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Abstract. The present work continues studies of the mathematical model of a metabolic 

process of the Krebs cycle. We study the dependence of its cyclicity on the cell 

respiration intensity determined by the formation level of carbon dioxide. We constructed 

the phase-parametric characteristic of the consumption of a substrate by a cell depending 

on the intensity of the metabolic process of formation of the final product of the 

oxidation. The scenarios of all possible oscillatory modes of the system are constructed 

and studied. The bifurcations with period doubling and with formation of chaotic modes 

are found. Their attractors are constructed. The full spectra of indices and divergencies 

for the obtained modes, the values of KS-entropies, horizons of predictability, and 

Lyapunov dimensions of strange attractors are calculated. Some conclusions about the 

structural-functional connections of the cycle of tricarboxylic acids and their influence on 

the stability of the metabolic process in a cell are presented. 

. 
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1  Introduction 
One of the possible problems of synergetics is the study of the internal 

dynamics of metabolic processes in cells. Its solution allows one to find the 

structural-functional connections defining the self-organization of these 

processes and to answer the question how the catalyzed enzymatic reactions 

create the internal space-time ordering of the cell life. 

The most general metabolic process in cells is the cycle of tricarboxylic 

acids [1]. This is the key stage of the respiration of all cells. In its course, the di- 

and tricarbon compounds, which are formed as intermediate products in the 

transformation of carbohydrates, fats, and proteins, are transformed up to CO2. 

In this case, the released hydrogen is oxidized further up to water, by taking the 

direct participation in the synthesis of ATP, being the universal energy source. 

Studies of the functioning of the Krebs cycle were carried out both 

experimentally and theretically in [2-10]. 

In the study of the given process, we use the mathematical model of the 

growh of cells Candida utilis on ethanol, which was developed by Professor 
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V.P. Gachok [11, 12]. With the help of this model, the unstable modes in the 

cultivation of cells observed in experiments were considered. The kinetic curves 

of the chaotic dynamics obtained with the help of computational experiments 

were in agreement with experimental data [13]. 

Then the given model was modified and refined in [14] due to the account 

for the influence of the CO2 level on the respiration intensity. With the help of 

the model, the structural-functional connections of the metabolic process in a 

cell, which cause the appearance of complicated oscillations in the metabolic 

process, were investigated. It was concluded that the given oscillations arise on 

the level of redox reactions of the Krebs cycle, reflect the cyclicity of the 

process, and characterize the self-organization in a cell. The fractality of the 

dynamics of oscillations of the Krebs cycle was studied as well.  

The analogous oscillatory modes were observed in the processes of 

photosynthesis and glycolysis, variations of the calcium concentration in a cell, 

oscillations in heart muscle, and other biochemical processes [15-19]. 

 

2  Mathematical Model 
 

The general scheme of the process is presented in Fig. 1. According to it 

with regard for the mass balance, we have constructed the mathematical model 

given by Eqs. (1) - (19). 

 
Fig. 1. General scheme of the metabolic process of growth of cells Candida 

utilis on ethanol. 
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where )1/()( XXXV +=  is the function that describes the adsorption of the 

enzyme in the region of a local coupling. The variables of the system are 

dimensionless [11, 12]. 

The internal parameters of the system are as follows: 

;3.01 =k  ;3.02 =k  ;2.03 =k  ;6.04 =k  ;16.05 =k  ;7.06 =k  ;08.07 =k  

;022.08 =k ;1.09 =k  ;08.010 =k  ;08.011 =k  ;1.012 =k  ;7.014 =k  ;27.015 =k  

;18.016 =k  ;14.017 =k  ;118 =k  ;1019 =k  ;07.01 =n  ;07.02 =n  ;2=L  

;21 =L  ;5.22 =L  ;23 =L  ;5.2=K  ;35.01 =K  ;22 =K  ;11 =M  ;35.02 =M  

;13 =M  ;6.01 =N  ;03.02 =N  ;01.03 =N  ;37.11 =µ  ;3.02 =µ  ;01.03 =µ  

;7.0=γ  ;7.01 =γ  ;5.01 =β  ;4.02 =β  ;4.03 =β  ;2
01 =E  .2

02 =E  

The external parameters determining the flow-type conditions are chosen as 

;05055.00 =S  ;06.0
02 =O  ;002.0=α  ;02.01 =α  ;004.02 =α  ;01.03 =α  

;01.04 =α  ;01.05 =α  ;01.06 =α  .0001.07 =α        

The model covers the processes of substrate-enzymatic oxidation of ethanol 

to acetate, cycle involving tri- and dicarboxylic acids, glyoxylate cycle, and 

respiratory chain. 

