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Abstract. A central configuration q = (q1, q2, ..., qn) is a particular configuration of
the n-bodies where the acceleration vector of each body is proportional to its po-
sition vector and the constant of proportionality is the same for n-bodies. In the
three-body problem, it is always possible to find three positive masses for any given
three collinear positions given that they are central. This is not possible for more than
four-body problems in general. In this paper we model a symmetric five-body prob-
lem with with position coordinates for the five bodies as (−x, 0), (0, y), (x, 0), (0,−y)
and (c1, c2). (c1, c2) is the centre of mass of the system. Regions of central configura-
tions, where it is possible to choose positive masses, are derived using both analytical
and numerical tools. We also identify regions in the phase space where no central
configurations are possible. A certain relationship exists between the mass placed at
the center of mass of the systems i.e (c1, c2) and the remaining four masses. This
relationship is investigated both numerically and analytically. Similarly restrictions
on the geometry and restrictions on the inter-body distances are investigated.
Keywords: Central Configurations, n-body problem, five-body problem, inverse
problem of central configurations.

1 Introduction

The classical equation of motion for the n-body problem has the form

mi
d2qi
dt2

=
∂U

∂qi
=
∑
j 6=i

mimj (qj − qi)

|qi − qj |3
i = 1, 2, ..., n, (1)

where the units are chosen so that the gravitational constant is equal to one,
qi is a vector in three space,

U =
∑

1�i<j�n

mimj

|qi − qj |
(2)
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is the self-potential, qi is the location vector of the ith body and mi is the mass
of the ith body.

A central configuration q = (q1, q2, · · · , qn) is a particular configuration of
the n-bodies where the acceleration vector of each body is proportional to its
position vector, and the constant of proportionality is the same for the n-bodies,
therefore

n∑
j=1,j 6=i

mj(qj − qk)

|qj − qk|3
= −λ(qk − c) k = 1, 2, ..., n, (3)

where

λ =
U

2I
, I =

n∑
i=1

mi||qi||2, and c =

∑n
i=1miqi∑n
i=1mi

. (4)

So far, in the non-collinear general four and five-body problems the main fo-
cus has been on the common question: For a given set of masses and a fixed
arrangement of bodies does there exist a unique central configuration ([7],[6]).
In this paper, we ask the inverse of the question i.e. given a four or five-body
configuration, if possible, find positive masses for which it is a central config-
uration. Similar question has been answered by Ouyang and Xie (2005) for
a collinear four body problem and by Mello and Fernades (2011) for a rhom-
boidal four and five-body problem. For other recent studies on the rhomboidal
problem see [1],[2],[4], and [5]. In this paper we state and prove the following
theorems.

Theorem 1. Consider five bodies of masses (m1,m2,m3,m4,m0) located at
(−x, 0), (y, 0), (x, 0), (0,−y) and (0, 0) respectively. The mass m0 is taken to be
stationary at the centre of mass of the system. Let m1 = m3 = 1,m2 = m4 =
m.

1. In this particular set up, using polar coordinates, of the rhomboidal five
body problem where m(θ) > 0, m0(θ) > 0 and r = 1 will form central
configuration when θ ∈ (−1.94,−1.04)∪ (0.74, 1.04). For all other values of
θ at least one of the masses will become negative.

2. For r 6= 1, the central configuration region is given in figure (1).

Theorem 2. Let five bodies of masses m1 = m3 = M,m2 = m4 = m be
placed at the vertices m1(−1, 0),m2(y, 0),m3(1, 0),m4(0,−y) and m0(0, 0) of a
rhombus. The mass m0 is taken to be stationary at the centre of mass of the
system. There exist a region

R1 = (R1m ∪R∗1m) ∩ (R1M ∪R∗1M ). (5)

in the ym0−plane where it is possible to choose positive masses which will make
the configuration central, where

R1m = {(y,m0)|m0 >
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)}, (6)
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R∗1m = {(y,m0)|m0 <
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)},(7)

R1M = {(y,m0)|m0 >
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
(8)

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)},

R∗1M = {(y,m0)|m0 <
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)}. (9)

In the complement of this region no central configurations exist for m,m0 >
0.

