proposed a new approach where the investigation is conducted using
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two sub-systems which are embedded within the context of a larger system,
namely, two coupled sub-systems of the same system.

2.1 Current Work: Problem of Connectivity

To present our current work in the right perspective, it is appropriate for us to
mention how the readings and measurements are taken and recorded. Record-
ings from the array are averaged to produce the EEGs as below:

EEG(t+ 1) =
1

m

m∑
i=1

[Φi(t)], (1)

where m is the number of electrodes, and Φi(t) is the field potential depending
of the output of the pyramidal neurons, Xp(t) for p = 1 · · ·N . We assume that
the influence of the inhibitory neurons is marginal in the process of the EEG
computation, and that it can thus be omitted.

The relation between the field potential, Φi(t), recorded from the electrode
i and the output of the pyramidal neurons Xp(t) is:

Φi(t) =
1

4Π

N∑
p=1

Xp(t)

dpi
, (2)

where N is number of pyramidal neurons, and dpi is the distance of the pth

pyramidal neuron from the recording site (the electrode i).
By examining the above equations, the reader can see that the synchro-

nization of the EEGs implies the evaluation of the aggregated signals, which
is achieved by computing the averages of a certain number of fields (in our
setting the number is 8). These fields are, in turn, obtained by weighting the
membrane potentials with the inverses of the distances between the electrodes
and each neuron, which is considered as a contributor in the EEG. However,
prior to the averaging phase, one observes that the computational model of the
piriform cortex yielded access to the raw data in and of itself, namely the origi-
nal membrane potential of each neuron. From the perspective of understanding
the efficiency of the CC and S measures, in our current work we disaggregate
the signals and explore the behavior of the raw data (i.e., the membrane poten-
tials) itself. To accomplish this for a prima facie study, we perform a careful
selection of only four neurons as follows:
i. Two of them (V1-V2) were involved in the previous EEG1 computation;
ii. One of them (V135) was involved in the computation of the EEG2;
iii. The last (V15) was not involved in the previous computations.
Using these selection criteria, we now investigate all the possible synchroniza-
tion scenarios (i.e., the intra-EEG and the inter-EEG electrode readings).

2.2 The Settings

In our research, we considered two zones of the piriform cortex as depicted in
Figure 1. For each zone, which was treated as a sub-system, we analyzed the
artificially generated EEGs, each of them being computed with a fixed number
of electrodes, and at a suitable frequency.
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Zone 1

Zone 2

PYRAMIDAL EXCITATORY LAYER (30x50 neurons)PYRAMIDAL EXCITATORY LAYER (30x50 neurons)

ELECTRODES ARRAY (5x10 electrodes)ELECTRODES ARRAY (5x10 electrodes)

Fig. 2. The distribution of the electrodes in Zone1 and Zone2.

We considered the density of the synapses corresponding to the pyramidal
neurons as a control parameter, and explored the effect of modifying the initial
values suggested by the Wilson model [13]. This, in turn, involved:

1. The computation of the EEGs as function of the number of electrodes for
each sub-system.

2. The determination of the optimum value for the embedding dimension for
the phase space reconstruction using the FNN method for the density of
the synapses.

3. The computation of the CC and S measures between the EEGs and for the
membrane potentials.

2.3 Results for this Problem

We conducted numerous simulations over an ensemble of settings. However,
we merely report here some representative results.

First of all, we mention that the time series used to describe the systems
are the EEGs and membrane potentials. To obtain these, we used an array of
n evenly spaced electrodes on the surface of the simulated cortex. Recordings
from the array were then averaged to produce the EEGs. In our experiments,
we set n = 50.

We investigated the level of chaos and the synchronization between these
two zones of the piriform cortex, when the efficiency of the pruning was higher
or smaller than 50%, implying that we decreased, and also increased the con-
nectivity between the pyramidal cells. The level of connectivity was described
by the maximum number of possible connections between the pyramidal neu-
rons, where the possible values were p = 0.1, 0.2, 0.5, 1, 2, and 10. The case
of the healthy brain, when the efficiency of pruning is 50%, corresponds to the
setting when p = 1.

For each sub-system we analyzed the artificially generated EEGs, each of
them computed with 8 electrodes. We also analyzed the membrane potentials
for four neurons: V1 and V2 involved in the computation of EEG1 for Zone1,
V135 involved in the computation for the EEG2 for Zone2, and V15 not involved
in the computation of EEG1 or EEG2. The EEGs and the membrane potentials
were recorded at 5,000 samples/sec for a duration of half of a second.

The first experimental step was to compute the optimum embedding di-
mension for each zone, using The False Nearest Neighbor (FNN) Statistics. In
the interest of brevity, we will not present these results here.
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To evaluate the interdependence between the artificially generated EEGs
and between the membrane potentials, as mentioned earlier, we used two met-
rics, namely S and CC. For computing CC we used a lag which ranged between
-100 and +100. The absolute value is reported. The evolution of S and CC
function of connectivity between pyramidal cells are presented in Table 1, in
which we report the averages for 20 experiments, each of them conducted with
a different model.

V1 V15 V2 V15 V1 V135 V2 V135 EEG1 vs EEG2

Weights CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X, Y ) CCmax S(X, Y )

0.1 0.9678 0.2341 0.9668 0.2366 0.9680 0.2439 0.9692 0.246 0.5005 0.2396

0.5 0.6600 0.1094 0.6539 0.1117 0.7300 0.212 0.8032 0.2170 0.6204 0.2870

1 0.1386 0.0797 0.2111 0.0671 0.1380 0.0823 0.1872 0.0680 0.2227 0.1112

1.5 0.1439 0.0234 0.1419 0.0215 0.2526 0.0390 0.2158 0.0330 0.2524 0.2607

Table 1. Nonlinear Interdependence (S) and maximum Cross Correlation Coefficient
(CCmax) for membrane potentials (V1 V15, V2 V15, V1 V135, and V2 V135) and for
EEG1 and EEG2 function of the value of the connectivity between the pyramidal
cells.

Fig. 3. The evolution of S(X|Y ) and CC as a function of the level of connectivity
between the neurons (see Table 1.)

2.4 Discussion of Results

Table 1 and Figure 2 are used for analyzing the two behaviors, namely that
of increasing and decreasing the connectivity levels. Table 1 contains the av-
erages of the CC and S measures computed with membrane potentials (the
first 8 columns) and the averages computed with the EEG signals (reported
earlier in [4]). The reader can see that the computation used to obtain the
EEG affects the ranges of the CC and S measures, namely it decreases the
ranges, compared to the ranges of the CC and S measures computed with the
membrane potentials. To be more specific, the CC ranges are 0.8306 for the
membrane potentials and 0.3977 for the EEGs , while the S measure ranges
are 0.2245 for the membrane potentials and 0.1758 for the EEGs. With regard
to the degree of synchronization represented by the Nonlinear Interdependence
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S, only a decrease in the connectivity leads to a consistent modification, again
as displayed in Figure 2.

3 Conclusions

The analysis of the two behaviors, namely that of increasing and decreasing
the connectivity levels, reveals that both of them determine a decrease in the
level of chaos in the system, as seen in Figure 2.

From these observations, we can conclude that whenever we are dealing
with signals with a “dominant” nonlinear behavior and with a very small linear
component, neither S nor CC, by themselves, can provide the same information
as the pair 〈S, CC 〉.
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