The incoming ethanol S  is oxidized by the alcohol dehydrogenase enzyme 

1E  to acetaldehyde 1S  (1) and then by the acetal dehydrogenase enzyme 2E  to 

acetate 2S  (2), (3). The formed acetate can participate in the cell metabolism 

and can be exchanged with the environment. The model accounts for this 

situation by the change of acetate by acetyl- CoA . On the first stage of the Krebs 
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cycle due to the citrate synthase reaction, acetyl- CoA  jointly with oxalacetate 

8S  formed in the Krebs cycle create citrate 3S  (4). Then substances 4S  - 8S  

are created successively on stages (5)-(9). In the model, the Krebs cycle is 

represented by only those substrates that participate in the reduction of NADH  

and the phosphorylation ATPADT → . Acetyl- CoA  passes along the chain to 

malate represented in the model as intramitochondrial 7S  (8) and cytosolic 9S  

(10) ones. Malate can be also synthesized in another way related to the activity 

of two enzymes: isocitrate lyase and malate synthetase. The former catalyzes the 

splitting of isocitrate to succinate, and the latter catalyzes the condensation of 

acetyl- CoA  with glyoxylate and the formation of malate. This glyoxylate-linked 

way is shown in Fig. 1 as an enzymatic reaction with the consumption of 2S  

and 3S  and the formation of 7S . The parameter 3k  controls the activity of the 

активность glyoxylate-linked way (3), (4), (8). The yield of 7S  into cytosol is 

controlled by its concentration, which can increase due to 9S , by causing the 

inhibition of its transport with the participation of protons of mitochondrial 

membrane. 

The formed malate 9S  is used by a cell for its growth, namely for the 

biosynthesis of protein X  (11). The energy consumption of the given process is 

supported by the process ADPATP → . The presence of ethanol in the external 

solution causes the “ageing” of external membranes of cells, which leads to the 

inhibition of this process. The inhibition of the process also happens due to the 

enhanced level of the kinetic membrane potential ψ . The parameter 0µ  is 

related to the lysis and the washout of cells. 

In the model, the respiratory chain of a cell is represented in two forms: 

oxidized, Q , (12) and reduced, q , ones. They obey the integral of motion 

3)()( LtqtQ =+ . 

A change of the concentration of oxygen in the respiratory chain is 

determined by Eq. (13). 

The activity of the respiratory chain is affected by the level of NADH  (14). 

Its high concentration leads to the enhanced endogenic respiration in the 

reducing process in the respiratory chain (parameter 15k ). The accumulation of 

NADH  occurs as a result of the reduction of +NAD  at the transformation of 

ethanol and in the Krebs cycle. These variables obey the integral of motion 

2)()( LtNADHtNAD =++ . 

In the respiratory chain and the Krebs cycle, the substrate-linked 

phosphorylation of ADP  with the formation of ATP  (15) is also realized. The 

energy consumption due to the process ADPATP →  induces the biosynthesis 

of components of the Krebs cycle (parameter 18k ) and the growth of cells on the 

substrate (parameter 19k ). For these variables, the integral of motion 

1)()( LtADPtATP =+  holds. Thus, the level of ATP  produced in the redox 
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processes in the respiratory chain ATPADP →  determines the intensity of the 

Krebs cycle and the biosynthesis of protein. 

In the respiratory chain, the kinetic membrane potential ψ  (16) is created 

under the running of reducing processes qQ → . It is consumed at the substrate-

linked phosphorylation ATPADP →  in the respiratory chain and the Krebs 

cycle. Its enhanced level inhibits the biosynthesis of protein and process of 

reduction of the respiratory chain. 

Equations (17) and (18) describe the activity of enzymes 1E  and 2E , 

respectively. We consider their biosynthesis (
01E  and 

02E ), the inactivation in 

the course of the enzymatic reaction ( 1n  and 2n ), and all possible irreversible 

inactivations ( 5α  and 6α ). 

Equation (19) is related to the formation of carbon dioxide. Its removal 

from the solution into the environment ( 7α ) is taken into account. Carbon 

dioxide is produced in the Krebs cycle (5). In addition, it squeezes out oxygen 

from the solution (13), by decreasing the activity of the respiratory chain. 

