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Abstract: The maximum amount of water loses from the reservoirs take place 

through evaporation. Thus it is important to know the dynamical system that 

governs   the evaporation process. In this study, the Trajectory Method has been 

applied in order to obtain the differential equation from reconstructed phase 

space using evaporation time series. The trajectory method has been 

successfully applied in order to obtain the dynamical system that represents the 

periodic behavior of evaporation process.  
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1. Introduction 

Water is the most vital substance for sustainability of life on planet earth. 

Unfortunately its distribution on earth both in time and in space is not uniform. 

This means that the water problem existed in the past, exists today and will exist 

in the future.  On the other hand, especially in recent years water problem has 

gained much importance due to climate change. The state of the art climate 

models have shown that water related problems will be experienced more 

frequently in the future. This worsens the water related problems to a great 

extent. Thus it is mandatory to make intensive researches on the water resources 

and managements. In this context, water loses from all kind of water reservoirs 

are very important to be brought to a minimum level.  As known well, the 

maximum amount of water loses from the reservoirs take place through 

evaporation. Thus it is important to know the dynamical system that governs   
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the evaporation process. In this study, the Trajectory Method has been applied 

to reconstruction of differential equation that governs the behavior of 

evaporation process. The brief history of the trajectory method used in this study 

is as follows. Crutchfield and McNamara (1986) have made some important 

attempt to reconstruct the differential equation from time series. These two 

researchers have suggested two approximations about the issue.  The first of 

them is the determination of local dynamic that considers the short-term 

behavior of the system while the second approach deals with the dynamic of the 

whole attractor that consider the long-term behavior of the system. Almost at the 

same time with the aforementioned studies, Cremers and Hübler (1986) have 

developed the flow method that considers the sort-term behavior of the system. 

The flow method is applied to all points on the attractor. Thus it does not 

consider the long-term behavior of the system dynamic. Then Breeden and 

Hübler have developed this approach to include all of the system variables that 

could not be observed. In the end, Eisenhammer et al. (1991) have combine both 

short and long-term behavior of the system and they called their approach 

“trajectory method”. In this study, the trajectory method has been successfully 

applied in order to obtain the dynamical system of evaporation process.  

2. Trajectory Method 

Trajectory method is based on the reconstruction of differential 

equations which produce the trajectory resembling the original trajectory. In 

other word, the reconstructed model is the best possible model reflecting the 

original model (Perona et al., 2000). 

A set first order ordinary differential equations can be given as 

)t,x(fx                    (1) 

where x and t represent the variable vector and time, respectively. To 

reconstruct the equation of motion it is necessary to obtain the differential 

equations of model trajectory as close as possible to the original trajectory. On 

the other hand, mathematical form of the model should be determined ab initio.  

According to theory of dynamical system, time evolution of a system 

can be given by its trajectories in a phase space. Coordinates of this space are 

formed by state variables which are necessary to reflect the time evolution of the 

system under study. Every trajectory in this space represents the different time 

evolution of the system that corresponds to different initial conditions. Phase 

portraits have distinct patterns that attract all trajectories. This type of a pattern 

is called attractor. All initial conditions of which trajectories captured from the 

attractor defines a domain of attraction. Systems that show deterministic 

evolution have low dimensional attractors like point, limit cycle and torus. 

These kinds of attractors can be characterized by an integer dimension. An 

important property of these kinds of attractors is that trajectories that converge 

onto them remain in a fixed distance from each other.  This property ensures the 
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system to be predictable for a long period of time (Koçak, 1996). 

 

It is possible to reconstruct the phase space from a time series of one 

state variable sampled at regular time intervals Δt. For this to be done, some 

information and topological properties (e.g. dimension) of the attractor should 

be first estimated from the time series. Dimension of an attractor is the number 

of variable necessary to define the dynamics of the underlying system.  

Packard et al., (1980) have suggested the reconstruction of phase space 

in order to obtain some invariant measures from an observed turbulent or 

chaotic flow. This can be achieved via transformation of the dynamical process 

to a higher dimensional space (embedding) by adding an extra independent 

dimension until no further information gain is impossible. One of these 

coordinates is formed by the time series itself and the remaining independent 

coordinates are formed by derivatives of the time series up to (m-1)
th
 order. As a 

result, phase portrait of time evolution of a dynamical system can be represented 

in a new m-dimensional space spanned by a single state variable and its 

successive derivatives. 

 

In this study, phase space is reconstructed from univariate or single time series 

(evaporation). Thus it is necessary to mention briefly from phase space 

reconstruction.  Let’s take a time series given as   

x Ri  ,       i =1, 2,...,N .      (2) 

Then the reconstruction procedure is given as 
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where Xi is an m-dimensional vector.   