Theorem 3. Consider five bodies of masses (m1,m2,m3,m4,m0) located at
(−x, 0), (y, 0), (x, 0), (0,−y) and (0, 0) respectively. The mass m0 is taken to be
stationary at the centre of mass of the system. Let m1 = m3 = M,m2 = m4 =
m. There exist a region

R3 = ((Rd ∩R3m) ∪ (Rcd ∩Rc3m)) ∩ (Rd ∩R3M ) ∪ (Rcd ∩Rc3M ), (10)

in the xy−plane where it is possible to choose positive masses which will make
the configuration central. Here

R3m = {(x, y)|r(x, y) > 2y 3

√
m0 + x3

m0 + y3
, x > 0, y > 0,m0 > 0}, (11)

R3M = {(x, y)|r(x, y) > 2x 3

√
m0 + y3

m0 + x3
, x > 0, y > 0,m0 > 0}. (12)

In the complement of this region no central configurations exist for M,m,m0 >
0.

Let’s consider five bodies of masses mi, i = 0, 1, 2, 3, 4. Four of the masses
are placed at the vertices of a rhombus and the fifth mass m0 is stationary at
the centre of mass of the system. The coordinates for the five bodies are chosen
as below:

q0 = (c1, c2),q1 = (−x, 0),q2 = (0, y), (13)

q3 = (x, 0),q4 = (0,−y), (14)

Using (3) and (13) we obtain the following equation for central configura-
tions.

m0q1

x3
+

m2q12(√
x2 + y2

)3 +
m3q13

8x3
+

m4q14(√
x2 + y2

)
3

= −λ(q1 − c), (15)

m0q2

y3
+

m1q21(√
x2 + y2

)3 +
m3q23(√
x2 + y2

)3 +
m4q24

8y3
= −λ(q2 − c), (16)
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m0q3

x3
+
m1q31

8x3
+

m2q32(√
x2 + y2

)3 +
m4r34(√
x2 + y2

)3 = −λ(q3 − c), (17)

m0q4

y3
+

m1q41(√
x2 + y2

)3 +
m2q42

8y3
+

m3q43(√
x2 + y2

)3 = −λ(q4 − c). (18)

2 Proof of Theorem 1.

Let m1 = m3 = 1,m2 = m4 = m . As CC’s are invariant up to translation
and re-scaling therefore we assume that the centre of mass is at the origin.
This assumption leads to some simplifications in the CC equations. Therefore
from the four CC equations ((15 to 18) the following two linearly independent
equations are obtained.

− 1

4x2
+
m0

x2
− 2mx

(x2 + y2)
3/2

= −xλ, (19)

m

4y2
− m0

y2
+

2y

(x2 + y2)
3/2

= yλ. (20)

Let λ = 1. Equations (19 and 20) are solved to obtain m and m0 as
functions of x > 0 and y > 0.

m(x, y) =
8y3 −

(
x2 + y2

)3/2
(1− 4x3 + 4y3)

8x3 − (x2 + y2)
3/2

(21)

m0(x, y) =
32x3y3(2−

(
x2 + y2

)3/2
)−

(
x2 + y2

)3
(1− 4x3)

4 (x2 + y2)
3/2
(

8x3 − (x2 + y2)
3/2
) . (22)

It is not possible to explicitly solve for x and y therefore we use polar
coordinates to re-write m(x, y) and m0(x, y) as m(r, θ) and m0(r, θ), where
x = r cos θ and y = r sin θ.

m(r, θ) =
1 + 4r3 cos3 θ − 4

(
2 + r3

)
sin3 θ

1− 6 cos θ − 2 cos 3θ
. (23)

m0(r, θ) =

(
1− 6 sin 2θ + 2 sin 6θ − r3(3 cos θ − 3 sin 2θ + cos 3θ + sin 6θ)

)
4 (1− 6 cos θ − 2 cos 3θ)

.