The study of solutions of the given mathematical model (1)-(19) was 

performed with the help of the theory of nonlinear differential equations [20, 21] 

and the methods of mathematical modeling of biochemical systems applied and 

developed by the authors. in [22-38]. 

 

3  The results of Studies 
 

For one cycle, there occurs the full oxidation of a molecule of acetyl- CoA  

up to malate and the formation of a new molecule of acetyl- CoA  at the input. In 

such a way, the continuous process of functioning of the Krebs cycle is running. 

This process has the autooscillatory character. 

The studies of the model with the help of computational experiments 

showed that if system’s parameters vary, the appearance of autooscillations with 

various frequencies, as well as chaotic oscillations, becomes possible. 

Oscillations with the same frequency will occur in all components of the given 

metabolic process.  In the present work, we will study the dependence of 

autooscillations of the system on the parameter 8k , which determines the level 

of formation of CO2 in the cycle of tricarboxylic acid. 

The different types of obtained autooscillatory modes are studied with the 

help of the construction of phase-parametric diagrams. The abscissa axis shows 

the values of parameter 8k , and the axis of ordinates gives the values of chosen 

variable )(1 tE , for example. Moreover, we used the method of cutting. In the 

phase space of trajectories of the system, we place the cutting plane 8.02 =S . 

Such a choice is explained by the symmetry of oscillations of acetate relative to 

this plane in a lot of earlier calculated modes. For every given value of 8k , we 

observe the intersection of this plane by the trajectory in a single direction, 

when it approaches the attractor. The value of )(1 tE  is put onto the phase-
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parametric diagram. In the case where a multiple periodic limiting cycle arises, 

a number of points can be observed on the plane, and they will be the same in 

the period. If the deterministic chaos arises, the points of the intersection of the 

plane by the oscillating trajectory will be positioned chaotically.  

In Fig. 2,a-d, we show the phase-parametric diagrams for the variable )(1 tE  

versus the parameter 8k  changing in the appropriate intervals. 

 

 
Fig. 2. Phase-parametric diagram for the variable )(1 tE : a - )8.0.,0(8 ∈k ; b - 

)4.0.,0(8 ∈k ; c - )3.0,25.0(8 ∈k ; d - )28.0,273.0(8 ∈k . 

As the parameter 8k  decreases, there occurs the subsequent doubling of the 

multilicity of the autoperiodic process. Such a sequence of the appearance of 

bifurcations creates a cascade of bifurcations, namely the Feigenbaum sequence 

[39]. After the multiple doubling of a period, the modes of aperiodic oscillations 

are eventually observed in the system. In other words, a chaos arises. As the 

parameter 8k  decreases further, we see the appearance of the windows of 

periodicity on the phase-parametric diagrams. The deterministic chaos is 

destroyed, and the periodic and quasiperiodic modes are established. The 

trajectory of a strange attractor in the chaotic mode is tightened to a regular 

attractor of the autoperiodic mode. We observe the self-organization in the 

system.  Then the windows of periodicity are destroyed, and the chaotic modes 

arise again. Moreover, the transitions “order—chaos” and “chaos—order” 

happen. There occurs the adaptation of the metabolic process to varying 

conditions. 

It is seen from the presented figures that, as the scale decreases, every 

subsequent phase-parametric diagram with doubling of a cycle and its windows 
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of periodicity are identicat to those of the previous diagram, as the scale 

decreases. The given sequence of bifurcations has a self-similar fractal structure. 

In Figs. 3,e-f and 4, we present the examples of the projections of phase 

portraits for some values of parameter 8k , according to the phase-parametric 

diagram in Fig. 2. 

In Fig. 5, we show the constructed kinetic curves for a strange attractor 

formed at 12.08 =k . 

These figures indicate a variation of the dynamics of a metabolic process of 

the Krebs cycle, which depends on the intensity of formation of the final 

oxidation product, CO2. 

 

 

 

Fig. 3. Projections of system’s phase portraits: a – regular attractor 122 ⋅ , 

5.08 =k ; b – regular attractor 222 ⋅ , 3.08 =k ; c - regular attractor 422 ⋅ , 

28.08 =k ; d - regular attractor 822 ⋅ , 278.08 =k ; e -  regular attractor 1622 ⋅ , 

277.08 =k ; f - strange attractor x22 ⋅ , 275.08 =k . 
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Fig. 4. Projection of the phase portrait 

of the strange attractor x22 ⋅  for 

12.08 =k . 