This pseudo-phase space preserves the structure of the attractor 

embedded in the original phase space, (Takens, 1981). In Eq (3)  is called time 

delay and should be calculated from time series by using autocorrelation 

function or mutual information function. Differential equation used in the 

trajectory method is assumed in the following form: 

D1,2,...,i            )x,...,x,x(Fcx Dk,i

K

k
k,ii 


21

1

                          (4) 

where ci,ks are coefficients of differential equation and Fi,k(x1,x2,…,xD)s 

are approximating functions. On the other hand K and D represent the number 

of approximating function and state variable, respectively. If  Fi,k is chosen as 
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the 3
rd

 degree polynomial then Eq (4) can given as 

 

 

(5) 

  

 

 

 

The trajectory method is very effective way of representing both short 

and long term behavior of dynamical system in the space of K functions.  

Figure 1 outlines  the trajectory method. As shown in this figure, model 

(Eq (4)) is run with the  initial conditions (j=1,2,…,jmax) chosen along the 

original trajectory (xr(tn), n=1,2,…,N). 
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same data point. On the other, hand lmax determines how many steps the model 

will be run in order to catch both sort and long-term behavior of the system. In 

other words, lmax  is the number of points used for comparison between the 

single reconstructed trajectory and the original trajectory, starting from the 

initial state set on the latter. ∆tl in Eq (6) is the time interval between the 

integration steps of the model equation.  This quantity can be calculated as  

)2( 1 l

l ht                                                                                                  (7)  

where h is the interval between the observations or integration step in 

case of numerical integration. The optimum value of ci,k are obtained by 

minimization the quality function Q.  

QQ
kiC ,

minmin 
             (i = 1,2,…,D; k = 1,2,…K)                          (8) 

Eq (6) can be stated as given below 
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The integral given in Eq (9) represents the change of )(tx
im

 between the time 

interval [tj, tj+Δtl] and can be stated as 
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           (10)  

The integrals in Eq (10) should be calculated numerically because the functions 

Fi,k are all unknown functions. If the partial derivative of Q with respect to 

unknown coefficients ci,k  is set to zero, then the following set of linear equation 

is obtained:  

 ,...,1,       0,,

11

                              (11) 

The matrix 
)(

,

i

zkA and the vector 
)(i

kB are as given in Eqs (12) and (13), 

respectively. 
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The matrix A is reversible. By solving Eq (11) a new set of coefficients 

ci,k are obtained then these coefficients are used in the next optimization cycle. 

This process continues until the optimum values of coefficients are obtained 

(Perona et al., 2000).   

 

 

3. Application to Evaporation Data 

Daily evaporation totals used in this study are observed in the Ercan 

Meteorology Station located in North Cyprus. Observation period covers 2001-

2010; total number of data points is 3652. In this study, before the application of 

the trajectory method, the original time series smoothed out by using loess 

method (Cleveland, 1979).  Figure 2 shows the original and the smoothed out 

time series together. 

 

Figure 2. Evaporation time series (black) and smoothed out series (white). 

By using smoothed time series phase space is reconstructed. As mentioned 

before, for phase space reconstruction two parameters namely time delay and 

embedding dimension are necessary. The time delay is determined by using 

Mutual Information Function (MIF) approach (Fraser, 1986). The first minimum 

value is taken as the optimum time delay (see Figure 3). As seen from Figure 3, 
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the first minimum of the MIF is =112. On the other hand embedding dimension 

is assumed m=3.  

 

Figure 3. Mutual information of smoothed evaporation time series. 

The phase space of evaporation process is reconstructed by taking time delay 

112 and embedding dimension 3. Projection of the resulting attractor onto 2-

dimension is given in Figure 4. As depicted in this figure smoothed attractor 

shows almost quasi-periodic behavior. Put another way, the behavior of this 

attractor in phase space is neither periodic nor aperiodic.  This result shows that 

it will be reasonable to model the periodic structure or limit cycle of this 

attractor. The trajectory model has been applied to smoothed evaporation time 

series. The resulting limit cycle is given in Figure 5. As shown from this figure 

starting from an initial condition, the trajectory eventually converge the stable 

periodic orbit.  

 

Figure 4. Projection of the attractor onto plane. 
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Figure 5. Periodic attractor of evaporation process. 

4. Results and Discussion 

Water reservoirs are very important in producing hydraulic energy, irrigation, 

flood control, drinking water, recreational purposes, etc. On the other hand there 

are some water loses from water reservoirs. The most important water loses take 

place by evaporation process. Thus, it is important to know the main dynamic of 

the evaporation.  

In this study the trajectory method, the state art of the inverse problem solving 

method, is applied to evaporation process. Other variables that affect the 

evaporation such as temperature, wind speed, relative humidity, solar radiation, 

etc. are not considered in this application. In other words phase space 

reconstruction from univariate time series is used instead of multivariate 

approach. After the reconstruction process, the trajectory method is applied to 

smoothed evaporation data. The limit cycle or periodic behavior of the 

evaporation has been successfully reconstructed in the form of a set of 

differential equation which has three state variables.  
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