(24)
Let r = 1. The denominator of both m(θ) and m0(θ) becomes zero at θ =
−π3 ,

π
3 . The denominator is negative when θ ∈ (−π3 ,

π
3 ) and is positive else-

where. The numerator of m(θ) when r = 1 is given by 1 + cos3 θ − 12 sin3 θ.
This has real zeros at θ = −2.61 and θ = 0.673. The numerator is positive



Chaotic Modeling and Simulation (CMSIM) 3: 431–439, 2013 435

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�3

�2

�1

0

1

2

3

r

�

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�3

�2

�1

0

1

2

3

r

�

0.0 0.5 1.0 1.5 2.0 2.5 3.0

�3

�2

�1

0

1

2

3

r

�

Fig. 1. left: m0(r, θ) > 0. Centre: Region, when m(r, θ) > 0 Right: Region,
when m0(r, θ) > 0 and m(r, θ) > 0

when θ ∈ (−2.61, 0.673). Therefore m(θ) is positive when θ ∈ (−2.61,−1.04)∪
(0.673, 1.04).

The numerator of m0(θ) when r = 1 is given by −1 + 3 cos θ + cos 3θ +
3 sin 2θ − sin 6θ. This has real zeros at θ = −2.541, θ = −1.935, θ = −0.449,
and θ = 1.248. The numerator of m0(θ) is positive when θ ∈ (−π,−2.54) ∪
(−1.935,−0.449)∪(1.248, π). Thereforem0(θ) is positive when θ ∈ (−π,−2.54)∪
(−1.935,−1.04) ∪ (−0.449, 1.04) ∪ (1.248, π).

Hence, this particular set up of the rhomboidal five body problem where
m(θ) > 0, m0(θ) > 0 and r = 1 will form central configuration when θ ∈
(−1.94,−1.04)∪ (0.74, 1.04). For all other values of θ at least one of the masses
will become negative.

In the case when r 6= 1,The central configuration region is given in figure
(1)

3 Proof of Theorem 2.

Let λ = x = 1. Solve equations (19 and 20) to obtain m and M as functions
of m0 and y .

m(y,m0) =
4
(
1 + y2

)3/2
Nm(y,m0)

(1− 4y + y2) (1 + 4y + 18y2 + 4y3 + y4)
, (25)

M(y,m0) =
4
(
1 + y2

)3/2
NM (y,m0)

(1− 4y + y2) (1 + 4y + 18y2 + 4y3 + y4)
, (26)

where

Nm(y,m0) = y3
(
−2 +

√
1 + y2

)(
5 + y2 + 2

√
1 + y2

)
+m0

((
−2y +

√
1 + y2

)(
1 + 5y2 + 2y

√
1 + y2

))
, (27)
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NM (y,m0) =
(
−2y +

√
1 + y2

)(
1 + 5y2 + 2y

√
1 + y2

)
+m0

((
−2 +

√
1 + y2

)(
5 + y2 + 2

√
1 + y2

))
. (28)

The factor 1−4y+y2 of the denominator of m(y,m0) and M(y,m0) is positive
when y ∈ (0, 2 −

√
3) ∪ (2 +

√
3,∞) and is negative when y ∈ (2 −

√
3, 2 +√

3). Therefore to find the sign of m(y,m0) and m(y,m0) we need to analyze
Nm(y,m0) and NM (y,m0). The component of the numerator of m(y,m0),

Nm(y,m0), has two factors i.e. −2 +
√

1 + y2 and −2y +
√

1 + y2 which can
become negative and hence can make Nm(y,m0) negative. The factor −2 +√

1 + y2 > 0 when y ∈ (
√

3,∞) and −2y +
√

1 + y2 > 0 when y ∈ (0, 1√
3
). As

both the intervals have empty intersection therefore we must have the following
bound on m0 for Nm(y,m0) to be positive.

m0 >
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2
. (29)

Hence m(y,m0) will be positive in the following two regions.