Fig. 5. Kinetic curve for the 

components 1S , 2S , and ψ  of the 

Krebs cycle in the mode of the strange 

attractor x22 ⋅  for 12.08 =k . 

 

In order to uniquely identify the type of obrained attractors and to 

determine their stability, we calculated the full spectra of Lyapunov indices and 

their sum ∑
=

=Λ
19

1j

jλ  for the chosen points. The calculation was carried out by 

Benettin’s algorithm with the orthogonalization of the vectors of perturbations 

by the Gram--Schmidt method [21]. 

The calculation of Lyapunov indices from this multidimensional system on 

a personal computer meets certain difficulties. The mathematical model of the 

given biochemical system contains many variables and parameters. The 

limitations in the solution of such problems arise due to the insufficient random-

access memory of a computer in the processing of the nn×  matrix of small 

perturbations. In addition, any inaccuracy on the stage of programming will 

essentially affect the redefinition of the vectors of perturbations, their 

orthogonalization, and, as a consequence, the result of calculations. 

Nevertheless, we solved the problem and obtained certain results. Below for the 

sake of comparison, we present the spectra of Lyapunov indices for some modes 

of the system. For brevity without any loss of information, we give the values of 

indices up to the fourth decimal point. 

The ratios of the values of Lyapunov indices 19321 ... λλλλ >>>>  serve 

as the criterion of the validity of calculations. For a regular attractor, we have 

obligatorily 01 ≈λ . The remaining indices can be also 0≈  in some cases. In 

some other cases, they are negative. The zero value of the first Lyapunov index 

testifies to the presence of a stable limiting cycle. 

For a strange attractor, at least one Lyapunov index must be positive. After 

it, the zero index follows. The next indices are negative. The presence of 

negative indices means the contraction of system’s phase space in the 

corresponding directions, whereas the positive indices indicate the dispersion of 

trajectories. Therefore, there occurs the mixing of trajectories in narrow places 
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of the phase space of the system, i.e., there appears the deterministic chaos. The 

Lyapunov indices contain obligatorily the zero index, which means the 

conservation of the aperiodic trajectory of an attractor in some region of the 

phase space and the existence of a strange attractor. 

For 01.08 =k , the strange attractor x22 ⋅  arises. We have 191 λλ − :  .0007;  

.0000;  -.0040;  -.0125;  -.0196;  -.0200;  -.0290;  -.0299;  -.0317;  -.0416;  -

.0416; -.0416;  -.0458;  -.0816;  -.0874;  -.0874;  -.1181;  -.1539;  -.2222; 

0672.1−=Λ . 

For 075.08 =k  –  regular attractor 
023 ⋅  (see the window of periodicity in 

Fig. 2,b). 191 λλ − :  .0000;  -.0004;  -.0040;  -.0117;  -.0194;  -.0211;  -.0285;  -

.0285;  -.0326;  -.0406; -.0406; -.0406;  -.0451;  -.0819;  -.0883;  -.0883;  -.1182;  

-.1563;  -.2241; 0702.1−=Λ . 

For 12.08 =k  – strange attractor x22 ⋅ ; 191 λλ − :  .0008;   .0000;   -.0040;  

-.0125; -.0192;  -.0210;  -.0287;  -.0300;  -.0324; -.0406;  -.0406; -.0406;  -

.0457;  -.0822;  -.0879;  -.0879;  -.1172;  -.1542;  -.2212; 0653.1−=Λ . 

For 27.08 =k  – strange attractor x22 ⋅ ; 191 λλ − : .0002;  .0000;  -.0040;  -

.0125;  -.0192;  -.0219;  -.0281;  -.0310;  -.0320;  -.0387;  -.0387; -.0387;  -

.0436;  -.0842;  -.0889;  -.0889;  -.1185;  -.1541;  -.2209; 0638.1−=Λ . 

For 275.08 =k  – strange attractor x22 ⋅ ; 191 λλ − : .0001;  .0000;  -.0040;  -

.0125;  -.0192;  -.0219;  -.0280;  -.0312;  -.0323;  -.0383;  -.0383; -.0383;  -

.0434;  -.0842;  -.0890;  -.0890;  -.1184;  -.1540;  -.2212; 0631.1−=Λ . 

For 278.08 =k  – regular attractor 822 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0283;  -.0308;  -.0320;  -.0384;  -.0384; -.0384;  -

.0435;  -.0842;  -.0890;  -.0890;  -.1187;  -.1538;  -.2212; 0634.1−=Λ . 

For 278.08 =k  – regular attractor 822 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0283;  -.0308;  -.0320;  -.0384;  -.0384; -.0384;  -

.0435;  -.0842;  -.0890;  -.0890;  -.1187;  -.1538;  -.2212; 0634.1−=Λ . 

For 28.08 =k  – regular attractor  422 ⋅ ; 191 λλ − : .0000;  .0000;  -.0041;  -

.0123;  -.0193;  -.0219;  -.0282;  -.0307;  -.0322;  -.0384;  -.0384; -.0384;  -

.0436;  -.0842;  -.0890;  -.0890;  -.1186;  -.1540;  -.2212; 0633.1−=Λ . 

The presented results of calculations indicate that the sum Λ  of all indices, 

which determine the flow divergencies and, hence, the evolution of the phase 

volume along the trajectory, is maximal for the regular attractor 023⋅ . It arises 

in the window of periodicity for 075.08 =k  ( 0702.1−=Λ ). For the strange 

attractors on the left and on the right (for 01.08 =k  and 12.08 =k ), the 

divergencies are, respectively, 0672.1−=Λ  and 0653.1−=Λ . This means that 

the phase volume element for the given attractor is contracted, on the whole, 

stronger along the trajectory. Here, we observe the self-organization of a stable 

cycle from chaotic modes. The Krebs cycle is adapted to the varying conditions. 
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By the given Lyapunov indices for strange attractors, we determine the 

KS-entropy (the Kolmogorov--Sinai entropy) [40]. By the Pesin theorem [41], 

the KS-entropy h corresponds the sum of all positive Lyapunov characteristic 

indices: 

The KS-entropy allows us to judge about the rate, with which the 

information about the initial state of the system is lost. The positivity of the 

given entropy is a criterion of the chaos. This gives possibility to qualitatively 

estimate the properties of attractor’s local stability. 

We determine also the quantity inverse to the KS-entropy, mint . This is the 

time of a mixing in the system. It characterizes the rate, with which the initial 

conditions will be forgotten. For  mintt << , the behavior of the system can be 

predicted with sufficient accuracy. For mintt > , only a probabilistic description 

is possible. The chaotic mode is not predictable due to the loss of the memory of 

initial conditions. The quantity mint  is called the Lyapunov index and 

characterizes the “predictability horizon” of a strange attractor. 

In order to classify the geometric structure of strange attractors, we 

calculated the dimension of their fractality. The strange attractors are fractal sets 

and have the fractional Hausdorff-Besicovitch dimension. But its direct 

calculation is a very labor-consuming task possessing no standard algorithm. 

Therefore, as a quantitative measure of the fractality, we calculated the 

Lyapunov dimension of attractors by the Kaplan--Yorke formula [42, 43]: 

1

1

+

=

∑
+=

m

m

i

i

F mD
r λ

λ

,                                                                                            (11) 

where m  is the number of the first Lyapunov indices ordered by their 

decreasing. Their sum 0

1

≥∑
=

m

i

iλ , and 1+m  is the number of the first Lyapunov 

index, whose value 01 <+mλ . 

For the above-considered strange attractors ∞2 , we obtained the following 

indices. 

For 01.08 =k : 0007.0=h , 6.1428min =t , 175.2=
rFD . 

For 12.08 =k : 0008.0=h , 1250min =t , 2.2=
rFD . 

For 27.08 =k : 0002.0=h , 5000min =t , 05.2=
rFD . 

For 275.08 =k : 0001.0=h , 10000min =t , 025.2=
rFD . 

By these indices, we can judge about the difference of the given strange 

attractors. 

 

Conclusions 
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With the help of the mathematical model of the Krebs cycle, we have studied 

the dependence of the cyclicity of the metabolic process on the amount of a final 

product of the oxidation, i.e., on the amount of the formed carbon dioxide. The 

multiplicity of the cycle is doubled by the Feigenbaum scenario, until the 

аperiodic modes of strange attractors arise. From them as a result of the self-

organization, the stable periodic modes appear. This means that the system is 

adapted to the varying conditions. We have calculated the full spectra of 

Lyapunov indices and the divergencies for various modes. For the  strange 

attractors, we have determined the KS-entropies, “predictability horizons,” and 

Lyapunov dimensions of attractors. The results obtained allow us to study the 

structural-functional connections of the cycle of tricarboxylic acids, their 

influence on the cyclicity of metabolic oscillations in a cell, and the physical 

laws of self-organization in it. 

 

The work is supported by the project No. 0113U001093 of the National 
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