R1m = {(y,m0)|m0 >
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)}, (30)

R∗1m = {(y,m0)|m0 <
y3
(

8−
(
1 + y2

)3/2)
−8y3 + (1 + y2)

3/2

and y ∈ (2−
√

3, 2 +
√

3)}. (31)

Similarly M(y,m0) is positive in the following two regions

R1M = {(y,m0)|m0 >
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2

and y ∈ (0, 2−
√

3) ∪ (2 +
√

3,∞)}, (32)

R∗1M = {(y,m0)|m0 <
8y3 −

(
1 + y2

)3/2
−8 + (1 + y2)

3/2
and y ∈ (2−

√
3, 2 +

√
3)}.(33)

Hence, the central configuration region for this particular set up of the rhom-
boidal five body problem where both m(x, y,m0) and M(x, y,m0) are positive
is given by

R1 = (R1m ∪R∗1m) ∩ (R1M ∪R∗1M ). (34)

This completes the proof of theorem 2. This central configuration region is
given in figure (2)
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Fig. 2. left: m(y,m0) > 0. Centre: M(y,m0) > 0 Right: m(y,m0) > 0 and
M(y,m0) > 0

4 Proof of Theorem 3.

Let λ = 1. Solve equations (19 and 20) to obtain m and M as functions of x, y
and m0.

m(x, y,m0) =

4
(
x2 + y2

)3/2 y3
(
−8x3 +

(
x2 + y2

)3/2)
+m0

(
−8y3 +

(
x2 + y2

)3/2)


(x2 − 4xy + y2) (x4 + 4x3y + 18x2y2 + 4xy3 + y4)
(35)

M(x, y,m0) =

4
(
x2 + y2

)3/2 x3
(
−8y3 +

(
x2 + y2

)3/2)
+m0

(
−8x3 +

(
x2 + y2

)3/2)


(x2 − 4xy + y2) (x4 + 4x3y + 18x2y2 + 4xy3 + y4)
(36)

It can be immediately seen that the denominator of both m(x, y,m0) and
M(x, y,m0) becomes singular at y = (2 ±

√
3)x. Therefore y = (2 ±

√
3)x

will form two singular curves for the two masses m and M. Therefore the
denominator will be positive in region Rd given below and will be negative in
its complement.

Rd = {(x, y)|0 < y < (2−
√

3)x or y > (2 +
√

3)x, x > 0}. (37)

It is not possible to explicitly solve the numerator of either m(x, y,m0) or
M(x, y,m0) for x or y therefore we choose the inter body distance x2 + y2 to
find regions of central configuration where both m and M are positive. In the
numerator of m(x, y,m0) the factor

y3
(
−8x3 +

(
x2 + y2

)3/2)
+m0

(
−8y3 +

(
x2 + y2

)3/2)
= N3m
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can be become negative. By taking r =
√
x2 + y2, the factor N3m is sim-

plified as below.

N3m = y3
(
−8x3 + r3

)
+m0

(
−8y3 + r3

)
(38)

After some algebraic manipulation it can be shown that N3m is positive in the
following region.

R3m = {(x, y)|r(x, y) > 2y 3

√
m0 + x3

m0 + y3
, x > 0, y > 0,m0 > 0}. (39)

N3m is negative in the complement of R3m. Therefore, in this particular set
up, the central configuration region where m is positive is given by

(Rd ∩R3m) ∪ (Rcd ∩Rc3m). (40)

SimilarlyN3M = x3
(
−8y3 +

(
x2 + y2

)3/2)
+m0

(
−8x3 +

(
x2 + y2

)3/2)
is pos-

itive in the following region.

R3M = {(x, y)|r(x, y) > 2x 3

√
m0 + y3

m0 + x3
, x > 0, y > 0,m0 > 0}. (41)

N3M is negative in the complement of R3M . Therefore, in this particular set
up, the central configuration region where M is positive is given by

(Rd ∩R3M ) ∪ (Rcd ∩Rc3M ). (42)

Hence, the central configuration region for this particular set up of the rhom-
boidal five body problem where both m(x, y,m0) and M(x, y,m0) are positive
is given by

R3 = ((Rd ∩R3m) ∪ (Rcd ∩Rc3m)) ∩ (Rd ∩R3M ) ∪ (Rcd ∩Rc3M ). (43)

In the complement of this region no central configurations are possible as at
least one of the masses will become negative. This completes the proof of
theorem 3.
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